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Sepsis is a multiple organ dysfunction syndrome caused by the host’s immune

response to infection, with extremely high incidence and mortality.

Immunosuppression is an essential pathophysiological alteration that

influences the clinical treatment and prognosis of sepsis. Recent studies have

suggested that the programmed cell death 1 signaling pathway is involved in the

formation of immunosuppression in sepsis. In this review, we systematically

present the mechanisms of immune dysregulation in sepsis and elucidate the

expression and regulatory effects of the programmed cell death 1 signaling

pathway on immune cells associated with sepsis. We then specify current

research developments and prospects for the application of the programmed

cell death 1 signaling pathway in immunomodulatory therapy for sepsis. Several

open questions and future research are discussed at the end.
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1 Introduction

Sepsis is the most serious threat to human health worldwide, affecting more than 40

million people worldwide each year and killing roughly one in five of them (1). Its core

mechanism is the host immune response disorder caused by infection, which leads to

multiple organ dysfunction (2). Current studies believe that immunosuppression originates

from the very early stage of sepsis, which is caused by the excessive release of anti-

inflammatory cytokines and the decline in the number and function of immune cells, and

continuous immunosuppression will lead to increased mortality (3). Programmed cell

death 1 (PD-1) signaling pathway plays an crucial role in immune regulation of tumor and

autoimmune diseases (4). It has recently been reported that the PD-1 pathway is also

involved in the formation of immunosuppression in sepsis, and blocking this pathway has

been shown to have promising therapeutic effects in animal experiments. Therefore, the

purpose of this article is to introduce the mechanism of immune dysregulation in sepsis,

demonstrate the regulatory effects of PD-1 signaling pathway on various kinds of sepsis-
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related immune cells, and explore the application prospect of

blocking PD-1 signaling pathway in immunomodulatory therapy

of sepsis and problems to be solved in future research. All references

cited in this paper are from the PubMed database.
2 Immune dysregulation in sepsis

The pathogenesis of sepsis is the immune disorder caused by

infection, which includes the excessive release of pro-inflammatory

cytokines and the immunosuppression, both of which occur

simultaneously at the early stage of infection (5). With the help of

antibiotics and infection control measures, the body will return to

homeostasis if the host’s immune system is able to rid itself of the

pathogen quickly. However, some hosts showed continuous

immunosuppression, whose immune system could not clear the

pathogens in time, and even developed to secondary infections,

eventually into multiple organ dysfunction syndrome (MODS) and

death (6).

In the early stage of sepsis, the body’s innate immune system

first recognizes the pathogen-associated molecular patterns

(PAMPs) after the pathogen has invaded, causing the release of a

series of pro-inflammatory cytokines such as tumor necrosis factor-

alpha (TNF-a), interleukin-1 (IL-1) and interleukin-6 (IL-6). These

pro-inflammatory factors promote downstream cytokine release,

causing tissue damage, disseminated intravascular coagulation

(DIC), and organ dysfunction (7), also called a cytokines storm.

At the same time, immune cells secrete anti-inflammatory cytokines

like interleukin-4 (IL-4) and interleukin-10 (IL-10). Secreted mainly

by activated T lymphocytes, IL-4 can induce CD4+ T cells

converting into T helper 2 (Th2) cells, and indirectly inhibit the

release of interleukin-2 (IL-2), interferon-gamma (IFN-g) and other
pro-inflammatory factors (8). IL-10 is mainly secreted by

monocytes and macrophages, and can promote the proliferation

of immunosuppressive cells like regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs) (9). Thus, the negative

regulatory effect of anti-inflammatory cytokines is a major cause of

immunosuppression in sepsis.

In addition, multiple factors contribute to the reduction in the

number and function of immune cells associated with sepsis. In

patients with sepsis, over-expressed caspase-1 or caspase-4/5

combined with lipopolysaccharide (LPS) recognizes and activates

gasdermin-D (GSDMD), an actor of pyroptosis, which can cause

immune cell death (10). Patients with sepsis showed significantly

reduced expression of human leukocyte antigen-DR (HLA-DR),

which resulted in decreased antigen presenting cell function, and

further inhibited subsequent T cell activation and adaptive immune

response (11). Negative costimulatory molecules, such as PD-1, T-

cell immunoglobulin and mucin domain-containing protein-3

(TIM-3) and B and T lymphocyte attenuator (BTLA) is also

highly expressed in sepsis, leading to immunosuppression (12).

The precise role of PD-1 will be discussed later.
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3 Expression of PD-1 pathway related
molecules in sepsis

PD-1, a member of the B7-CD28 immunoglobulin superfamily,

is a transmembrane receptor protein that acts as an essential

negative costimulatory molecule, also known as an immune

checkpoint, and is widely expressed on the surfaces of

lymphocytes, dendritic cells, monocytes and other immune cells.

After binding with Programmed death-ligand 1(PD-L1), PD-1

inhibits proliferation and cytokins secretion of T cells by

dephosphorylation of the T cell receptors (TCR) related

molecules, and promotes the conversion of T cells to Tregs, thus

transmits negative immune regulatory signals (13). Since PD-L1 is

widely expressed on tumor cells, immunosuppression mediated by

PD-1 pathway is an critical mechanism for immune escape of tumor

cells (14).

Similar to tumor cells, PD-1 and its ligands are also highly

expressed in various immune cells associated with sepsis. The

expression of PD-1 in spleen T cells and PD-L1 in macrophages

increases in candidiemic mice (15).CD4+ T cells in septic mice

showed a special depletion phenotype, which was characterized by

increased expression of PD-1, TIM-3 and the proportion of Tregs

(16). PD-L1 expression also increases in Myeloid derived

suppressor cells (MDSCs) in septic mice (17). Human immune

cells also highly express PD-1 related molecules during sepsis. PD-1

expression increases in CD4+T cells in patients with sepsis and is

associated with a poor prognosis. The cutoff value for predicting

death in 28 days with the expression frequency of PD-1 was 22.46%

(18). Expression of immune checkpoints including PD-1 by

peripheral blood mononuclear cells (PBMCs) increased in

patients with aggressive candida infection, especially in patients

who died (19). The expression of PD-L1 in natural killer (NK) cells

in septic patients is significantly increased, and its frequency is an

independent risk factor for death at 28 days (20). Soluble PD-L1

(sPD-L1) in circulation is still increased even after recovery from

sepsis, with significantly higher readmissions and all-cause

mortality within six months (21). PD-1/PD-L1 expression was

even increased in various subsets of memory B cells and T cells in

patients with sepsis (22). These findings confirm that PD-1 pathway

related molecules are widely expressed in immune cells associated

with sepsis.
4 Regulatory effects of the PD-1
pathway on immune cells associated
with sepsis

It has been established that the PD-1 signaling pathway, based

on extensive expression, plays a regulatory role in various types of

innate and adaptive immune cells associated with sepsis.
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4.1 Regulatory effects on neutrophils

PD-L1 expression was negatively correlated with the apoptosis

rate of neutrophils in septic patients by prolongating neutrophil

survival through activation of PI3K/Akt signaling pathway (23).

PD-L1 expression also reduced the migration ability of neutrophils

and induced apoptosis of co-cultured lymphocytes in septic

mice (24).
4.2 Regulatory effects on
monocytes/macrophages

In septic mice with PD-1 gene deletion, Kupffer cells expressed

more major histocompatibility complex II (MHC-II), engulf

function was significantly enhanced, and after LPS stimulation,

the secretion of IL-6 and monocyte chemoattractant protein-1 also

increased significantly. In addition, PD-1 gene deletion was found

to decrease cleaved caspase-3 levels and reduce LPS induced Kupffer

cell apoptosis (25). In septic mice, blocking PD-1 with antibodies

resulted in aggregation of macrophage cytoskeleton proteins a-
actitinin and F-actin, enhancing their phagocytosis and mobility. It

is speculated that the PD-1 signaling pathway achieves this effect by

inducing cytoskeletal rearrangement (26). Avendano-Ortiz et al.

found that the expression of PD-1 in monocytes of septic patients is

related to endotoxin tolerance, and blocking this pathway can

enhance the immune response of monocytes in sepsis patients (27).
4.3 Regulatory effects on dendritic cells

In septic mice, TNF-a induced protein 8 like 1 (TIPE1) can

inhibit dendritic cell maturation by activating PD-1 signaling

pathway, thus affecting its antigen presentation ability and

subsequent T cell activation (28).
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4.4 Regulatory effects on adaptive
immune cells

Besides the typical effects of inducing T-cell exhaustion and

promoting the transformation from efficient T cells to Tregs that

mentioned previously (13), PD-1 pathway can also inhibit the

cytokines secretion of T cells. The ability of CD4+T cells to

secrete TNF-a was decreased in septic mice with elevated PD-1

expression (29). Similar phenomena have also been observed from

the in vitro experiments of septic patients, and PD-1 blockers can

enhance the ability of T cells to secrete IFN-g (30, 31). In addition,

the PD-1 pathway can also inhibit activity and secretion ability of

CD19(+) B cells (32), but its specificity in sepsis is still lacking.
5 Blocking the PD-1 pathway in
immunomodulatory therapy for sepsis

It was previously believed that the main harm of sepsis was

systemic inflammatory response syndrome (SIRS) caused by

infection, which was induced by excessive release of inflammatory

cytokines in the early stage of the disease. Therefore, the

immunotherapeutic strategies of sepsis in the past were mainly to

inhibit the inflammatory response and block the pro-inflammatory

cytokines such as PAMPs, Toll-like cytokines (TLRs), TNF-a, IL-6,
etc., but the results were not as expected. Although the fatality rate at

the early stage of sepsis decreased, the overall prognosis did not

continue to improve, and more patients showed immunosuppression,

uncontrolled infection and organ failure in the late stage of the disease

(3, 33, 34). This led to a deeper understanding of the core mechanism

of sepsis, the now widely accepted theory of immune dysregulation. It

also provides a theoretical basis for animal and clinical trials of

immunomodulatory therapies for sepsis, which attenuate

immunosuppression by blocking the PD-1 pathway, as shown

in Table 1.
TABLE 1 Studies on blocking the PD-1 pathway in sepsis.

Study
model

Intervention against the
PD-1 pathway

Result Reference

Septic
mice

PD-1 knockout Increased aggregation of neutrophils in the abdomen, increased levels of inflammatory
factors in the blood, and improved overall survival

Young WA, et al.,
2017 (35)

Anti-PD-1 antibodies Improved the bacterial clearance and survival rate Patil NK, et al.,
2018 (36)

Peptide-based PD-1 inhibitors Enhanced macrophage function, pathogen clearance and survival Kotraiah V, et al.,
2020 (37)

Restored the expression of PD-L1 gene by
adenovirus transduction

Reduced liver damage and improved survival von Knethen et al.,
2019 (38)

Septic
patients

Nivolumab, a monoclonal antibody of
PD-1

Increased HLA-DR expression and decreased IL-6 levels in monocytes;
No safety accidents discovery

Hotchkiss RS,
et al., 2019 (39)
PD-1, Programmed cell death 1; PD-L1, Programmed cell death ligand 1; HLA-DR, human leukocyte antigen-DR; IL-6, interleukin-6.
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5.1 Animal trials

Multiple animal trials have demonstrated that blocking the PD-

1 pathway or knockout of related genes can improve the prognosis

of sepsis. Compared with wild-type, PD-1 knockout mice showed

increased aggregation of neutrophils in the abdomen after sepsis,

increased levels of inflammatory factors in the blood, and

significantly improved overall survival (35). After receiving PD-L1

antibody treatment, septic mice caused by burns showed an

improvement in clearance of pathogenic bacteria and survival rate

(36). Treatment of septic mice with peptide-based PD-1 inhibitors

enhanced their macrophage function, pathogen clearance, and

survival (37). However, not all animal trials have reached similar

conclusions. One study found that PD-L1 expression was down-

regulated in liver cells of septic mice. But after the expression of PD-

L1 gene was restored by adenovirus transduction, the damage of

liver cells in mice was reduced and the survival rate was significantly

improved (38).Possible reasons for this discrepancy will be

discussed later.
5.2 Clinical trials

Clinical trials of therapies that block the PD-1 pathway are in

their infancy compared to animal trials. Hotchkiss et al. (39)

selected 31 septic patients from the Intensive care unit (ICU) of

10 hospitals in the United States and conducted a randomized

controlled trial on nivolumab, a monoclonal antibody of PD-1, at

different doses. Basic pharmacokinetic parameters were obtained

and increased HLA-DR expression and decreased IL-6 levels were

observed in monocytes in all patients. But the study was a Phase 1

trial that demonstrated the safety of nivolumab only in patients with

sepsis, not its efficacy. Another randomized controlled clinical trial

of anti-PD-L1 drugs and placebo conducted by the same team also

reached a similar conclusion (40). No follow-up clinical trials were

reported at the time of submission.
6 Problems and prospects

As previously mentioned, PD-1/PD-L1 plays an essential

regulatory role in the immunosuppression induced by sepsis by

affecting the function of various immune cells and is closely related

to the immune status and prognosis of sepsis. Most animal studies

have shown that blocking the PD-1 pathway improves survival, and

preliminary clinical studies have demonstrated the safety of related

drugs in humans. However, a variety of fundamental and clinical

issues remain to be addressed in this field.
6.1 Role of PD-L2

PD-L2 is another ligand of PD-1, which is mainly expressed on

the surface of macrophages and dendritic cells and has a stronger

affinity for PD-1, with particular expression in some tumor cells

(41). In septic mice with PD-L2 gene deficiency, hepatic vascular
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permeability increased and liver damage was more severe, but

inflammatory factors such as IL-6 decreased instead, and there

was no difference in survival rate overall (42). Currently, research

on PD-L2 is extremely limited and its regulatory role in sepsis

is unclear.
6.2 Influencing factors of PD-1 signaling
pathway

Th e PD- 1 s i g n a l i n g p a t hwa y , wh i c h p l a y s a n

immunomodulatory role in sepsis, is regulated by a variety of

factors. The pathogenic components such as lipopolysaccharide

(LPS) (43) and the secreted toxins such as Streptococcal Pyrogenic

Exotoxin A (SPEA) (44) can enhance the expression of PD-L1 in

immune cells. Tissue hypoxia and its consequent hyperlactemia are

also significant factors. The expression of PD-L1 in monocytes of

septic patients increases under the regulation of transcription factor

hypoxia-inducible factor-1a (HIF1a) (27). In septic mice, blood

lactic acid can increase the expression of PD-L1 in the kidney and

increase kidney injury (45). Some hormones can also affect the

expression of molecules in this pathway, for example, human

ghrelin and growth hormone can reduce the expression of PD-1

and the number of Tregs in the spleen of sepsis rats (46), and

Vitamin D related signaling pathways can affect the expression of

PD-1 and other molecules (47). The molecular mechanisms of these

known influences and their effects on the expression of PD-1

signaling pathways in different cells need further investigation. In

addition, there may be additional potential influences that have not

yet been identified.
6.3 PD-1 signaling pathway and exosomes

Exosomes are the extracellular vesicles (EVs) with a diameter of

40 to 160nm, which are formed by the lipid bilayer coated with

DNA, RNA and proteins, and play an essential role in mediating

intercellular signal transmission and influencing gene expression in

recipient cells (48). Exosome PD-L1 from tumor cells can bind to

PD-1 on the surface of T cells, inhibiting the activity of the latter

and creating an immunosuppressive microenvironment for tumors

(49). Removal of exosome PD-L1 can inhibit the growth of tumor

cells and has a synergistic anti-tumor effect with PD-L1 antibody

(50). EVs are involved in the formation and organ function

impairment of sepsis (51), and b2 integrin and PD-L2 expression

are significantly increased in exosomes of sepsis patients (52).

However, whether expression of PD-1 pathway molecules in the

exosome has a direct regulatory effect on immune cells associated

with sepsis and the specific mechanism remains to be investigated.
6.4 Soluble PD-1 pathway molecules

Besides the usual membrane-binding form, PD-1 and PD-L1

are dissolved in the circulating serum called soluble PD-1/sPD-L1

(sPD-1/SPD-L1), including the exosome PD-L1 mentioned above.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183542
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong and Yin 10.3389/fimmu.2023.1183542
Human sPD-1 level is positively correlated with the expression of

PD-1 in CD4+ or CD8+T cells and the severity of sepsis (53). Serum

sPD-L1 has also been shown to be associated with sepsis severity

and prognosis (54). As soluble PD-1 pathway molecules are easy to

extract and detect, they have the potential to be used as risk and

prognostic indicators of sepsis. However, large-scale prospective

clinical trials are currently lacking.
6.5 Metabolomics studies of PD-1 pathway
in sepsis

Metabolomics can investigate the pathogenesis of sepsis and

evaluate biomarkers and prognosis by detecting and analyzing

metabolites (55). Bu et al. used a non-targeted metabolomics

approach to investigate differences in metabolites in sepsis

patients with different prognoses and PD-1 expression groups.

They identified three metabolites: PC (P-18:0/14:0), 2-ethyl-2-

hydroxybutyric acid and aldehyde increased significantly in 7-day

death group and PD-1 high expression group. And 2-ethyl-2-

hydroxybutyric acid is positively correlated with IL-2 and lactic

acid concentration (56). These three metabolites may be involved in

the mechanism of regulation of sepsis by the PD-1 pathway, and are

closely related to environmental factors such as IL-2 and lactate.

However, due to the limited number of samples, this is only a

preliminary conclusion and further research is needed.
6.6 Immunomodulatory therapy

The therapeutic idea of improving immune function, destroying

immune tolerance and immune escape by blocking the PD-1

signaling pathway was originally derived in tumor biotherapy. Up

to now, more than 1700 clinical trials have been successfully

conducted on tumor immunomodulatory therapy, and such drugs

have been widely used in clinics, confirming the effectiveness and

safety of immunomodulatory therapy (57). However, as mentioned

above, the application of immunomodulatory therapies to sepsis has

not been extensively studied, and current animal experiments

targeting the PD-1 signaling pathway have not achieved fully

consistent results.

The timing of treatment may be a key factor. Unlike the chronic

course and low heterogeneity of tumors, sepsis occurs and develops

quite rapidly. The pathogenic mechanism of different pathogens,

the immune response intensity of the host individual and the basic

organ function vary considerably, and the overall immune status is

also continually changing (58). As a result, different timing of

interventions may lead to differences in overall outcomes.

Professor von Knethen et al. (38) enhanced PD-L1 expression in

septic mice receiving cecal-ligation and puncture (CLP) under 24

hours, which inhibited the function of CD8+T cells to secrete

inflammatory cytokines. In the early stages of sepsis, the main

lethal factor is direct organ damage caused by excessive

inflammatory cytokines. This intervention suppresses the early
Frontiers in Immunology 05
inflammatory response and protects organ function, making it

reasonable to expect an improved prognosis. On the other hand,

immunoregulatory therapies targeting the PD-1 pathway focus on

persistent immunosuppression and double infection in late-stage

sepsis, which are not contradictory. Of course, more research is

needed to see if the results of animal trials can be applied in

clinical applications.

In addition, it is difficult to accurately distinguish “early” and

“late” sepsis in clinical cases, and the timing of immunoregulatory

treatment still needs to be guided by indicators that accurately

reflect the immune status of the host. Besides sPD-1/sPD-L1

mentioned above, Th17/Treg ratio and neutrophil/lymphocyte

ratio (NLR) can be used as indicators of immune status (3). And

the emerging artificial intelligence and machine learning

technologies in recent years also have great application potential

to guide the immunoregulatory therapy of sepsis (59).
7 Conclusion

In summary, the PD-1 signaling pathway plays an essential

regulatory role in immunosuppression in sepsis by affecting

immune cell function. Immunomodulatory therapies targeting the

PD-1 pathway in sepsis have great potential for applications, but

there are still many fundamental and clinical issues to be

further investigated.
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