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Dysregulated inflammation involving innate immune cells, particularly of the

monocyte/macrophage lineage, is a key contributor to the pathogenesis of

Duchenne muscular dystrophy (DMD). Trained immunity is an evolutionarily

ancient protective mechanism against infection, in which epigenetic and

metabolic alterations confer non-specific hyperresponsiveness of innate

immune cells to various stimuli. Recent work in an animal model of DMD (mdx

mice) has shown that macrophages exhibit cardinal features of trained immunity,

including the presence of innate immune system “memory”. The latter is

reflected by epigenetic changes and durable transmissibility of the trained

phenotype to healthy non-dystrophic mice by bone marrow transplantation.

Mechanistically, it is suggested that a Toll-like receptor (TLR) 4-regulated,

memory-like capacity of innate immunity is induced at the level of the bone

marrow by factors released from the damaged muscles, leading to exaggerated

upregulation of both pro- and anti-inflammatory genes. Here we propose a

conceptual framework for the involvement of trained immunity in DMD

pathogenesis and its potential to serve as a new therapeutic target.

KEYWORDS

innate immunity, macrophages, muscular dystrophies, mdx mouse, sterile
inflammation, chronic inflammatory diseases, immune memory
Introduction

The genetic basis for Duchenne Muscular Dystrophy (DMD) has been known for over

30 years (1), but despite tremendous progress in the field its pathophysiology remains

incompletely understood. The disease is caused by mutations in the DMD gene on the X

chromosome encoding dystrophin, a large (427 kD) membrane-associated cytoskeletal

protein (2). In the absence of dystrophin, muscle fibers suffer repetitive damage which

eventually leads to their replacement by fibrosis and adipose tissue. Among several
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established and putative functions for dystrophin (3), a primary role

is to protect the muscle cell surface membrane (sarcolemma) from

contraction-induced mechanical injury (4, 5). Exaggerated pro-

inflammatory signaling in skeletal muscle is observed shortly after

birth and is a major contributor to disease progression (6–11).

Corticosteroids, although only transiently effective and associated

with significant side effects, are currently the main pharmacologic

therapy in DMD patients (12).

In animal models of DMD such as the mdx mouse, specific

interference with the function of several inflammatory cell subtypes

and pro-inflammatory mediators has shown beneficial effects,

particularly during early stages of disease (8–11). However, there

is also evidence that co-existent and overly vigorous anti-

inflammatory signaling promotes the fibrosis and muscle

regeneration failure which are characteristic of the later stages of

pathology (6, 13–16). This evolving landscape, with combined

induction of pro-inflammatory as well as anti-inflammatory

signaling, creates a moving target that complicates decisions

about the optimal timing for instituting (or withdrawing)

different potential immunomodulatory therapies. The ideal

immunotherapy for DMD would have a dual ability to both

dampen injurious inflammation and prevent a disproportionate

“overshoot” of anti-inflammatory responses. In this review we

discuss the possibility that one potential avenue for achieving this

goal is through therapeutic targeting of trained immunity, a form

of innate immune memory that has recently been implicated in

the pathogenesis of several chronic inflammatory diseases,

including DMD.
Role of innate immunity in DMD

There have been several recent excellent reviews of the role of

immune cells in skeletal muscle injury and muscular dystrophy (8–

11, 17). In human DMD patients as well as mdx mice (the most

commonly used pre-clinical model of DMD), myeloid cells of the

monocyte/macrophage (MP) lineage are the most abundant

inflammatory cell type within the dystrophic skeletal muscles (18,

19). Although other myeloid cell types such as mast cells (20) and

eosinophils (21, 22) may also play roles in DMD pathogenesis, they

are present in much lower numbers. We and others have shown that

prevention of monocyte/MP recruitment to mdx muscles

significantly improves muscle fiber pathology and strength in early

disease (18, 23). Much research has focused on the fact that MPs

demonstrate a high degree of plasticity and can exhibit pro-

inflammatory (classically activated M1, M1-biased, or M1-like) or

anti-inflammatory (alternatively activated M2, M2-biased, or M2-

like) properties in skeletal muscle (8–11). In general, prototypical M1

MPs produce elevated levels of pro-inflammatory cytokines as well as

inducible nitric oxide synthase (NOS2) and reactive oxygen/nitrogen

species. Prototypical M2 MPs express high levels of anti-

inflammatory cytokines along with increased quantities of different

scavenger receptors. Pro-inflammatory MPs stimulate the

proliferation of myogenic precursor (satellite) cells and inhibit their

differentiation, whereas anti-inflammatory MPs have the reverse
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effect (24, 25). Although it is well recognized that the pro-

inflammatory/M1 versus anti-inflammatory/M2 framework vastly

oversimplifies the degree and spectrum of MP heterogeneity (26–28),

this nomenclature is nonetheless useful for conceptual purposes and

will be referred to throughout this review.

In vitro, a large number of soluble factors can preferentially drive

MPs toward either M1 or M2 phenotypic features (29–32). In vivo,

M1-biased MPs are believed to exacerbate muscle damage in DMD

through release of nitric oxide and other pro-inflammatorymediators

(18, 33, 34), whereas M2-biased MPs (with an increased ratio of

TGFb to TNF production) promote the survival of fibroadipogenic

progenitor cells and favour the development of fibrosis (13, 15).

However, multiple mediators having myriad and sometimes

opposing effects, and arising from different cell types, are often

simultaneously present within the same tissue microenvironment

(8, 16). The repetitive episodes of muscle injury in DMD occur in a

manner that is both temporally and spatially asynchronous (35).

Under these conditions, M1- and M2-biased MPs can co-exist

alongside one another and send conflicting signals to the repairing

muscle (8, 16). In addition, flow cytometry has revealed substantial

numbers of MPs in dystrophic muscles which do not fit well into the

canonical M1-M2 polarization paradigm (15, 23, 36–38). For

example, MPs expressing Ly6C (generally considered a marker of

recently recruited pro-inflammatory monocytes) also express

elevated levels of TGF-b in mdx muscles (38). Recent single cell

RNA sequencing studies have further demonstrated the complexity

and heterogeneity of MP populations within dystrophic skeletal

muscles of both mice and humans (39, 40). This includes the

presence of MPs with a mixed M1/M2 gene expression pattern

within the same cell population, which are rarely observed in

healthy muscle and may represent maladaptive immune cell

dysregulation. As discussed below, trained immunity could play an

important role in promoting the generation of such dysregulated MP

populations in DMD, leading to functional alterations which favour

injury and/or impede effective muscle regeneration.
What is trained immunity?

The immune system is traditionally divided into two main arms,

innate and adaptive immunity. Innate immunity is an evolutionarily

ancient phenomenon, whereas adaptive immunity is more recent and

unique to vertebrate species. Innate immunity is largely mediated by

myeloid cells such as monocytes and MPs, neutrophils, eosinophils,

mast cells, and basophils. These cells respond very rapidly to threats

sensed via pattern recognition receptors (eg., Toll-like receptors,

TLRs) and other mechanisms, and represent the first line of

defense while awaiting arrival of the more slowly developing

adaptive immune response. The latter employs immunoglobulin

gene recombination and clonal expansion in B and T lymphocytes

to confer long-lasting immunological memory of specific antigens. In

contrast, the innate immune system is classically considered to lack

both long-term memory and antigen-specificity. However, in recent

years there has been increasing recognition that invertebrates devoid

of an adaptive immune system, as well as immunocompromised
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mammals with severe defects in adaptive immunity, are nonetheless

capable of mounting a form of innate immune cell memory (41–43),

now commonly referred to as trained immunity (44).

Many experimental studies have documented the existence of

such innate immune memory and its ability to protect against future

infections (44). Importantly, this protection is afforded not only

against the microbe that initially triggered this response, but also

for later infections by completely unrelated organisms. For example,

induction of trained immunity by exposure of mice to the fungal

pathogen Candida albicans provides protection against subsequent

bacterial infection by Staphylococcus aureus (42). Along the same

lines, administration of the bacillus Calmette-Guerin (BCG) vaccine

against tuberculosis to severe combined immunodeficiency (SCID)

mice, which lack functional B and T lymphocytes, induces trained

immunity and protects against later infection by Candida albicans

(45). The fungal wall component beta-glucan and BCG-related

ligands for cellular pattern recognition receptors are two examples

of specific microbial products capable of inducing trained immunity

(45, 46). In addition to such exogenous microbial components

(pathogen-associated molecular patterns, PAMPs), several

endogenous ligands (damage-associated molecular patterns,

DAMPs) that are increased in chronic non-communicable diseases

have also been reported to induce trained immunity. Examples of

such DAMPs include oxidized low-density lipoproteins, lipoprotein

(a), aldosterone, catecholamines, and uric acid (47–51). However, in

contrast to the generally beneficial effects of trained immunity in the

context of infections, it has been proposed that trained immunity

induced by DAMPs could be an important contributor to

dysregulated inflammation driving progression of chronic non-

infectious diseases such as atherosclerosis (48, 52–54), Alzheimer’s

disease (55), chronic allergy (56–59), organ transplant dysfunction

(60), diabetes (61–64), and retinal degeneration (65).

At the cellular level, the trained immunity phenotype displays a

number of characteristic features (44, 66). Fundamentally, exposure

to a primary stimulus reprograms the cells to develop an exaggerated

transcriptional response of innate immunity genes upon subsequent

re-challenge with the same agent. However, in contrast to adaptive

immunity which is antigen-specific, the above transcriptional

hyperresponsiveness upon re-challenge is not specific to the

original inciting agent and can also be triggered by exposure to

antigenically unrelated stimuli. Epigenetic alterations that favour a

more open chromatin state and permit greater accessibility of

transcription factors to the DNA regulatory elements of innate

immune system genes account for the enhanced transcriptional

responses which occur upon re-challenge, as well as its long-lasting

nature. Finally, the trained cells typically demonstrate metabolic

changes consisting of upregulated glycolytic (and in some cases

oxidative phosphorylation) pathways, which provide the energy

and substrates required for the above cellular responses.

Evidence of trained immunity has been reported in diverse

immune cell types including monocytes, MPs, neutrophils,

dendritic cells, innate lymphoid cells, and natural killer cells, as

well as in several non-immune cell types (eg. epithelial, endothelial,

fibroblasts, smooth muscle) (44). However, the majority of studies

describing the features and mechanisms underlying trained

immunity have been performed in monocyte/MP lineage cells.
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Given that innate immune cells in the blood typically turn over

after only a few days, the observation that monocytes exhibiting the

characteristics of trained immunity can persist for months after

exposure to an inducing stimulus [eg. for 3 months after BCG

vaccination in humans (45, 67)], led to the hypothesis that

epigenetic reprogramming must take place at the level of myeloid

progenitor cells in the bone marrow compartment. This

mechanism, referred to as central induction of trained immunity,

has been confirmed by elegant studies performed in both mice and

humans (67–70). In addition, there is accumulating evidence that

trained immunity can also be induced in long-lived tissue resident

immune cells which are not derived from the bone marrow, such as

brain microglia (55) and alveolar MPs (71).
Evidence for trained immunity in DMD

To explore whether trained immunity might play a role in DMD,

we recently examined the functional and epigenetic status of MPs

derived from myeloid progenitors in the bone marrow of mdx mice

(72). Bone marrow-derived macrophages (BMDM) from mdx mice

were exposed in vitro to a variety of distinct provocative stimuli. The

mdx BMDM demonstrated exaggerated upregulation of multiple

innate immune response genes in comparison to equivalently

treated BMDM from non-dystrophic wild-type mice. This

hyperresponsiveness of mdx BMDM was non-specific as it was

found after exposure to different cytokines (IFNg, IL-4) as well as
structurally unrelated DAMPs (fibrinogen, beta-glucan). As discussed

earlier, this broadly increased responsiveness to multiple forms of

stimulation is a cardinal feature of trained immunity. In addition,

mdx BMDM exhibited a basal upregulation of multiple innate

immune genes as well as major metabolic alterations consisting of

lower oxygen consumption and increased lactate production by mdx

BMDM during the early necrotic phase of the disease. Interestingly,

mdx BMDM at the more advanced fibrotic stage of disease showed a

reversal of this pattern with a more oxidative profile compared to age-

matched wild-type mice. To the extent that M2-biased MPs are more

reliant on oxidative phosphorylation (73), these findings could help

to explain the previous observation that intramuscular MPs evolve

from predominately M1-biased toward a more M2-biased phenotype

over the course of disease progression (13, 14, 34).

Nucleosomes comprise the basic subunit of chromatin, and are

composed of the histone proteins H2A, H2B, H3, and H4. The

amino-terminal tails of these histones are subject to a wide variety

of post-translational modifications (“histone marks”), such as

acetylation (ac) and methylation (me), which alter chromatin

functionality and transcriptional activity. Studies in trained

immune cells have reported a range of histone modifications such

as increased levels of histone H3 lysine-27 acetylation (H3K27ac)

and histone H3 lysine-4 monomethylation (H3K4me1) or

trimethylation (H3K4me3), which are all classically associated

with enhanced chromatin accessibility and transcriptional

activation (41, 42, 48, 74). In addition, the demethylase Jmjd3

was reported to reduce levels of the repressive histone mark

H3K27me3 at the IL-12 promoter in BMDM from diabetic mice

exhibiting features of trained immunity (63). KDM4 histone
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demethylases, which similarly remove methylation marks linked to

transcriptional repression such as histone H3 lysine-9

trimethylation (H3K9me3), have also been identified as potential

regulators of trained immunity in human monocytes (75).

To explore whether such epigenetic alterations occur in mdx

mice, chromatin immunoprecipitation (ChIP) analyses of histone

modifications were performed in mdx BMDM (72). Genome-wide

ChIP-seq revealed that the repressive histone mark H3K27me3 was

reduced in mdx BMDM, which is in line with the more open

chromatin state and enhanced gene transcription characteristic of

trained immunity. This decrease of H3K27me3 in mdx BMDM

involved key pro-inflammatory, anti-inflammatory, and pro-

fibrotic genes associated with dystrophic muscle pathology. ChIP-

PCR confirmed these findings and additionally indicated increased

levels of the activating histone mark H3K4me3 on both M1- and

M2-biased gene promoters. Interestingly, the mdx BMDM also

exhibited a decrease in the activating histone mark H3K27ac, a

change which would in contrast be expected to reduce the level of

gene transcription. Pathway analysis suggested that decreases in the

H3K27ac mark in mdx BMDM preferentially involved biological

processes associated with protein metabolism, the cell cycle, and the

regulation of gene expression. However, for the pro-inflammatory,

anti-inflammatory, and pro-fibrotic genes potentially involved in

DMD pathogenesis, the ratio of acetylation to trimethylation of

H3K27 was increased which is in keeping with a more open

chromatin state. In addition to the demonstration of histone

mark alterations, the presence of epigenetic imprinting in bone

marrow monocyte/MP myeloid precursors of mdx mice is strongly

supported by chimeric experiments in which the hematopoietic

stem cell compartment of irradiated wild-type mice was

reconstituted with transplanted mdx mouse bone marrow (72).

Under these conditions, the trained immunophenotype of

transplanted mdx donor origin BMDM remained intact despite

being placed in normal recipient mice without muscular dystrophy.

This durability of the phenotype in mdx origin BMDM was

maintained for at least 3 months after transplantation into the

non-dystrophic host environment, which is in keeping with long-

lasting epigenetic reprogramming of the cells.

In summary, monocyte/MP lineage cells of mdx mice demonstrate

hallmark features of trained immunity including: 1) increased DAMP

and cytokine-stimulated innate immunity gene expression, 2) changes

in cellular metabolism, 3) epigenetic remodeling, and 4) innate

immune “memory” characterized by maintenance of a

transcriptionally hyperresponsive phenotype even after long-term

removal from the muscular dystrophy environment through bone

marrow engraftment into non-dystrophic mice (Figure 1).
Potential stimuli for trained immunity
in DMD: the role of TLR4

The ability of an intrinsic muscle disease such as DMD to

induce trained immunity at the level of the bone marrow suggests

that one or more factors released from the injured muscles, such as

DAMPs, could act as primary inciting stimuli in vivo. Previous work

has shown that low-dose exposure to the TLR4 ligand
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lipopolysaccharide (LPS) can induce trained immunity in human

monocytes (76). For example, systemic LPS administration induced

trained immunity in brain microglial cells that persisted for at least

6 months in mice (55). In another study, transient LPS exposure in

mice led to persistent alterations of myeloid enhancer accessibility

within hematopoietic stem cells, accompanied by improved innate

immunity against infection (77). Along the same lines, recent work

has implicated the TLR adaptor protein, MyD88, in the generation

of trained immunity in murine MPs following exposure to different

DAMPs (78).

We previously reported that global TLR4 deficiency in mdx

mice reduces the number of pro-inflammatory MPs as well as other

pathological features within dystrophic muscles (37). This is

consistent with a study demonstrating that genetic abrogation of

MyD88 also improves skeletal and cardiac muscle pathology in mdx

mice (79). Among the DAMPs that are chronically increased in the

muscles and/or serum of mdx mice and DMD patients (80, 81),

fibrinogen has been directly implicated in disease progression and

serves an endogenous TLR4 ligand (13, 82). Several other DAMPs

can also act as endogenous ligands for TLR4 (83). In addition to the

direct cellular effects of TLR4 engagement by various DAMPs, other

factors released from diseased dystrophic muscles such as cytokines

(55) or exosomes (84) could also play significant roles in the

generation of trained immunity in a manner that is either

dependent or independent of TLR signaling.

To determine whether endogenous factors derived from damaged

muscle can induce the trained immunity phenotype, BMDM from

healthy wild-type mice were exposed to crushed skeletal muscle extract

as a primary training stimulus (72). These cells demonstrated

exaggerated upregulation of innate immune system genes when

secondarily re-challenged 5 days later with different structurally

diverse DAMPs. Importantly, the potentiated responses to secondary

stimulation observed in wild-type BMDM exposed to crushed muscle

extract were lost in the absence of TLR4. To more specifically explore

the role of TLR4 in the development of trained immunity in DMD, key

features of the trained immune response were examined in mdx mice

with genetic deficiency of TLR4 (mdxTLR4-/-) (72). In mdxTLR4-/-

BMDM, both transcriptional hyperresponsiveness to heterologous

forms of stimulation and the altered metabolic phenotype observed

in mdx BMDM were eliminated.

The impact of TLR4 deficiency on features of trained immunity

in mdx mice was also reflected at the epigenetic level. ChIP-seq

revealed that the predominant H3K27me3 pattern found in mdx

BMDM (reduced compared to wild-type) was prevented by the

absence of TLR4, leading to restoration of H3K27me3 levels in the

mdxTLR4-/- group. On the other hand, the general reduction of

H3K27ac signal intensity observed in mdx BMDM was further

amplified in the mdxTLR4-/- BMDM. Hence, the histone

modifications demonstrated in mdx mice lacking TLR4 (increased

H3K27me3 and decreased H3K27ac) would both be expected to

decrease chromatin accessibility and transcriptional activity.

Overall, the results of these studies collectively support the

concept that TLR4 activation and signaling in monocyte/MP

lineage cells, most likely in response to DAMP release from

injured skeletal muscles, plays a role in the development of

trained immunity in muscular dystrophy (Figure 2).
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Implications of trained immunity for
DMD pathogenesis and treatment

In the case of trained immunity induced by transient exposure

to an acute infection or vaccination, the initial increase in innate

immune gene transcription typically subsides and returns to normal

basal levels once the primary inciting stimulus has been removed

(85). However, long-lasting epigenetic alterations ensure the ability

to produce a more robust response to secondary stimuli at a future

date. It is important to recognize that this scenario differs

fundamentally from most chronic non-infectious diseases, where

the primary inciting stimulus is derived from the underlying disease

process and thus present on a continuous basis. This is the case in

DMD, where elevated levels of innate immune gene expression

induced by chronic background exposure to muscle damage factors

are likely to be potentiated by intermittent periods of more intense

muscle necrosis (Figure 3). To distinguish between acute and

chronic exposure scenarios, it has been suggested that the latter
Frontiers in Immunology 05
situation be referred to as adaptation (66) or priming (85).

Irrespective of the nomenclature employed, the fact that the

hyperresponsive phenotype of mdx mice is associated with

epigenetic changes and maintained for months after heterologous

bone marrow transplantation is consistent with innate immune

system memory. Furthermore, in an analogous fashion to

autoimmune disorders in which adaptive immune system

memory is continually stimulated and thereby promotes disease

progression, chronic stimulation of innate immune system memory

could similarly contribute to the maintenance of pathological

inflammation in DMD.

The studies of mdx mice indicate that even before their

recruitment to dystrophic muscle, future monocyte/MPs present

within the bone marrow have already undergone extensive

epigenetic and functional remodeling. In addition, cultured mdx

BMDM show simultaneous increases in the expression of both M1

and M2 marker genes rather than simple skewing toward M1- or

M2-biased profiles (72), a finding which has been reported in other
FIGURE 1

Bone marrow-derived macrophages of dystrophic (mdx) mice demonstrate keystone features of trained immunity. From left to right: 1)
Hyperresponsiveness to stimulation by damage-associated molecular pattern (DAMP) molecules and cytokines, resulting in exaggerated innate immune
gene expression (both pro-inflammatory/M1 and anti-inflammatory/M2); 2) Metabolic alterations (e.g. maximal oxygen consumption) which vary
according to disease stage (necrotic versus fibrotic phase); 3) Epigenetic modifications which increase the chromatin accessibility of innate immune
system genes by reducing gene-silencing and increasing gene-activating histone marks; and 4) Innate immune system “memory” characterized by
durable (3 months) maintenance of the hyperresponsive phenotype after mdx bone marrow engraftment into non-dystrophic wild-type (WT) mice.
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examples of trained immunity (42, 74). This pattern is consistent

with the characteristics of intramuscular MPs found within

dystrophic muscles in vivo, where one also finds an increased

proportion of MPs exhibiting combined upregulation of both M1

and M2 genes (23, 36–38). We speculate that the hybrid M1/M2

phenotype of MPs from the mdx bone marrow results from the

observed epigenetic reprogramming, which places the cells in a state

that is more conducive for rapidly assuming different possible
Frontiers in Immunology 06
phenotypes (M1-biased, M2-biased, or some combination

thereof) once they are recruited to the muscle tissue. In principle

this would have the advantage of allowing for more efficient

adaptation to the microenvironmental conditions encountered

within the muscle. In the setting of chronic disease with ongoing

asynchronous muscle injury, however, this property may be

maladaptive and lead to chaotic or conflicting molecular signaling

with adverse consequences for muscle repair (16, 35). Such aberrant
A B

FIGURE 3

Hypothetical comparison of the responses to primary and secondary stimuli in acute versus chronic exposure paradigms of innate immune memory.
(A) For innate immune memory induced by an acute exposure paradigm (e.g. acute infection or vaccination), the primary and secondary stimuli are
both transiently present and there is a return of immune gene transcription to normal basal levels between the two stimulation events. (B) For innate
immune memory induced by the chronic disease paradigm of DMD, immune gene transcription is persistently elevated over time, due to the
combination of continuous background exposure to primary stimuli and intermittent episodes of superimposed secondary stimulation.
FIGURE 2

Chronic skeletal muscle damage in muscular dystrophy causes the release of systemic mediators capable of inducing trained immunity. The underlying
genetic defect in DMD leads to chronic skeletal muscle injury, which results in the systemic release of damage-associated molecular pattern (DAMP)
molecules and cytokines. These circulating factors in the bloodstream are transported to the bone marrow compartment, where they act on monocyte/
macrophage lineage cells through Toll-like receptor (TLR) 4 and other receptors to induce epigenetic remodeling and other key aspects of trained
immunity.
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molecular signals are prime candidates for triggering an exaggerated

“overshoot” of either M1 or M2 gene expression by trained MPs

within the dystrophic muscle microenvironment. Indeed, an

inappropriate balance between pro-inflammatory (TNF) and anti-

inflammatory (TGF-b) cytokine expression within hybrid MPs has

been shown to be an important driver of dystrophic pathology (15).

As a hypothetical framework for future investigation, we propose

a two-signal, two-compartment model to conceptualize the possible

sequence of pathological events involving trained immunity in DMD

(Figure 4). We posit that ongoing muscle necrosis present from the

earliest stages of DMD acts as the source of low levels of DAMPs,

cytokines and other molecules which serve as primary stimuli for the

induction of trained immunity within monocytes in the bone

marrow compartment (termed Signal 1). This triggers the

epigenetic and metabolic changes in these cells that create a state

of heightened innate immune system “readiness”, with an inherently

greater ability to upregulate both M1-biased (pro-inflammatory) and

M2-biased (anti-inflammatory) genes. Trained monocytes

harbouring this broad potential for enhanced transcription of

innate immune system genes are subsequently recruited to the

dystrophic muscles where they undergo differentiation into MPs.

Within this pathological intramuscular environment, the monocyte-

derived MPs are exposed to either the same or different muscle-

derived DAMPs, cytokines, and other factors, which can now serve

as potentiating secondary stimuli within the skeletal muscle

compartment (termed Signal 2). Hence we hypothesize that Signal

1-induced reprogramming of monocytes centrally in the bone
Frontiers in Immunology 07
marrow induces the increased potential of these cells to rapidly

adopt different possible phenotypes, whereas Signal 2 factors

encountered peripherally in the dystrophic muscle milieu are

largely responsible for directing this enhanced potential toward the

final phenotypic outcome. The nature and magnitude of

contributions from both Signal 1 and Signal 2 would be expected

to vary at different stages of disease. Importantly, according to this

model the intramuscular MP phenotype driven by trained immunity

is flexible and could be M1-biased, M2-biased or a non-classifiable

hybrid phenotype.

In conclusion, overly exuberant and dysregulated MP responses

associated with trained immunity may contribute to the counter-

productive inflammatory milieu that impedes successful muscle

regeneration in DMD. Accordingly, future investigations should

explore whether prevention or reversal of trained immunity is

capable of favorably modifying the course of disease in DMD.

Because DAMP-mediated TLR4 signaling appears to play an

important role in dystrophic pathology (37) and the induction of

trained immunity (72), therapeutic interference with this

mechanism could be a promising avenue. In addition, given that

the phenomenon of trained immunity is critically dependent on

epigenetic rewiring of immune cells, interventions capable of

modifying transcription factor interactions with the open

chromatin state may also be considered (86). In this regard, it will

be interesting to determine whether newly emerging or established

drugs for DMD treatment such as givinostat (87) or corticosteroids

(88), which are known to modulate epigenetic mechanisms, have an
FIGURE 4

Illustration of a two-signal, two-compartment model to conceptualize the possible role of trained immunity in DMD pathogenesis. Damage-associated
molecular pattern (DAMP) molecules and cytokines which are released into the blood circulation from dystrophic muscles, serve as primary stimuli for
the induction of trained immunity in the bone marrow compartment (Signal 1). Trained monocytes are then recruited to the pathological
microenvironment of the dystrophic muscle compartment, where they encounter either the same or different muscle-derived factors that serve as
potentiating secondary stimuli (Signal 2). The more open chromatin state for both pro-inflammatory/M1 and anti-inflammatory/M2 genes allows for
phenotypic flexibility of MPs (M1-biased, M2-biased, or non-classifiable hybrid phenotypes) See text for further explanation.
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impact on the development of trained immunity in DMD. Finally,

we speculate that the amplified innate immune response associated

with trained immunity could alter the effectiveness of various gene

therapy and other dystrophin restoration strategies for DMD.
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