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Objective: Emerging evidence suggests an increased prevalence of coronavirus

disease 2019 (COVID-19) in patients with systemic lupus erythematosus (SLE),

the prototype of autoimmune disease, compared to the general population.

However, the conclusions were inconsistent, and the causal relationship

between COVID-19 and SLE remains unknown.

Methods: In this study, we aimed to evaluate the bidirectional causal relationship

between COVID-19 and SLE using bidirectional Mendelian randomization (MR)

analysis, including MR-Egger, weighted median, weighted mode, and the inverse

variance weighting (IVW) method.

Results: The results of IVW showed a negative effect of SLE on severe COVID-19

(OR = 0.962, p = 0.040) and COVID-19 infection (OR = 0.988, p = 0.025), which

disappeared after Bonferroni correction. No causal effect of SLE on hospitalized

COVID-19 was observed (OR = 0.983, p = 0.148). In the reverse analysis, no

causal effects of severe COVID-19 infection (OR = 1.045, p = 0.664), hospitalized

COVID-19 (OR = 0.872, p = 0.109), and COVID-19 infection (OR = 0.943,

p = 0.811) on SLE were found.

Conclusion: The findings of our bidirectional causal inference analysis did not

support a genetically predicted causal relationship between SLE and COVID-19;

thus, their association observed in previous observational studies may have been

caused by confounding factors.

KEYWORDS

systemic lupus erythematosus, COVID-19, genetic association, causal relationship,
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1 Introduction

In the past 3 years, coronavirus disease 2019 (COVID-19),

caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has spread all over the world and has caused high concern

worldwide (1). Currently, the COVID-19 pandemic is still evolving,

with a high societal burden of morbidity and mortality. At the time

of writing, more than 500 million cases and approximately 6 million

deaths have been reported (https://covid19.who.int/). The clinical

manifestations of patients with COVID-19 are diverse, ranging

from severe cases to mild and asymptomatic cases (2). Moreover,

patients with COVID-19 are often observed to experience multiple

complications, including interstitial pneumonia, cytopenia,

arthralgia, myocarditis, and autoimmune diseases (3–5).

In addition to complications during illness, late-onset

complications in patients with COVID-19 are also increasingly

reported, among which autoimmune manifestations have attracted

much attention (4–13). Emerging reports have suggested that

COVID-19 may lead to autoimmune and autoinflammatory

diseases, in turn leading patients with COVID-19 to enter a

vicious circle of infection and to be closely associated with

increased morbidity and mortality (4, 11, 14). Among these

studies, great attention has been focused on systemic lupus

erythematosus (SLE), the prototypical autoimmune disease (7–9).

SLE is a chronic systemic autoimmune disorder whose

pathogenesis is complex and characterized by the production of

multiple autoantibodies and immune complex deposition (15).

Globally, the prevalence of SLE in adults is estimated at 30–150 per

100,000, and its incidence ranges from 2.2 to 23.1 per 100,000 per year

(16). Despite advances in treatment, SLE is still a cause of premature

death, with a global standardized mortality rate of 2.0–5.9 (17, 18). SLE

is a lifelong chronic disease that cannot be cured, yet. The accumulation

of organ damage and the side effects of the long-term use of hormones

and immunosuppressive drugs seriously affect the quality of life of

patients and bring significant economic burdens to them (19, 20).

Recently, the association between COVID-19 and SLE has

attracted a lot of attention. Some studies found that the

prevalence of COVID-19 is increased in patients with SLE

compared to the general population (21, 22). However,

conclusions about the prevalence of COVID-19 in patients with

SLE have been inconsistent. There are also studies indicating that

the prevalence of COVID-19 is similar between SLE patients and

normal controls (12, 13), while some studies even reported a

decrease in COVID-19 prevalence in patients with SLE compared

with the general population (23, 24). These causal inferences from

observational studies are limited and unreliable, which could be due

to the influence of unmeasured or unknown confounding factors

(25). On the other hand, due to the serious adverse effects of

COVID-19, randomized controlled trials (RCTs), the most

commonly used tool for assessing causality, cannot be conducted

to study the causal relationship between COVID-19 and these

adverse health outcomes. Therefore, the causal relationship

between COVID-19 and SLE remains obscure.

Clarifying the relationship between COVID-19 infection and SLE

is necessary for further research on the diagnosis, treatment, and

recovery of patients with SLE infected with COVID-19. Further
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research is also helpful for further understanding the feasibility and

the risk of vaccination for patients with SLE and is also essential for the

development of strategies for the treatment and care of SLE patients

during a COVID-19 infection. Therefore, there is an urgent need to

evaluate the causal relationship between COVID-19 and SLE (26).

Mendelian randomization (MR), an advanced study design

using genetic variants as instrumental variables (IVs), has been

widely used to evaluate causal relationships between exposure

factors and outcomes (27). It can reduce the confounding effects

from environmental factors as alleles are randomly allocated at

conception. In addition, it could also avoid reverse causal bias

because the genotype would not be affected by diseases (28).

Furthermore, compared to RCT, MR can be conducted using

existing open-access data from large-scale genome-wide

association studies (GWAS), which extremely increases its scope

and statistical power (29).

In this study, we conducted a bidirectional two-sample MR

analysis to assess the causal relationship between COVID-19 and

SLE, which is beneficial for the development of strategies for the

treatment and care of patients with SLE during infection with

COVID-19.
2 Materials and methods

2.1 Study design

Our summary data were obtained from published studies, all

data of which had been approved by institutional review

committees. A bidirectional two-sample MR method was

employed to verify the causative effects between SLE and three

types of COVID-19 infection.
2.2 Data sources and single nucleotide
polymorphism selection

2.2.1 GWAS of COVID-19
The COVID-19-related data were obtained from the COVID-

19 host genetics initiative GWAS (release 5) (https://

www.covid19hg.org/results/) (30). We selected data from studies

in which all participants were from the European population and

the whole population was used as the control. We assessed the

causality between three different populations with COVID-19

infection and SLE: COVID-19 infection (total cases = 38,984,

total controls = 1,644,784), hospitalized COVID-19 (total

cases = 9,986, total controls = 1,877,672), and severe COVID-19

(total cases = 5,101, total controls = 1,383,241).

2.2.2 GWAS of SLE
Genetic associations of SLE were retrieved from the largest

public GWAS meta-analysis of Bentham et al. (31), which included

7,219 cases and 15,991 controls. The corresponding genetic

information of the single nucleotide polymorphisms (SNPs) of

the three different COVID-9 infection groups was reviewed and

collected in an SLE consortium.
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2.2.3 SNP selection
First, we screened out the SNPs that had strong associations

with exposure (p < 5 × 10−8) from the exposure GWAS. Second, to

exclude the effect of linkage disequilibrium (LD) on the MR results,

we used the clumping process (r2 < 0.001, clumping

distance = 10,000 kb) to ensure that there was no LD between

SNPs. Third, SNPs with a minor allele frequency (MAF) <0.01 were

excluded. Fourth, the selected SNPs were matched to the outcome

GWAS, with the missing SNPs replaced by their proxy SNPs with

high LD (r2 > 0.8). Finally, after removing palindromic SNPs, the

other SNPs selected were used as IVs.
2.3 Statistical analyses

The causal relationship between COVID-19 infection and SLE

was analyzed using four highly efficient and complementary

methods, namely, MR-Egger, weighted median, weighted mode,

and inverse variance weighting (IVW), with IVW as the main

analytical method. The IVs were assessed for potential horizontal

pleiotropy using MR-Egger regression and the MR pleiotropy

residual sum and outlier (MR-PRESSO) method (32, 33). In

addition, MR-PRESSO can also find outliers in the IVs. After

removing outliers, the MR-Egger and MR-PRESSO tests were

performed again until there was no SNP with horizontal

pleiotropy in all the IVs. Heterogeneity among IVs was

detected and quantified using Cochran’s Q statistic (34). The

leave-one-out sensitivity analysis was used to determine and

exclude SNPs that had a strong impact on the results to ensure

the reliability and stability of the causal effect estimates. Three

types of COVID-19 infection were analyzed in this study, and a

bidirectional two-sample MR study was conducted to assess the

causal relationship between COVID-19 and SLE. The Bonferroni

method was utilized to correct for multiple comparisons, and the

p-value was <0.008 (0.05 was divided by 2*3). All analyses were

carried out using the packages “TwoSampleMR” and

“MRPRESSO” in R version 4.1.1.
3 Results

3.1 Instrumental variable selection

3.1.1 SLE IVs
Initially, 15,984 SNPs with strong associations (p < 5 × 10−8)

with SLE were screened out from the SLE GWAS data. After the

clumping process, 43 SNPs with no LD were selected. None of their

MAFs were less than 0.01. Data on the main information of the

SNPs, including the effect allele, other alleles, beta, standard error of

beta (SE), and p-value, were collected, as shown in Supplementary

Table S1. rs143123127, rs9274357, and rs150180633 were not found

in all three COVID-19 GWAS data. rs150180633 was replaced by its

proxy SNP rs76610133, but no proxy SNPs for rs143123127 and

rs9274357 could be found. Ultimately, 41 IVs were included in the

MR analysis.
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3.1.2 Severe COVID-19 IVs
Initially, 649 SNPs with strong associations (p < 5 × 10−8) with

severe COVID-19 were screened out from the severe COVID-19

GWAS data. After the clumping process, nine SNPs with no LD

were selected. The MAFs of all the abovementioned SNPs were

greater than 0.01. The main information on these SNPs is shown in

Supplementary Table S2. rs35081325, rs111837807, and rs2237698

were not found in the SLE GWAS data. Therefore, rs35081325 and

rs111837807 were replaced by their proxy SNPs, rs34288077 and

rs143334143, respectively; however, no proxy SNP for rs2237698

could be found. rs13050728 was removed from the MR analysis due

to its beta in the SLE GWAS data being 0. Ultimately, seven IVs

were included in the MR analysis.
3.1.3 Hospitalized COVID-19 IVs
A total of 709 SNPs with strong associations (p < 5 × 10−8) with

hospitalized COVID-19 were screened out from the hospitalized

COVID-19 GWAS data. After the clumping process, six SNPs with

no LD were selected. The MAFs of all the abovementioned SNPs

were greater than 0.01. The main information on these SNPs is

shown in Supplementary Table S2. rs35081325 was not found in the

SLE GWAS data and was therefore replaced by the proxy SNP

rs34288077. rs13050728 was removed from the MR analysis due to

its beta in the SLE GWAS data being 0. Ultimately, five IVs were

included in the MR analysis.
3.1.4 COVID-19 IVs
A total of 495 SNPs with strong associations (p < 5 × 10−8) with

COVID-19 were screened out from the COVID-19 data. After the

clumping process, seven SNPs with no LD were selected. The MAFs

of all the abovementioned SNPs were greater than 0.01. The main

information on these SNPs is shown in Supplementary Table S2. As

palindromic SNPs were identified in the MR analysis, rs12482060

and rs757405 were removed. Ultimately, five IVs were included in

the MR analysis.
3.2 Causal relationship between SLE
and COVID-19

3.2.1 SLE on COVID-19
The results of IVW showed a negative effect of SLE on severe

COVID-19 (OR = 0.962, 95% CI = 0.927–0.998, p = 0.040) and

COVID-19 infection (OR = 0.988, 95% CI = 0.977–0.998,

p = 0.025), which disappeared after Bonferroni correction. No

causal effect of SLE on hospitalized COVID-19 was observed

(OR = 0.983, 95% CI = 0.961–1.006, p = 0.148). The results of the

MR analysis of the causal effects of SLE on COVID-19 are presented

in Figure 1 and Supplementary Table S3.

3.2.2 COVID-19 on SLE
No causal effects of severe COVID-19 infection (OR = 1.045,

95% CI = 0.858–1.273, p = 0.664), hospitalized COVID-19

(OR = 0.872, 95% CI = 0.737–1.031, p = 0.109), and COVID-19

infection (OR = 0.999, 95% CI = 0.697–1.434, p = 0.998) on SLE
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were found. The results of the MR analysis of the causal effects of

COVID-19 on SLE are shown in Figure 1 and Supplementary

Table S4.
3.3 Pleiotropy and sensitivity analysis

The heterogeneity test did not find any heterogeneity among the

selected IVs. MR-Egger regression and the MR-PRESSO global test

showed no horizontal pleiotropy between the IVs and outcomes,

except for rs10936744, which was identified as an outlier and

showed horizontal pleiotropy with SLE. After removing the

outlier, the results did not change significantly (OR = 0.874, 95%

CI = 0.610–1.253, p = 0.465) (Supplementary Table S4). The leave-

one-out analysis suggested that the results were not driven by any

SNPs. The results of the pleiotropic and sensitivity analyses are

presented in Supplementary Figures S1–S4.
4 Discussion

In this study, we investigated the bidirectional causal

association between SLE and COVID-19 using multiple

complementary MR methods. Our two-sample MR analysis did

not observe any evidence supporting the causal association of

COVID-19 with SLE in individuals of European descent.

Similarly, the reverse MR analysis found no evidence that genetic

liability to SLE was causally related to COVID-19.
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Recently, the prevalence of COVID-19 in patients with SLE has

attracted a lot of attention. Some studies found that the prevalence of

COVID-19 is higher in patients with SLE than in control populations

(21, 22). In a study including 417 patients with SLE, 14 patients were

diagnosed with COVID-19 (21). A total of 4,059 SLE patients were

described in 20 research studies published before June 30, 2020, of

whom 255 were diagnosed by PCR or presumed to have COVID-19

based on symptoms or radiological findings (22). However,

conclusions about the prevalence of COVID in patients with SLE

were inconsistent. There were studies indicating that the prevalence

of COVID-19 is similar in patients with SLE compared with the

general population (12, 13). In two cohort studies that included 458

and 916 SLE patients, only one and two were diagnosed with

COVID-19, with SARS-CoV-2 infection rates of 0.22% and 0.21%,

respectively, which were similar to that of the control population (12,

13). Moreover, there were also studies suggesting that the prevalence

of COVID-19 is decreased in patients with SLE compared to the

general population (23, 24). A study of 900 SLE patients conducted

from 25 February to 10 April 2020 did not observe any patients

infected with COVID-19 (23). In addition, only three COVID-19

cases were identified in the Asia Pacific Lupus Collaboration (APLC)

patient cohort comprising 3,375 patients from 25 centers (24).

The conflicting evidence on the association between COVID-19

and SLE found in previous observational studies may be attributable to

the following factors. It was demonstrated that, after functional

impairment of the lung, heart, brain, and kidney tissues in the first

stage, SARS-CoV-2 causes immune dysregulation and autoimmune

imbalances in the second stage, as well as hormonal imbalances, which
FIGURE 1

Casual relationships between SLE and COVID-19.
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can lead to physical and mental fatigue, multi-location pains, and even

autoimmune diseases, including SLE (10, 35). It was also proposed that

SLE and COVID-19 shared many aspects, including some

demographics of the patient populations affected and aberrant

immune responses (36). On the one hand, patients with SLE may

likely have a higher risk and more severe outcomes of COVID-19 not

only because of their associated immunocompromised condition but

also due to the immunosuppressive and cytotoxic drug treatments they

received (36, 37). The abnormal innate and adaptive immunity in

patients with SLE may prolong viral shedding, making them more

susceptible to COVID-19 and to having a more severe infection (38,

39). DNA methylation defects can be exacerbated in SLE patients after

being infected with SARS-CoV-2, which may lead to the

hypomethylation of ACE2 and the demethylation of key cytokine

genes, thereby exacerbating virus-induced cytokine storms, triggering

viremia and othermore severe consequences (38). CD8 T-cell-mediated

cytotoxicity was observed to be decreased in SLE patients, which may

increase the susceptibility to and the severity of COVID-19 in these

patients (39). On the other hand, patients with SLE may likely have a

higher risk and severe outcomes of COVID-19 due not only to their

accompanying immunocompromised state but also to the

immunosuppressive and cytotoxic drug treatment received. On the

other hand, there were also studies suggesting that some of the shared

pathways and the use of certain steroid drugs are protective against

COVID-19 in patients with SLE (40, 41). The highly active type I

interferon in SLE patients was found to exert protective effects on

SARS-CoV-2 infection (40). A study showed that the use of low-dose

steroids can reduce the mortality of patients with severe COVID-19,

suggesting that steroids may have different effects on COVID-19

depending on the dose and the disease severity (41). Another study

also revealed that the risk and the outcome of COVID-19 in patients

with SLE were difficult to determine due to methodological limitations,

and treated with some immunosuppression did not seem to increase the

susceptibility to and the severity of COVID-19 in these patients (42).

This study had several advantages. First, as a bidirectional MR

study, the study assessed the possible causal relationship between

COVID-19 and SLE in both directions. Second, it also evaluated the

causal relationship between SLE and three different types of

COVID-19 infection, which provided further insights into the

causal associations between SLE and the different outcomes and

severity of COVID-19 infection.

However, this study also had some limitations. First, all of the

GWAS data in this study were from European populations;

therefore, the representativeness of the results to the entire

population remains to be determined. Second, there may be

participants included in both exposure and outcome, but it was

difficult to estimate the proportions of these participants. Finally,

although we selected the largest GWAS database to date, the IVs of

COVID-19 after screening were still somewhat underrepresented.

Larger-scale COVID-19 GWAS data need to be updated.
5 Conclusion

The evidence from our bidirectional causal inference analysis

did not support a genetically predicted causal relationship between
Frontiers in Immunology 05
SLE and COVID-19; thus, their association observed in previous

observational studies may have been caused by confounding factors.

More advanced MR analysis methods, larger-scale GWAS summary

data, and more genetic instruments are needed to validate the

findings of this study.
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