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The lymph node is a highly structured organ that mediates the body’s adaptive

immune response to antigens and other foreign particles. Central to its function is

the distinct spatial assortment of lymphocytes and stromal cells, as well as

chemokines that drive the signaling cascades which underpin immune

responses. Investigations of lymph node biology were historically explored in

vivo in animal models, using technologies that were breakthroughs in their time

such as immunofluorescence with monoclonal antibodies, genetic reporters, in

vivo two-photon imaging, and,more recently spatial biology techniques. However,

new approaches are needed to enable tests of cell behavior and spatiotemporal

dynamics under well controlled experimental perturbation, particularly for human

immunity. This review presents a suite of technologies, comprising in vitro, ex vivo

and in silico models, developed to study the lymph node or its components. We

discuss the use of these tools to model cell behaviors in increasing order of

complexity, from cell motility, to cell-cell interactions, to organ-level functions

such as vaccination. Next, we identify current challenges regarding cell sourcing

and culture, real time measurements of lymph node behavior in vivo and tool

development for analysis and control of engineered cultures. Finally, we propose

new research directions and offer our perspective on the future of this rapidly

growing field. We anticipate that this review will be especially beneficial to

immunologists looking to expand their toolkit for probing lymph node structure

and function.
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1 Introduction

As a secondary lymphoid organ, the lymph node (LN) serves as

one of the body’s major immune checkpoints. Due to the

proliferation of pathogen entry sites, humans have between 500 to

600 LNs distributed throughout the body to provide localized

immune responses (1); mice, on the other hand, are reported to

have between 22 to 36 LNs (2, 3). The proximal location of LNs to

the cardiovascular and lymphatic systems allows for efficient

antigen sorting and enables entry of immune cells from

neighboring tissues (1, 4). Furthermore, the strategic localization

of cells within the LN enables it to serve as a portal between innate

and adaptive immunity. Indeed, a distinct characteristic of

secondary lymphoid organs is the highly structured arrangement

of myeloid cells, T cells and B cells, which is so evolved to produce

appropriate adaptive immune responses to specific antigens (5, 6).

Historically, advances in technology have played a significant

role in increasing the understanding of LN biology and its role in

initiating immune responses. In the past twenty years, much has

been learned from studying the LN in vivo in animal models

following the advent of live two-photon microscopy. Pioneering

studies in the early 2000’s and ongoing work with ever-improving

imaging capabilities revealed events such as cell motility and

homing, chemokine distributions, lymphocyte differentiation

during trafficking, lymphocyte interaction with dendritic cells

(DCs), lymphocyte migration along stromal cell networks, T cell

activation following antigen recognition, and germinal center

reactions (4, 7–18). More recently, the advent of “spatial biology”

methods for fixed or frozen tissues, such as high-content

immunofluorescence staining for proteins (19, 20) and spatially

resolved analysis of gene expression (21–23), created the potential

to reveal cell neighborhoods in unprecedented biological resolution.

Apart from imaging-based methods, standard approaches for in

vivo studies of the LN include harvesting LNs from animals or humans

for terminal analysis by flow cytometry, gene expression, or cell culture

in conjunction with techniques like ELISA, PCR and Western blotting

(24–26). These studies are complemented by in vitro cultures and assay

methods, including experiments to track cell motility on 2D surfaces or

through transwells (27–31), and to co-culture mixtures of cells, e.g.

antigen-presenting cells (APCs) with T cells to study cognate antigen

presentation (32, 33). Below, we briefly review what these methods

have revealed about the structure and dynamism of the LN, and then

present a case for the adoption of new technologies.
1.1 The lymph node microenvironment is
intricately organized and dynamic

The LN plays a key role in host defense bymounting robust immune

responses to events such as infection and vaccination, while also being

critical to autoimmunity and tumor immunity. Immune functions of the

LN primarily comprise maintaining naive T cell homeostasis (34) and

producing adaptive immune responses, the latter mediated through

pathogen surveillance, mobilizing APCs and naive lymphocytes,

subduing autoreactive cells, and generating immunological memory

via preservation of memory cells and antigens (1, 35). Each of these
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functions is facilitated by the confinement of cells and cognate antigens

into specific niches within each LN (1). In particular, the structure of the

LN is optimized to facilitate encounters between APCs and rare antigen-

specific lymphocytes, thus triggering a timely adaptive immune response

(1, 36).

The distinctive cellular organization that maximizes antigen-

specific contact between diverse cell types is a hallmark of the LN

(1, 5). Whereas most mouse LNs are 1 - 2 mm in diameter and are

organized into one or two lobes, many normal human LNs are on the

order of 1 cm in diameter, with a greater number of lobes. At a gross

level, the LN parenchyma consists of three main regions - the

medulla, paracortex and cortex – surrounded by a sinus (Figure 1).

Located just outside the cortex, the subcapsular sinus is the first port

of call for lymph fluid that enters from the afferent lymphatic vessels;

the sinus is lined with lymphatic endothelial cells (LECs) and is rich

in macrophages that capture incoming pathogens (37–39). The

cortex, which is the outermost region of the LN parenchyma,

contains B cell follicles, pockets of B cells and follicular dendritic

cells (FDCs), and the interfollicular zone, which demarcates

individual follicles and is host to unique APC subsets (1, 40–43).

Interior to the cortex is the paracortex, or T cell zone, which contains

T cells, DCs, and the fibroblastic reticular cells (FRCs) that are a

critical element in the LN conduit system (1, 34, 44, 45). The medulla,

located at the basal part of the LN, is characterized by a maze of

lymph-draining medullary sinuses, demarcated by medullary cords,

which direct lymph flow coming from the cortical sinus through the

abundant efferent lymphatic vessels, thus acting as an exit route for

both naive and activated lymphocytes (46–48). Cells found in the

medulla include macrophages, memory T cells, antibody secreting

plasma cells, and neutrophils (24, 38, 49). Blood vasculature weaves

throughout the LN in a branched and dynamic fashion (50), and the

LN is highly innervated as well (51, 52), with distinct organization of

nerves and vessels by region.

The maintenance of spatial organization of the LN in these

functionally separate regions is attributed to the presence of diverse

stromal cell subtypes (5, 35, 53, 54). FRCs guide immune cell

migration to and within the LN paracortex by secretion of

chemical signals such as the chemokines CCL19 and CCL21, which

bind to CCR7 receptors found on both B and T lymphocytes and

facilitate the entry of naive lymphocytes into this region (34, 55, 56).

In particular, FRCs and LECs have been shown to promote naive T

cell survival in the LN via secretion of chemical factors such as IL-7,

CCL19 and CCL21 (34). Meanwhile, FDCs and other stromal cells in

and near the B cell follicles secrete chemokines such as CXCL13,

which attracts B cells and T follicular helper cells and promotes their

interactions in this region (57–59). Furthermore, the LN stroma has

been identified as a key actor in maintaining a fine balance between

the instigation of immune responses and their regulation (56, 60, 61).
1.2 New tools are needed to probe
lymphocyte and lymph node function in
controlled microenvironments

The above findings are the result of decades-long investigations

into LN development, structure and function, made using tools that
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were each breakthroughs in their own time: light and electron

microscopy (62, 63), flow cytometry and cell sorting (64, 65),

monoclonal antibodies (66), transgenic and knockout animal

models (67, 68), nucleic acid analysis (69), multiplexed

immunoassays (70), live intravital imaging (9, 71), and so on.

Today, with the growing success of immunotherapies for cancer

(72) and autoimmune disease, as well as the urgent need to

understand the immune response to infection by and vaccination

against COVID-19 (73, 74), there is more interest than ever in

understanding the role of the LN in initiating and maintaining

immune responses.

Addressing this interest will require the use of modern tools to

model immunity, particularly in the cases where traditional in vivo

experiments fall short. For example, whereas much is known about

murine immunology, it has been challenging to study the human

LN in vivo, due to limited access to this organ from healthy human

donors (75, 76). In addition, information on temporal dynamics has

remained limited mostly to intravital imaging, due to the challenge

of obtaining temporal data when the primary readouts are terminal

in nature. Teasing apart the roles of individual cell types, molecules,

or physical forces requires the ability to add and subtract

components on demand, in defined quantities, and ideally at

defined locations. Today’s wide array of analytical tools (flow

cytometry, immunofluorescence, gene sequencing, -omics

technologies) also demands that models of immune function

should ideally be compatible with multiple readouts simultaneously.

Fortunately, some of the required tools are already available

from 20 years of development in engineering, physical science, and

biological science, in the form of in vitro, ex vivo, and in silico

models. For our purposes, we will define in vitro models as 2D or

3D cultures of cells, such as cultures in a petri dish, biomaterial

scaffold, transwell system, or microfluidic device. In contrast, ex
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vivo models will be defined as cultures of intact tissue that is

explanted from the body, thus conserving tissue architecture.

Finally, in silico models include a variety of approaches based on

mathematical modeling and/or simulations, used to perform “dry

lab” experiments not feasible in the wet lab. Each of these areas is

still under development, and many of the newer approaches are

largely untested for application to LNs or other immune organs,

and still other approaches have yet to be invented.

Any model of LN or lymphocyte function lands somewhere on

an axis of biological realism versus reductionism (Figure 2), with

associated strengths and limitations. in vivo models offer the full

array of cellular and molecular players, with proper spatial

organization, fluid flow, and other mechanical cues, as well as

multi-organ communication. However, they can suffer from

inaccessibility of test organs and more importantly, a lack of

experimental control over parameters such as ligand density and

selective presentation, fluid flow, or cellular or molecular

composition (1). On the other hand, conventional in vitro assays

provide more experimental control over which cells are present,

how many, and concentration of components in the environment.

This control is achieved through reductionism, in the form of

assumptions and/or simplifications about cell types, extracellular

matrix (ECM) components, fluid flow patterns, or dynamism of

signals from outside the organ. Highly reductionist models enable

ready isolation of the interactions between specific types of cells

from their interactions with the rest of the organ. More complex

models that allow adding or subtracting components of the organ

on demand can be tested, including by adding molecular or cellular

cues in specific locations and at specific times. Ex vivo models also

offer intermediate complexity, with much of the experimental

control afforded by in vitro cultures, along with retention of the

complete tissue architecture that is found in vivo, although without
FIGURE 1

Schematic of the LN highlighting key aspects of lymph node organization and function. Each lobe shows one main feature: (i) spatial location of B
and T lymphocytes, (ii) distribution of major stromal cell subsets; (iii) homing of naïve T cells into the node via high endothelial venules, and
recognition of dendritic cells presenting cognate antigen by T cells, (iv) blood vessels within the lymph node and (v) germinal center formation.
Figure created with BioRender.com.
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connectivity to other organs. Meanwhile, in silico models range in

complexity from very simple, e.g. just a few inputs and interactions,

to nearly as complex as a complete tissue or multi-organ system.

While it may seem tempting to insist that a model of lymph

node function is only useful if it includes every cell type (or every

signaling molecule) that plays a role in vivo, such an approach is

impractical and unnecessary. While adding more components to a

model may potentially make it more realistic, doing so also

introduces more routes for failure. Instead, each model should be

designed to include only the components that are required to

adequately test the hypothesis of interest. In engineering circles,

this approach is referred to as a “fit for purpose” design. The

converse is also true, that each well-defined biological hypothesis

should be tested using a model that contains the appropriate level of

complexity vs experimental control. This principle already has been

applied by immunological researchers for decades when choosing

between in vitro cell cultures, animal models, or human patients for

each study. Now, there are simply more options to choose between

(Figure 2), providing new capabilities.

Here, we review the array of in vitro, ex vivo and in silico tools

that are available to study and test hypotheses about specific functions

of the LN. Applications of these models range from assessing the

behavior of individual cells (chemotaxis, motility), to teasing apart

cell-cell interactions, to predicting higher order tissue-level functions

such as germinal center formation and vaccination (Figure 3). In

contrast to recent reviews by us and others that broadly cover

engineered models of immune function in health and disease (75,

77–79), this review focuses on models of the immune function in the

LN specifically. To maintain a focused scope, the many excellent

models of lymphatics alone, and of cancer of the LN in the absence of

an immune focus, were excluded. Furthermore, with our biomedical

colleagues in mind, we framed each section around the type of

behavior that one may wish to model, and then present the types of

tools that are well suited to tackle that challenge. For an excellent

related review of LN-mimicking models organized by type of tool, we

refer readers to Shou et al. (80).
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2 Models of immune cell motility and
cell-cell interactions

2.1 Immune cell function and cell-cell
interactions

First, we will look at foundational, reductionist models of the

function of individual cells or pairwise interactions that occur in the

LN. By isolating individual cells or pairs of cells, their functions can be

decoupled from those of neighboring cells, the ECM, and the

mechanics of the microenvironment, thus narrowing down the

experiment to a testable hypothesis. While there are many cell-cell

interactions found in the LN, most models so far have focused on

recapitulating and better understanding the processes that lead to

antigen recognition. In particular, both (i) rapid and efficient motility of

T cells, and (ii) establishment and capture of the T cell:APC interaction

have been modeled extensively. As we will show, parameters or

conditions discovered through these well-defined models can be

incorporated into more sophisticated platforms later on, allowing a

continuous build-up of knowledge across laboratories and fields.
2.1.1 T cell and APC chemotaxis and motility in
response to environmental cues

One of the signature behaviors of lymphocytes, particularly T

cells, is their rapid migration within LNs and the organs they surveil

(81, 82). Thus, a number of technologies have been developed to

model the motility of T cells and other white blood cells, starting

with simple 2D cultures (e.g. in a culture dish) (83–85). Here, we

discuss newer models to study immune cell motility in the context

of physiological cues, to dissect the role of factors like chemokine

gradients and porosity in the LN microenvironment.

One cell function of interest is chemotaxis, i.e. cell migration up

or down a gradient of chemokine. In the LN, the recruitment of T

cells to the paracortex depends on chemokines expressed by FRCs

and LECs, and can be modulated by competition between
FIGURE 2

Experimental and computational tools used in studying lymph node biology. Researchers have utilized in vitro models (cell culture in 2D wells, 3D
constructs such as organoids and hydrogels, and microfluidic organ-on-chip devices), ex vivo culture of tissue slices alone or in combination with
microfluidic chips (hybrid tissue-chips) and in vivo models in animals, to experimentally investigate lymph node structure and function.
Computational ‘dry lab’ approaches, on the other hand, employ mathematical simulations to model biological environments. They have been used
to complement experimental tools and can answer questions that are challenging to interrogate by current wet lab approaches. Figure created with
BioRender.com.
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chemokines, the state of the cells, or the inflammatory state of the

tissue. This type of biological question is well suited for analysis

using a technology sometimes referred to as a microfluidic gradient

generator. Typically, cells are plated in 2D or suspended in 3D

culture inside of a microchannel, with media channels on one or

both sides (Figure 4A). By continually adding chemokine-loaded

media on one side, and control media on the other, a stable gradient

is established across the culture, and the chemotactic response can

be imaged in real time or as an endpoint assay. This technology was

first described in the mid 2000’s (86) and is now well established

and user friendly, with commercially available devices (87) ready for

loading by simple pipetting. As an example, many T cells and DCs

are recruited to the deep paracortex by CCL19 and CCL21, which

share a common receptor, CCR7. While CCL21 is present at >300x

greater concentration than CCL19 in the LN (88), their relative

effects on T cell motility are difficult to dissect in vivo. To investigate

their interactions, a microfluidic gradient generator with a Y-

channel geometry was loaded with human T cells pre-activated

with anti-CD3/CD28 antibodies (89). While activated T cells

exhibited similar mean velocities in the presence of uniform

CCL21 or CCL19 gradients at physiologically relevant chemokine

concentrations, directional migration occurred towards a CCL21

gradient, but away from a CCL19 gradient in the presence of a

homogeneous CCL21 concentration field. From these data, the

authors suggested a combinatorial guidance mechanism for T cell

migration within the LN; while both CCL21 and CCL19 have

similar binding affinity to CCR7 receptors, CCL19 strongly

desensitizes and internalizes CCR7.
Frontiers in Immunology 05
A related approach to studying chemotaxis is to subdivide the

cell culture area into restricted lanes or channels, so that cells must

migrate in an organized manner that facilitates imaging and

quantification (Figure 4A). This type of device is sometimes

referred to as a microfluidic ladder chip, and was described early

on for applications ranging from neuronal axonal growth to

neutrophil and lymphocyte motility (90–92). The ladder is usually

coupled with the introduction of a chemotactic gradient to induce

directional motility. For example, this type of system was used for

studying antigen transport and presentation by DCs in structured

co-culture with T cells. Two parallel compartments containing

human-derived DCs and primary blood-derived T cells

respectively, were separated by a series of small transversal

channels (93). In response to an applied CCL19 gradient, mature

DCs chemotaxed towards the T cell compartment whereas

immature DCs did not. Engagement of mature DCs with T cells

induced T cell activation, which was confirmed via intracellular

calcium signaling.

Biomaterials-based 3D cultures have also been developed to

study T cell motility in response to environmental cues (Figure 4B).

For example, a 3D culture model of human T cells and human-

derived matured DCs in agar gel showed that T cells exhibited a

random walk without directional bias in response to a CCL19

gradient, whereas DCs exhibited chemotaxis towards the same

gradient, thus demonstrating clear differences in responses by T

and DCs to CCL19 (94). Beyond applying chemokine gradients,

biomaterials can be used to control molecular and physical

properties such as integrin ligation, stiffness, and porosity (95,
D

A B

C

FIGURE 3

Key immune events recapitulated in current and nascent models of the lymph node. Events being modeled include (A) chemotaxis, (B) cell motility,
(C) cell-cell communication and (D) organ-level functions such as fluid flow, germinal center formation, and responses to vaccination. Figure
created with BioRender.com.
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96). The capabilities of such materials go far beyond those of

common materials such as agar and Matrigel, which are

biological products with poorly defined composition. For

example, to test the conditions under which primary T cells

migrate efficiently, a custom ex vivo scaffold was developed with a

tunable structure and composition (97). Specifically, an inert

polyethylene glycol (PEG)-based hydrogel was conjugated with

heparin (for cell and chemokine adhesion through electrostatic

interactions) and cast over sacrificial beads of controlled diameter, a

process called colloidal templating that once dissolved, generates a

macroporous gel. The pores were subsequently filled with a fibrillar

collagen matrix, through which lymphocytes could crawl. The

scaffolds were loaded with murine CD4 T cells and mature DCs.

The diameters of the pores proved to be particularly influential in

both the velocity and maximum displacement achieved by T cells,

with larger pores (80 µm) resulting in the highest amount of pore-

pore trafficking by T cells. These data have been used to inform

subsequent scaffold design to ensure T cell motility (98).

Interestingly, DCs were observed to have heterogeneous levels of

migration within the scaffolds, but unlike T cells, the migratory DC

population could get through pores as small as 10 µm. Custom

materials like this one (99) are generally not yet commercially

available, but this is changing as the demand for them grows, and

likely more will become available in the next few years.

2.1.2 Interactions between T cells and antigen-
presenting cells

Once a naïve T cell encounters an activated APC that displays

its cognate antigen, the engagement between the T cell receptor

(TCR) and peptide-major histocompatibility complex sets off
Frontiers in Immunology 06
cellular responses that may eventually lead to adaptive immunity.

Activated APCs may also modulate T cell activity via a “bystander”

mechanism, e.g. by secreting cytokines that act in a paracrine

manner on nearby cells. In the LN, notable APCs include DCs

and B cells. A number of technologies have been developed to study

this interaction, for example to decouple the role of physical contact

from secreted factors.

One of the earliest engineered platforms developed to observe

the interaction between specific cells in vitro relies on microwell

arrays (Figure 4C). By capturing cells sequentially, either by

microfluidics or gravity, it is possible to assemble two or more

cells in each well (on average), with defined cell ratios. Standard

microfabrication approaches easily generate arrays with hundreds

or thousands of cells, thus allowing imaging of the behavior of

individual cell pairings over time (100). The exact number of cells

captured per well in each cycle is usually controlled by a Poisson

distribution: to ensure no more than one T cell per well, for

instance, a low density of T cells is applied, yielding 0 or 1 cell

per well in the majority of wells (101, 102). As an example, this

strategy was used to test the effect of paracrine conditioning prior to

physical contact between human T cells and in vitro matured DCs

(mDCs) (103). After passively trapping the cells in two separate

devices, the devices were coupled in a daisy-chain manner, so that

the mDCs’ effluent flowed downstream to an array of naïve T cells.

By monitoring the calcium response in real time after addition of

mDCs to the T cell array, it was shown that calcium transients were

reduced in cells preconditioned by DC effluent. Microwells have

also been used to test the interaction between CD8+ T cells and pre-

activated B cells (104). These early studies demonstrated the power

of an array of cells confined in space, enabling single cell and single-
D

A

B C

FIGURE 4

Current approaches to modeling chemotaxis and cell-cell interactions. As an illustration, T cells are shown in green and DCs shown in yellow.
(A) Chemotaxis and cell motility are readily modeled in microfluidic channels, including (i) gradient generator (system of parallel lanes) and (ii)
ladder-style chip designs to ensure organized motion for easy imaging and quantification. Gradients of chemotactic factors or nutrients are
established across the chip. (B) 3D culture of one or more cell types, with control over the biomaterials environment. (C) Trapping of cells in
microwells ensures that individual cells or pairs of cells can be imaged over time, in high throughput. (D) Seeding a 2D monolayer of cells at the
bottom of a flow chamber or microfluidic channel, with cell suspension flowed by above, enables study of cell-cell interactions under physiological
and pathological flow conditions. Figure created with BioRender.com.
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pair longitudinal analysis, and revealing heterogeneity in the

response of sub-populations of T cells that could be averaged out

in bulk measurements (100). Microwell array chips are often easy to

use, sometimes requiring only simple pipetting to load, are

commercially available (105–107), and are usually designed for

compatibility with standard microscopes.

In vivo, T cell-APC interactions occur under varied interstitial

flow rates (108). To test the effect offlow and shear stress on cell-cell

interactions, microfluidic flow chambers provide straightforward

control (Figure 4D). For example, by culturing a monolayer of

antigen-pulsed murine DCs and introducing antigen-specific CD4+

T cells under continuous flow, the threshold shear for antigen-

mediated engagement was tested (109). At the physiological shear

stress of 0.01 Dyn/cm2, T cell–APC interactions matched the mean

duration (12.8 min) and intermittent crawling with neighboring

DCs seen in vivo, demonstrating the influence of shear stress in T

cell priming and activation.

To continue investigating the interconnected functions of T cells

and APCs in the paracortical region, numerous groups have

complemented the wet lab with computational models. Due to the

dense, spatially complex, and highly motile microenvironment in a LN,

it can be difficult to elucidate the rate-limiting steps and migration

dynamics of T cells and APCs through experiments alone.

Computational models offer an avenue to ask biological questions

about the LN that are impractical or too resource-consuming in vivo or

in vitro, e.g. by varying cell activation states, migratory parameters

(velocity, chemotactic response etc), while maintaining or varying

biomimetic fluid flow rates. These models are sometimes developed

to answer specific questions. For example, using animation software

and assumptions drawn from experimental images, in 2004 Catron

et al. (110) produced a video that simulated a lymph node slice and

illustrated naïve CD4+ T cell engagement to antigen. The video tracked

the random motion of naïve CD4+ T cells, B cells and DCs in the

absence of antigen, and tested how lymphocyte motility changed after

encountering soluble antigen. Vroomans et al. (111) developed a tissue

level model to test the role of chemotaxis and antigen specificity in the

efficiency of DC scanning for cognate T cells. By comparing scanning

efficiency with and without chemotaxis, the model predicted that

highly localized chemotaxis of T cells towards DCs improved

scanning efficiency, in part by recruiting more T cells to each DC,

while still retaining the characteristic features of a random walk when

observed at the tissue scale. Other models are built to capture a larger

number of aspects of the system, thus facilitating broad use for a variety

of hypotheses. For example, Bogle and Dunbar developed an agent-

based model to study T cell “random walk”motion, including cognate

interactions with APCs, chemotactic gradients, T cell ingress/egress in

the paracortical space, and vascular remodeling due to inflammation

(112–114). An agent-based model is one in which individual cells act as

autonomous, decision-making entities in a defined grid-like

microenvironment; it is well suited to modeling cells in tissue. Their

approach employed a 3D lattice structure for T cells to be seeded onto,

and was designed to parallel experimental intravital microscopy data

from the LN paracortex while omitting FRCs for simplicity (112). An

agent-based model by Azarov et al. (115), further explored T cell

migration behavior and interactions with DCs, with a focus on time

scales and spatial limitations.
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A complete tutorial on computational models of LN function is

beyond the scope of this review. We point readers to Mirsky et al.

(116), which details a variety of types of models of the LN during

acute and chronic inflammation, with an emphasis on the

conventions for inclusion and exclusion of select cell populations,

time dependent flux of cell densities, dimensionality (e.g. 2D vs 3D),

steady state assumptions, and other simplifications. A more recent

review by Novkovic et al. (117) discusses computational

investigations into LN organization and function with a particular

focus on the structural contribution of stromal cells and their roles

in chemotaxis and lymphocyte migration. Just as in experimental

model systems, it is important to clearly define the assumptions and

limitations underlying each computational model, to allow

informed use of the predictions in translation to physical systems.

Implementation of computational models currently requires

varying levels of coding, from minimal with beginner-friendly

software such as Netlogo, to more advanced professional systems.

Using such tools, computational experiments have potential to

answer questions that are cumbersome to test in vivo, and to

make predictions that can then be tested in animal models.
2.2 Interactions between T cells and the
lymph node stroma

The stroma is critical for preserving the structural integrity and

function of secondary lymphoid organs (5, 118). LN stromal cells

play key roles in lymphocyte survival and migration, lymph

transport, nutrient and antigen supply, immunological

monitoring and mediation of adaptive immune responses (35,

53). Inclusion of stromal cells in experimental models is likely to

be particularly essential for replicating organ-level function and

investigating immune responses to events such as antigenic

challenge and vaccination. The majority of current knowledge on

the LN stroma has been uncovered through in vivo immunology

experiments (4, 25, 34, 45, 119–121), including elegant studies into

how stromal cells and their networks define the structure of the

(mostly murine) LN microenvironment. Presently, there are limited

instances of in vitro or ex vivo models incorporating stromal cells in

the literature – more research effort is required in this regard.

To investigate the role of the human lymphoid stroma

microenvironment in T cell activation, recently in vivo animal

models were complemented by in vitro culture of human T

lymphocytes on monolayers of human FRCs and ex vivo culture

of human tonsil slices (92). FRCs inhibited proliferation and

controlled differentiation of newly activated T cells independent

of feedback signaling from the lymphocytes. This effect was

mediated by four molecules: cyclooxygenase 1, transforming

growth factor beta, adenosine 2A receptor and indoleamine-2,3-

dioxygenase. It is noteworthy that these results may have been

difficult to obtain in vivo, where interactions between specific cell

populations (T cells and FRCs) are challenging to isolate. The use of

intact human tissue slices in the study was unique as most studies

often use dissociated human cells or murine cells/tissue. In addition,

this approach enabled validation of in vitro experiments via in situ

T cell activation studies.
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Although stromal cell organization plays a critical role in LN

function, it remains unclear how spatiotemporal variations in

stromal cell density, network geometry, ECM deposition, and

expansion of the LN during an immune response may direct the

migration and proliferation of lymphocytes and APCs. These

questions are challenging to address directly in vivo. Thus, efforts

have been made to replicate certain attributes of the LN stroma and

key events therein using in vitro 3D models. Early work by Katakai

et al. carefully characterized in vitro co-cultures of LN stromal cell

lines and T cells in 2D, culminating in an early transition to 3D

culture by seeding LN stromal cell lines in a nylon mesh (121). More

recently, by encapsulating human bone marrow stromal cells in

fibrin and collagen hydrogels, Kim et al. (122) developed a 3D

stromal model for co-culture with T cells for use as a tool to study

cell-cell/stroma interactions during immune events. Of note,

network formation of stromal cells in vitro often induces

contraction of soft 3D cultures; here, degradable fibrin was

included to counter the contraction, and a carefully titrated

protease inhibitor was included to control the rate of degradation

and keep the gel stable. Following CD4 T cell addition to the model,

T cell adhesion and migration along stromal networks was detected

and comparable to T cell zones in vivo. This type of 3D culture

model is poised for use to test hypotheses in the future, making use

of the spontaneous formation of stromal networks. A key advantage

of using in vitro models to answer biological questions lies in their

tunability and potential to recapitulate cell-cell/ECM interactions

and complex events.

While spontaneous network formation is a convenient feature

of standard 3D culture models, it can be challenging to directly

control parameters such as the connectivity of the network in such

models. Here, computational models of stromal networks can fill a

major experimental gap. For example, Novkovic et al. (123) used

“graph theory” to model the interconnectedness of structural

networks and their impact on T cell and DC migration.

Application of this model concluded that the FRC network in

vivo exhibited “small world network” characteristics with a high

degree of FRC clustering and loss of network function when 50% of

FRCs were removed.

Sometimes, computational models can highlight a gap in the

understanding of the biological system. In a model focused

specifically on T cell migration, Beauchemin et al. (124) and

Beltman et al. (125) used a three-dimensional Cellular Potts

Model to evaluate T cell motility in relation to the FRC network,

comparative to in vivo two-photon microscopy data. A Cellular

Potts Model is a lattice-based method that allows for the study of

diffusion, migration, and intercellular interactions. Results

suggested intentional movements over shorter periods, overall

random movement over long periods, and the possibility of “T

cell streams” in which cells were influenced to travel in the same

direction in discrete periods, contradicting the standard notion that

T cells must adhere to the FRC network (4). This is a prime example

of both the pros and cons of computational models. We find

ourselves in one of two scenarios: either (i) computational data

offers us a new explanation for physical phenomena or (ii) we are

offered an explanation that does not match reality due to

simplifications made by the model’s designers. While we cannot
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elucidate which statement is correct on its own, additional

investigations will be necessary to test the validity of the

simulation’s predictions in a physical setting. Thus, computation

can offer many opportunities, including the lessons learned while

seeking to externally validate their predictions, and are highly

impactful in their ability to bolster innovative problem-solving

and high-throughput processing of experimental directions and

immune therapeutics design.
3 Models of specific organ-level
functions

3.1 Modeling fluid flow and diffusion
through the lymph node

In vivo, the LN is continually bathed in flow of lymphatic fluid,

which arrives from the afferent lymphatic vessels, passes through

the sinuses and in part through the parenchyma, and finally out

through the efferent lymphatic vessels. For many years, the potential

role of fluid flow was largely omitted from immunological dogmas,

but pioneering work by Melody Swartz and others over the past 20

years revealed the significant immunological implications of flow

both in the lymphatics and in interstitial tissues in the LN and

elsewhere (126, 127).

Some of the first questions that may be asked about flow

through the LN are what path it takes, at what velocities, and

how these change over time or upon inflammatory or other

stimulation of the LN. Flow rates through lymphatic vessels have

been measured directly in vivo, e.g. by cannulation in larger animal

models (128–130). However, interstitial flow velocities and paths

through the LN parenchyma have been much more difficult to

quantify (see O’Mallia et al. (127) for an excellent recent review). So

far, the best quantitative estimates have come from a combination

of in vivo imaging with computational models, which enabled fits of

experimentally measured incoming flow velocities or pressures to

image-based geometries or an idealized version of LN organization.

The first two such models of the whole LN appeared in late 2015

(131, 132), and continue to be further developed since then (133,

134). Both models predict that the fastest lymph flow occurs in

either the subcapsular or transverse sinuses, and that the majority

(90% in (132)) of the incoming lymph fluid likely passes through

the sinus rather than through the densely packed parenchyma

(Figure 5A). The exact numerical values of predicted velocities

through the interstitium should be interpreted cautiously, as they

strongly depend on a parameter called fluid permeability (Darcy

permeability) or hydraulic conductivity, which describes the ability

offluid to flow through porous matrices like tissue. Permeability has

not been well characterized in the LN, and likely varies over time

and across the tissue, as a function of the local cell density and ECM

composition (137). Nevertheless, using reasonable approximations

and/or fits for this parameter, the models provide reasonable

predictions of flow velocities on the scale of mm/min in the low-

resistance sinuses, and µm/min in the packed parenchyma. So far,

these models have been generated based on images and

experimental data taken from healthy LNs; they have the
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potential to be extended to inflammatory and disease conditions if

sufficiently resolved imaging and measurements of afferent or

efferent flow become available.

Dramatic changes in size, cell content, stromal organization,

and fluid flow all occur during inflammatory responses (120), and

there is good reason to expect that changes in flow rates in the LN

will have a substantial impact on the biology of this organ. However,

so far, direct experimental tests of this hypothesis at the tissue level

are few. Interestingly, in ex vivo LN slice cultures, perfusion of the

tissue improved lymphocyte motility during live two-photon

imaging, though it was not clear whether the effect was rooted in
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mechanical stimulation or oxygen delivery (138, 139). Using a more

reductionist approach, a number of well-defined in vitro and in vivo

experimental models have been developed to test the effect of flow

on specific cell types or subunits of the LN or lymphatic system,

reviewed in (127). Such tests showed that LECs and FRCs in the LN

stroma are sensitive to flow and shear stress, upregulating

chemokines such as CCL21 and CCL19, cellular adhesion

markers, and cytokine expression under physiologic flow

conditions (140–142). T cells also respond to shear flow with

increased adhesion to endothelial walls and improved motility

(143, 144).
A

B

C

FIGURE 5

Examples of models of fluid flow and diffusion in the lymph node. (A) A computational fluid dynamics model, based on confocal microscopy images
of the lymph node, predicted the advective fluid flow paths and velocities through the lymph node. The majority of the fluid flow passed around the
edges of the node, in the sinus regions. Reproduced with permission from (132). Copyright 2015 Mary Ann Liebert, Inc. (B) Densely packed 3D
cultures of reporter T cells predicted the distance over which secreted cytokines diffuse and elicit responses. Varying the proportion of IL-2
consuming T cells (100% vs 10% consumers) around IL-2 producing T cells indicated that IL-2 secretion was non-directional in this setup. Cells were
stained with DAPI (blue) to identify nuclei, anti-IL-2Ra (green) to identify IL-2 consuming T cells and anti-pSTAT5 (red) to detect T cell response to
IL-2. With greater consumption (100% consumers), IL-2 secretion remained more localized and had a smaller magnitude of signaling. Reproduced
with permission from (135). Copyright 2017 Elsevier. (C) Schematic of a microfluidic chip developed to track diffusion of cytokines after delivery into
live lymph node tissue slices through a port of entry. Reproduced with permission from (136). Copyright 2018 Elsevier.
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One approach to investigating how fluid flow influences FRC

organization and function is to use transwell-based 3D cultures to

recapitulate the LN stroma. For example, Tomei et al. (142) used

murine FRC clones that were grown in collagen/Matrigel-

embedded polyurethane sponges, and applied interstitial flow

using a simple gravity-based system. Application of slow

interstitial flow improved FRC organization and alignment with

the ECM in addition to increased CCL19 and CCL21 secretion.

Furthermore, low shear stresses directly stimulated CCL21

secretion. These in vitro findings were validated in the same

paper by in vivo studies in mice, which showed that CCL21

transcription was significantly reduced when the afferent

lymphatics leading to the LN were surgically cut, although it was

not possible to distinguish the impact of lost fluid flow from any loss

of cellular trafficking or an acute response to the wound. This was

one of the earliest papers to consider the effect of fluid flow on the

functionality of LN stromal cells and has inspired many groups to

continue in this area. So far, no additional reports have replicated

the finding that in vitro fluid flow induced CCL21 or CCL19

expression or secretion by cultured LN stromal cells, perhaps

because of differences in cell sourcing. Nevertheless, transwell-

based 3D cultures are an excellent means to apply gravity-driven

or pressure-driven flow to cells of interest; and are easily accessible

to any biomedical research lab (145).

Another means of testing the effect of fluid flow on lymphatic

and lymphoid cultures is to make use of microfluidic devices. These

devices can be coupled with syringe pumps or peristaltic pumps for

well-controlled flow rates, or with gravity-driven or other passive

flow control systems for a simpler approach (146, 147). There has

also been progress in generating parallelized microfluidic devices,

e.g. by integrating them with multi-well plate formats, to enable

high-throughput drug screening (148). Although models of

lymphatics have been developed (149–151), microfluidic flow has

been applied only recently to tissue-level models of the LN. In one

recent study, Birmingham et al. (152) developed a clever

microfluidic platform that recapitulated the varied fluid flow rates

and geometries of the sinus encountered by metastatic cancer cells

upon entering the LN. By functionalizing the channel with different

adhesion receptors, they observed that increases in the flow and

shear increased levels of E-selectin-mediated metastatic and

monocytic cell adhesion. Thus, this model highlighted the

potential biological impact of small changes in sinus height and

lymphatic vessel diameter, structural changes that are known and

expected in the context of human disease, on cell behavior in the

lymph node.

Aside from investigating the impact of fluid flow on lymphocyte

function, the key role of cytokine and chemokine gradients in

driving lymphocyte behavior has resulted in efforts to understand

the formation and maintenance of gradients and local activity in the

LN. Answering this question requires replicating the transport of

secreted proteins by diffusion alone or diffusion with flow, in

combination with their binding to cell surface receptors or the

ECM; the latter sometimes leads to internalization or deactivation.

Experimentally, one strategy has been to use densely packed,

matrix-free lymphocyte cultures in the bottom of a small well or
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a 3D stack of cells. This approach was used to demonstrate that

cytokines are active within just a few hundred microns from the cell

that secreted them (Figure 5B), and the results were verified in vivo

(135). For more physiological organization and retention of the

extracellular matrix, LN slices have been coupled with a simple

microfluidic chip (Figure 5C) to quantify diffusion coefficients of

various cytokines in specific regions of the tissue (136).

Meanwhile, computational approaches that combine

diffusion, secretion, and binding are a staple and are sometimes

referred to as “reaction-diffusion models”. This computational

approach has been implemented in LNs by considering the

various biological compartments of the organ, resulting in

predictions of dynamic cytokine distribution that would be

difficult to achieve from in vivo measurements (153). More

recently, chemokine diffusion was integrated into one of the

fluid flow models of the LN discussed above, to predict the

impact of disrupted lymphatic flow on the development of

chemokine gradients (154). Whereas so far, all experimental in

vitro models of fluid flow in the LN have been simplified to an

assumption of constant flow rates, computational models have

begun to incorporate the pulsatile flows observed in vivo. The

findings of computational models inform not only the

fundamental biology of the LN, but also support the

development and validation of novel in vitro experimental

systems (e.g. organ-on-chip models) by providing benchmarks

for flow rates, shear forces, and molecular transfer that is

otherwise hard to obtain.
3.2 Models of B cell follicles and
germinal centers

In the LN, humoral immune responses to antigens are driven by

B cells located in follicles (43). Upon antigen presentation by APCs

or direct antigen encounter, naive B cells differentiate into antibody-

secreting plasma cells, memory B cells and long-lived plasma cells

through the germinal center reaction, a three-step process involving

clonal expansion, somatic hypermutation and class-switch

recombination (43, 155, 156). Together, these cell populations

mount systemic antibody-driven responses to infection by

reducing pathogen spread and provide lasting protection

following vaccination (19). Recapitulating B cell interactions can

be useful for probing how adaptive immune responses to infection

and vaccines are mediated in the LN.

To understand how cell-cell interactions drive secondary

lymphoid organ development, Suematsu and Watanabe (157)

implanted lymphoid tissue-mimicking collagen organoids

containing DCs, T and B cells into the renal subcapsular space of

mice. Over time, the implanted organoids recapitulated

characteristic secondary lymphoid organ hallmarks including

distinctive T and B cell clusters, FDC networks and germinal

center formation. In addition, antigen-specific IgG1 antibody

production was detected after organoid re-transplantation to

naïve or severe combined immunodeficiency mice, which was

indicative of B cell class switching and differentiation. Later
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studies showed that the artificial organs were immunologically

active, eliciting strong antigen-specific immune responses upon a

second encounter even without stromal cells present (158, 159).

Considering the ethical barriers, costs and complexities of

conducting in vivo implantation studies, efforts have also

employed in vitro models for interrogating how the lymphoid

microenvironment drives germinal center reactions and the

consequent antibody production. To generate functional

‘synthetic immune tissues’ that could replicate crucial germinal

center reactions, Purwada and colleagues developed in vitro

organoids. B cells were co-cultured with stromal cells that were

engineered to express ligands normally found on T follicular helper

cells and FDCs, in a hydrogel matrix of nanoparticle-modified

gelatin (160) or modified PEG (161). This strategy enabled tests

of how integrin ligand type and density impacted germinal center-

like outcomes without requiring in vivo models. Further work

demonstrated that the PEGMAL organoid components could be

tuned to regulate germinal center activation and achieve selective

enrichment of antigen-specific B cells (162). In another study, Goyal

et al. (163) developed a microfluidic flow chamber to mimic the

clusters of B cells seen in lymphoid follicles. The two-chamber

microchip contained primary human T and B cells cultured in

Matrigel/collagen hydrogel in the bottom chamber. Media perfused

through the top chamber induced self-assembly of T and B cells into

3D aggregates and flow-directed organization of collagen fibrils.

These cell aggregates behaved similarly to off-chip high-density

cultures, with the potential in the future to use the chip to vary

parameters such as flow rate or cell organization.

Like the paracortex, the complexity of B cell germinal cell

differentiation has also been explored through computational

models. Martıńez et al. (164) established a kinetic model of B cell

germinal centers, based on ordinary differential equations,

accounting for the gene expression, gene regulation, and

direction of terminal differentiation of B cells, with particular

focus on B cell receptors and CD40 signaling. This model was

extended to lymphomagenesis, especially in B-lymphocyte-induced

maturation protein 1 (BLIMP1) inactivation repressing apoptosis

and facilitating cancerous cell proliferation. This model was further

adapted and modified by Thomas et al. (165) to consider stochastic

extracellular events, with particular focus on the role of interferon

regulatory factor 4 in relation to memory B cell differentiation, but

with cells characterized by probability in relation to their migration

in or out of the germinal center. This is especially important for

predicting the progression of diffuse large B cell lymphomas and

how targeted gene therapy of BLIMP1 or other such genes can

impact lymphomagenesis or work to repress it, paving the way for a

faster development of clinical anti-lymphoma treatments. The

investigation of germinal center B cell differentiation and class

switching in relation to defined signaling cascades, such as BLIMP1,

may be especially useful to those using in vitro lymphomagenesis

models. Specifically, these models could quickly determine the level

of promise of certain targets via high-throughput computation,

resulting in conserved time and resources to prioritize the best

candidates and potentially revolutionize the development of anti-

lymphoma vaccines and therapeutics.
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4 Applied models of vaccination
and immunogenicity

Apart from probing LN structure and function, models of the

LN have also been developed to test specific biomedical

applications, particularly for vaccine development, adjuvant

testing, and predicting the immunogenicity of antibody

therapeutics. This area is still in early stages, as no system yet has

been demonstrated to predict immunogenicity of novel antigens,

but exciting progress has been made towards this goal. Below we

discuss three complementary approaches, which differ in the level of

complexity and control over their biological inputs and that of the

microenvironment (Table 1).
4.1 Models using intact primary tissues

Tonsil slices have long been used to study human immunity in

the context of immune events such as infection, vaccination and

antigen challenge (166–170). While tonsils have a greater frequency

of germinal centers and increased T cell activation compared to

other LNs due to constant exposure to the microbiota and antigens

in the mouth (171), they are one of very few sources of human LNs

readily available as fresh surgical discard tissue. An advantage of

working in slices compared to well-defined reductionist models is

the retention of all cell types that were present in vivo at the time of

collection, as well as their spatial organization (172). This feature

imparts substantial heterogeneity between slices in terms of both

cell composition and spatial organization, as each slice comprises

only a fraction of the larger, highly structured organ (173).

Pioneering work by Margolis et al. showed that human tonsil and

other LN slices made a powerful model of viral infection, including

e.g HIV replication and virus-specific class-switched IgG

production (174–176). Use of tonsils to model infection continues

today (166–170). Tonsil slices have also been used to reveal

fundamental LN biology, such as in work by the Fletcher lab,

who used tonsil slices to confirm a regulatory role for the LN stroma

in T cell activation (118).

In some cases, animal models provide access to tools not

available with human tissue, including TCR transgenic models of

known antigen specificity, reporters, and other genetic tools.

Murine LN slices have been used extensively to study T cell

motility (28, 177–180), and more recently to study higher order

functions. Belanger et al. (181) characterized this model system in

detail, including viability, absence of slicing-induced inflammatory

gene expression, T cell response to crosslinking of the TCRs, and

response to toll-like receptor ligation. Importantly, LN slices

collected from mice previously vaccinated in vivo responded to ex

vivo antigen challenge with expected T cell cytokine secretion and

activation markers. Interestingly, skin-draining LN from vaccinated

mice did not adhere as well to the embedding matrix (agarose), and

this change could be mitigated by a brief treatment with mild

detergent, suggesting a change in the lipid composition of the

exterior LN capsule (182). As skin-draining LNs in mice are
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embedded in fat pads, this change may reflect a broader change in

the adipose tissue environment; this observation remains to be

explored. Murine LN slices have been combined with microfluidic

environmental control for local drug delivery to T cell zones and B

cell follicles (183), to quantify molecular diffusion in the LN (136),

and to form a tumor-LN co-culture model (184). Ramirez et al.

(185) combined ex vivo LN slice cultures with PEG nanoparticle

tracking to characterize interstitial tissue properties such as pore

size and viscosity. Tracking studies indicated that LN pore sizes

were highly variable, while microrheology showed that the LN

extracellular tissue was viscoelastic and assumed hydrogel-like

properties. In addition to microscopy-based readouts, flow

cytometry, and ELISA, ex vivo LN slices are also compatible with

in situ analyses that would be challenging to conduct in vivo, such as

electrochemical measurement of neurotransmitters and hormones

(186). A recent report of murine spleen slices with excellent

retention of spatial architecture opens the possibility for work in

that organ as well (187). Reports of intact explant culture of LN or

spleen from large animals remain rare (188), but are of significant

interest for models of immunity in veterinary patients and

livestock (189).

Recently, ex vivo culture of intact tissue blocks was compared to

organoid cultures in a systematic series of tests of germinal center

formation, response to antigen, and response to anti-inflammatory

therapies, starting with human adenoid tissue (168, 190). In that

study, although the tissue blocks better retained the germinal center

structure, they were not as responsive to manipulation of CD40L

and IL-4 signaling pathways as the organoids, and were

comparatively less viable after just 3 days. However, it is possible

that the large size of the blocks (∼1 mm in the smallest dimension)

may contribute to these challenges. The expected penetration

distance of oxygen in tissue is typically limited to 200-400 mm,
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depending on the cell density and metabolic activity of the tissue

(191). Head to head comparison of culture systems remains rare,

and further study to determine how smaller tissue slices may

compare to organoid-style systems for various functions would

be valuable.
4.2 Models of tissue-level activity using
suspensions or organoids

Tissue-derived models rely on the availability of fresh human or

animal tissue, both of which can be limited. A complementary

approach is to develop bottom-up models of LN function by

combining specific cells in vitro. Most of these models begin with

primary leukocytes, frequently collected from donations of whole

blood or from the leukopaks that are generated as leftovers from

platelet donation (192). White blood cells have been combined with

cell lines to represent endothelium or stroma as needed. Other

models begin with cells obtained from secondary lymphoid organs

after surgical resection. For a discussion of considerations in cell

sourcing that are unique to models of immunity, we refer the reader

to Hammel et al. (79). Despite intense interest for at least 20 years

from funding agencies such as DARPA, NIH, and FDA, models of

vaccination in the LN have so far been limited to just a few systems.

Below we review developments so far in this exciting area.

As mentioned above, one approach to modeling lymphoid

function is to isolate cells directly from human blood or from

surgically resected tissues and generate homogeneous high-density

cultures or organoids. These may be generated simply by pipetting a

high density of cells into a well plate, sometimes using V-bottom or

U-bottom plates to further encourage high density. For example, T

follicular helper cells derived from naïve T cells in the blood may be
TABLE 1 Properties of three approaches to model tissue-level functions in the lymph node, compared to in vivo analysis.

In vivo in animals,
humans

Live ex vivo
tissues

Cell suspensions,
organoids

Engineered
systems

Fluid flow ✔ ✔

Lymphocyte (re-)circulation ✔ ✔

Primary spatial organization of cells,
proteins, ECM

✔ ✔
Determined by cell

input†

Diversity of cell populations retained ✔ ✔
Determined by cell

input†

Drug delivery at known doses, locations,
times

No (subject to pharmaco-
kinetics)

✔ ✔ ✔

Repeated analyses in same sample
Limited; many assays are

terminal
✔ ✔ ✔

Analysis of protein secretion in situ ✔ ✔ ✔

Compatible with widefield imaging ✔ ✔ Depends on platform

Precise control over cell and protein content ✔
Determined by cell

input†

Low variation between replicates for drug
screening

✔
Determined by cell

input†
†Determined by whether tissue explants, cell suspensions, or organoids are used, and how these were prepared.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183286
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ozulumba et al. 10.3389/fimmu.2023.1183286
co-cultured with isolated memory B cells, for a system that nicely

replicates plasmablast formation and IgG production (193). Blood-

derived cells are readily obtained, but they may differ in phenotype

from tissue-resident cells. Therefore, cultures and organoids

generated from tonsils, adenoids, and other LNs have been

explored as well. For example, culture of adenoid-derived cells in

a well plate successfully generated physiological responses such as

proliferation, germinal center B cell formation, and antigen-specific

T cell cytokine secretion in response to signals such as cytokines,

small molecule drugs, recall antigens from prior vaccinations, and

immunotherapies (168). Similarly, culture of LN cell suspensions

from Leishmania major-infected mice proved an effective method

to support proliferation of the parasite and to rapidly screen

antiparasitic drugs (194).

Recently, tonsil organoid cultures were generated by allowing

tonsil-derived cells to reaggregate atop a transwell membrane over

several days; these were used to study response to vaccines (195).

The organoids included regions of B cells that were reminiscent of

the light and dark zones of a germinal center. The cultures

responded to stimulation with recall antigens such as influenza

and the measles, mumps and rubella (MMR) vaccine with IgG

secretion, B cell maturation, and T cell activation. Excitingly, the

organoids were also able to respond to antigens that the tissue

donors were likely naive to, including rabies vaccine and COVID-19

vaccine candidates, though mostly with IgM and not IgG secretion.

Overall, this study demonstrated that immune organoid cultures

may offer the potential to scrutinize certain vaccine candidates.

Comparing tissue slices versus high-density cultures and

organoids, the former has the benefit of retaining the original

spatial organization and stromal networks of the organ, which is

a key strength for mechanistic studies of complex multicellular and

organ-level events. Slices also guarantee the presence of all of the

varied cell types and cell states in the tissue, including matrix

adherent cells that might be depleted during preparation of cell

suspensions and organoids. Meanwhile, cell-based cultures have the

benefit of higher throughput, reduced variability between replicates,

and increased homogeneity, making them particularly well suited

for drug screening, high-throughput analysis, and studies of cell-

specific behaviors that are not dependent on architecture.
4.3 Models built from the bottom up in
engineered systems

In some cases, additional environmental control of the culture is

desirable, such as that obtainable from structured cultures in a

transwell system, microdevice, or bioreactor. For example, in

response to the poor correlation between results from animal

vaccine studies and human clinical trials, in 2009 Byers et al.

(196) developed the MIMIC™ culture system to test the efficacy

of potential vaccine candidates. The system comprised a carefully

proportioned co-culture of T cells, B cells and autologous DCs in

24-well plates. Cell priming with the DTaP vaccine resulted in

elevated tetanus toxoid-specific class-switched B cells and IgG

secretion. IgG responses in the MIMIC™ culture system were

comparable to those obtained in vivo, including predicting the
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loss of responsiveness of aged cells to influenza vaccination (197).

More recently, the two-chamber microfluidic system mentioned in

section 3.3 similarly generated IgG after a recall challenge with

inactivated influenza vaccines (163).

First reported in 2006 by Giese et al. (198), the Human Artificial

Lymph Node (HuALN) model was one of the earliest models to

replicate specific organ-level functions. This bioreactor-based

model combines 3D culture in a hydrogel matrix, varied cell

types, constant media perfusion, and compatibility of in-process

controls for daily monitoring along with end-point analysis.

Subsequent work tested the effect of vaccination with a

commercial Hepatitis A viral vaccine in this system (199). A

mixture of PBMCs (T cells, B cells and monocytes), mature DCs

and viral inoculum was cultured for 14-30 days, resulting in

activation-induced self-assembly of organoid structures and

plasma cell formation, though not antibody class switching or

affinity maturation. Follow-up work by Sardi et al. (200)

incorporated FRC-like stromal cells in the 3D cultures, leading to

the formation of a characteristic stromal network that supported T

cells and DCs and increased proinflammatory cytokine secretion

after antigen challenge, when compared to co-cultures of T cells and

DCs alone. This bioreactor setup was also able to predict the long-

term immunogenicity of monoclonal antibodies, a common

challenge for immunotherapies (201).
5 Discussion and reflection on
future opportunities

In summary, immunologists are experiencing a period of great

growth in available tools and technologies, as part of the thriving

field of “immunoengineering” at the convergence of immunology

with the physical sciences, math, and engineering. The nascent set

of in vitro, ex vivo, and computational models of the LN already

have the potential to reveal immune mechanisms in the human

organ that cannot be achieved any other way. However, much work

remains to be done before models of immunity are able to fully

predict immune function in health and disease. In this final section,

we look at major gaps and opportunities for further development.

Given the plethora of organs-on-chip developed in the past ten

years for nearly every other organ, it may be tempting to ask why

there have not been more organ-level replicas of the LN in

microphysiological systems. However, a better question is to ask

what groundwork has been laid for this challenging organ system.

Critical advances have been made in the past 20 - 25 years.

Advances in understanding of the nuances of lymphocyte

phenotype and the role of the LN stroma make the biological

requirements of the system clearer. There has been progress on

identifying conditions for long term culture of primary human cells

under stimulating conditions, for example as part of the HuALN

project (198–200). Engineered cell lines provide useful

simplifications in some cases, such as murine fibroblasts that were

modified to express CD40L (mimicking Tfh cells) and B cell

activating factor (mimicking FDCs) (161, 162). In addition,

sophisticated biomaterial-based microenvironments now support

largely biomimetic immune cell migration (97, 122). Hybrid
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systems combining LN explants with microfluidics have been

developed, offering an complement to bottom-up systems (183,

184), although these are usually not held in culture for longer than a

few days due to lymphocyte egress. On the computational front,

physical properties (e.g. permeability) and biochemical properties

(e.g. chemokine gradients) of the LN microenvironment have been

simulated with models, although experimental data are still scarce.

There has also been success in modeling individual cell-cell

interactions, especially pair-wise interactions. And of course,

robust techniques for engineered cultures and organ-on-chip

systems that were developed for other organ systems provide a

launchpad for modern work on the LN.

With these developments, it may finally be possible to assemble

a variety of engineered models of key organ-level features of the LN.

Challenges specific to LN models, versus other organs, include (i)

the rich variety of cell types, cell-cell interactions, and cell-matrix

interactions required to capture the response to challenges like

vaccination, infection, or autoimmunity, (ii) the influx of cells and

antigens from two separate vascular networks (lymphatic and

blood), (iii) the motility of lymphocytes (which is different than

the more stationary nature of tissue-resident cells in common

organ-on-chip models such as lung, liver, brain, kidney, etc), (iv)

the weeks-long culture time scales needed to generate a primary

antibody response, versus the relatively short lifetime of naive

primary lymphocytes in culture, and not least (v) the challenge of

recruiting the right combination of immunological, engineering,

and physical science expertise to tackle it. A few specific areas for

ongoing development include improvements in cell sourcing and

culture, better measurements of in vivo LN behavior during

immune responses, and the development of new tools and

technology for analysis and control of the engineered cultures.

Each of these areas is addressed briefly below.

Cell sourcing for models of immune function remains a

bottleneck, particularly given the diversity of cells involved. As

discussed in detail in Hammel et al. (79), potential sources range

from primary blood- and tissue-derived cells, to induced

pluripotent stem cells, to immortalized cell lines, and each of

these sources has strengths and drawbacks. A unique

consideration when modeling human adaptive immune function

is the potential for HLA (human leukocyte antigen) mismatch

between cells that are sourced from different donors, which could

cause an unintended allogeneic immune response. Mixing cells

from different sexes may also potentially lead to reactivity against

sex-linked antigens. HLA-matching and sex-matching have not

been explored yet in most bioengineered models of immune

function, as they have been easily avoided when working with

inbred animals, when excluding T cells, and in short-term cultures.

Meanwhile, LN stromal cells are particularly limited in terms of

sourcing, as these cannot be obtained from the blood. Currently,

thymus and bone marrow stromal cells are often used in place of LN

stromal cells. As the LN has several stromal cell subtypes (5), and

most are not yet represented in engineered cultures, it would be

useful to develop methods for reproducible isolation,

characterization and ex vivo/in vitro culture of specific LN

stromal cell subsets, such as FDCs. Alternatives such as iPSC-

derived LN stromal cell lines also would be beneficial. Finally, as
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the LN stroma changes during disease, efforts to characterize these

changes and model them are critical (202). Because tumor-draining

lymph nodes and tertiary lymphoid structures near tumors are

routinely removed during surgery for some cancers (e.g. breast,

melanoma), these tissues may serve potentially serve as sources of

stromal cells in a tumor-draining context.

Advances in spatially resolved measurement of physical and

chemical properties of the LN in its native state are needed to

provide data against which to validate new models. Properties of

interest include fluid flow rates, pH, oxygen, fuels such as glucose and

glutamate, metabolites such as lactate, local concentrations of

cytokines and growth factors, and neurotransmitters. In some

cases, these may be measurable ex vivo in tissue explants (172, 181,

186, 203). However, to avoid inescapable changes that occur when the

organ is severed from the lymphatic and blood vasculature, much of it

will need to be measured in vivo, e.g. by noninvasive imaging (MRI,

PET), moderately invasive live two-photon microscopy, or in rapidly

frozen or fixed tissue (204, 205). Recent advances in spatial biology,

including spatial RNAseq, high-content immunofluorescence

imaging, and mass spec imaging, will undoubtedly provide valuable

datasets to benchmark models against (19, 206–214). Computational

models may be needed to interpret available data, for example to

dissect experimental measurements of cell localization or migration

in response to bound and free chemokines in the local

microenvironment. In addition to characterizing the LN at rest, far

more work is needed to provide spatiotemporal data on the changes

that occur in the LN in response to inflammation and disease, antigen

engagement, vaccination, tumor drainage, and so on.

Several advances in tool and technology development would

enable better LN models. Improved techniques for real time

tracking of cell-cell interactions and molecular signals would

greatly increase the information compared to endpoint assays or

occasional measurement of secreted proteins. In terms of

environmental control, methods are needed to test the impact of

intermittent rather than constant fluid flow in experimental and

computational models. More research incorporating stromal cells is

needed so that cell behavior and immune events can be studied in

the context of the structural support and chemical signaling that the

stroma provides. Furthermore, existing models of lymphatic vessels

and/or blood vessels could be integrated with the LN model, to

characterize cell-endothelium/stroma crosstalk and role of the LN

microenvironment in disease progression (215, 216). Once models

of the LN advance sufficiently, integration of additional biology will

be an exciting next step. To date, most organ-level LN models have

attempted to replicate humoral responses, with a focus on IgG

secretion and germinal center development. In contrast, engineered

organ-level models of the development of cytotoxic CD8+ T cell

responses have been far less developed, but will be critical for

studies of induction of antiviral or anti-tumor immunity (217).

There is also a need for a LN model that can truly predict

immunogenicity after vaccination with new antigens; this is a

challenge due to the low precursor frequency of antigen-specific T

cells. Finally, a future research direction may include integration of

models of innervation of the LN. This is a nascent area of

immunological research; innervation of the spleen by the vagus

nerve has been shown to have major impacts on inflammatory
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disease and is in fact a therapeutic target (218–221). Recently,

neurons in the LN were mapped out (51, 52), and work by Ross

et al. (186) demonstrated spontaneous release of neurotransmitters

in the LN. Far more work is needed to develop and use models to

predict CD8-mediated immunity, immunogenicity, and the role of

innervation in LN function.

Finally, beyond models of the LN in isolation, there is enormous

potential to connect models of the LN with models of the lymphatic

and blood vasculature and other organs. A shared limitation of

existing LN models (explants, organoids, bioreactors,

microphysiological models) is that they do not replicate the

connections to the tissues they would drain in vivo; most models

are isolated by design. Beyond the loss of fluid flow, this isolation

means they cannot replicate the events of antigen influx or DC or

lymphocyte migration into the node. An exciting future direction is

to build on recent advances in multi-organ microphysiological

models in the organ-on-chip field (222–224), to add elements of

this connectivity to LN models. For example, connecting a LN

model with a model of the brain, lung, or gut would enable study of

immune responses in neurodegenerative diseases, respiratory

infection, or food allergy, respectively – just to name a few

examples. Similarly, there is a great deal of interest in the role of

the sentinel LN during tumor growth and metastasis; this biological

system is an obvious fit for multi-organ models of immunity. Such

systems have the potential to be used both for testing mechanistic

hypotheses, and for testing drugs and immunotherapies. Current

challenges here include those that are universal to all multi-organ

microphysiological systems, including the need for a common

media for different organ cultures or an intact endothelial barrier

to maintain distinct media compartments. Current multi-organ

systems are not yet plug-and-play, but this may change rapidly over

the next five years. Specific to modeling LN interactions with other

organs, lymphocyte trafficking between organs, along with selective

entry and egress, will be essential to establishing biomimetic

interactions. Microscale pump systems that are compatible with

lymphocyte recirculation will be of particular interest for this

purpose (225). In addition, most fluidic connections between

organs-on-chip are made by simple tubing or channels, which do

not replicate the control over rate or distribution of antigen and cell

influx that is provided by the lymphatic vasculature. Achieving such

control may require incorporation of lymphatic barriers in well-

defined locations. As LN models continue to advance, we anticipate

that integrating them into multi-organ systems will become the next

scientific frontier.
Frontiers in Immunology 15
Author contributions

All authors contributed to conception and design of the review,

wrote portions of the first draft, and contributed to initial figure

design. TO led the revision of the majority of the manuscript and

drafted final figures. All authors contributed to manuscript revision,

read, and approved the submitted version.
Funding

This publication was supported in part by the National Institute

of Biomedical Imaging and Bioengineering (NIBIB) under award

number U01EB029127 through the National Institutes of Health

(NIH), with co-funding from the National Center for Advancing

Translational Sciences (NCATS). Additional support was provided

by the National Institute of Allergy and Infectious Diseases under

award number R01AI131723. TO was supported in part by a

Summer Research Award through the Global Infectious Diseases

Institute at the University of Virginia. AM gratefully acknowledges

support from the National Science Foundation Graduate Research

Fellowship Program under Grant No. DGE-2039655. Any opinion,

findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of the National Institutes of Health or the National

Science Foundation.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Grant SM, Lou M, Yao L, Germain RN, Radtke AJ. The lymph node at a glance –
how spatial organization optimizes the immune response. J Cell Sci (2020) 133(5):
jcs241828. doi: 10.1242/jcs.241828

2. Van den Broeck W, Derore A, Simoens P. Anatomy and nomenclature of murine
lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl
mice. J Immunol Methods (2006) 312(1):12–9. doi: 10.1016/j.jim.2006.01.022

3. Kawashima Y, Sugimura M, Hwang Y-C, Kudo N. The lymph system in mice.
Japanese J Vet Res (1964) 12(4):69–78. doi: 10.14943/jjvr.12.4.69
4. Bajénoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, et al. Stromal
cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes.
Immunity (2006) 25(6):989–1001. doi: 10.1016/j.immuni.2006.10.011

5. Krishnamurty AT, Turley SJ. Lymph node stromal cells: cartographers of the
immune system. Nat Immunol (2020) 21(4):369–80. doi: 10.1038/s41590-020-0635-3

6. Elmore SA, Bouknight SA. Lymph node. In: Parker GA, editor. Immunopathology
in toxicology and drug development: volume 2, organ systems. Cham: Springer
International Publishing (2017). p. 59–79. doi: 10.1007/978-3-319-47385-7_3
frontiersin.org

https://doi.org/10.1242/jcs.241828
https://doi.org/10.1016/j.jim.2006.01.022
https://doi.org/10.14943/jjvr.12.4.69
https://doi.org/10.1016/j.immuni.2006.10.011
https://doi.org/10.1038/s41590-020-0635-3
https://doi.org/10.1007/978-3-319-47385-7_3
https://doi.org/10.3389/fimmu.2023.1183286
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ozulumba et al. 10.3389/fimmu.2023.1183286
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