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Combined analysis of single-cell
and bulk RNA sequencing reveals
the expression patterns of
circadian rhythm disruption in
the immune microenvironment
of Alzheimer’s disease

Huiling He †, Yingxia Yang †, Lingxing Wang, Zeming Guo,
Lichao Ye, Wanjiong Ou-Yang and Meili Yang*

Department of Neurology, The Second Attached Hospital of Fujian Medical University, Quanzhou,
Fujian, China
Background: Circadian rhythm disruption (CRD) represents a critical contributor

to the pathogenesis of Alzheimer’s disease (AD). Nonetheless, how CRD

functions within the AD immune microenvironment remains to be illustrated.

Methods: Circadian rhythm score (CRscore) was utilized to quantify the

microenvironment status of circadian disruption in a single-cell RNA

sequencing dataset derived from AD. Bulk transcriptome datasets from public

repository were employed to validate the effectiveness and robustness of

CRscore. A machine learning-based integrative model was applied for

constructing a characteristic CRD signature, and RT-PCR analysis was

employed to validate their expression levels.

Results:We depicted the heterogeneity in B cells, CD4+ T cells, and CD8+ T cells

based on the CRscore. Furthermore, we discovered that CRD might be strongly

linked to the immunological and biological features of AD, as well as the

pseudotime trajectories of major immune cell subtypes. Additionally, cell–cell

interactions revealed that CRD was critical in the alternation of ligand-receptor

pairs. Bulk sequencing analysis indicated that the CRscore was found to be a

reliable predictive biomarker in AD patients. The characteristic CRD signature,

which included 9 circadian‐related genes (CRGs), was an independent risk factor

that accurately predicted the onset of AD. Meanwhile, abnormal expression of

several characteristic CRGs, including GLRX, MEF2C, PSMA5, NR4A1, SEC61G,

RGS1, and CEBPB, was detected in neurons treated with Ab1-42 oligomer.

Conclusion: Our study revealed CRD-based cell subtypes in the AD

microenvironment at single-cell level and proposed a robust and promising
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CRD signature for AD diagnosis. A deeper knowledge of these mechanisms may

provide novel possibilities for incorporating “circadian rhythm-based anti-

dementia therapies” into the treatment protocols of individualized medicine.
KEYWORDS

single-cell, circadian rhythm, immune microenvironment, Alzheimer’s disease,
machine learning
Introduction

Alzheimer’s disease (AD) is the most prevalent age-related

neurodegenerative disease in the world, accounting for

approximately 70% of the 50 million individuals worldwide

with dementia, with about 10 million new cases per year, or

nearly 20 new cases every minute (1). It is generally accepted that

the amyloid plaques and hyperphosphorylated tau protein

observed in the brains are recognized as the hallmarks of AD,

thus leading to the progressive memory and cognitive

impairment (2). Although several FDA-approved drugs have

been developed in recent decades to slow the progression of

Alzheimer ’s disease, the heterogeneity and complicated

pathophysiological mechanisms underlying Alzheimer’s disease

limit their efficacy (3, 4). Therefore, with an aging population, a

better knowledge of AD pathophysiology is critical for the

development of effective therapeutics.

Circadian rhythm (CR) is a physiologic cycle of approximately

24 hours that has been characterized as an evolutionary molecular

mechanism to coordinate multiple physiological processes, such as

energy metabolism and self-sustenance, via an established circadian

clock (5). A growing body of evidence suggests that disruption of

the circadian rhythm plays a critical role in cognitive impairment

and facilitates the development and progression of Alzheimer’s

disease (AD). In a genetically engineered AD mouse model, for

example, abnormal expression of circadian rhythm-related genes

such as BMAL1, CLOCK, and PER was observed, implying a

possible link between altered circadian rhythm, Ab pathology,

and tauopathy (6). Furthermore, circadian rhythm disruption

(CRD) has been demonstrated to promote oxidative damage and

the development of AD by interacting with Ab42 and disrupting

redox homeostasis (7, 8). Furthermore, PRX, a non-transcriptional

rhythm regulator, is reduced in AD and is associated with memory

impairment and a poor prognosis (9). It is worth noting that key

circadian components either directly or indirectly regulate the

expression of various peripheral circadian genes, which appear to

be closely linked to the progression of neurodegenerative disease

(10, 11). Furthermore, dysregulation of circadian rhythm-related

genes complicates AD pathogenesis, leading to a poor prognosis

and failure of AD therapies (12). However, to our knowledge, CRD‐

based AD pathogenesis has been investigated mainly using data
02
from the samples produced from genetically engineered in vivo or in

vitro models (6, 8). Although these studies have contributed to a

better understanding of the interplay between disrupted circadian

rhythms and AD progression, they are mainly based on the average

state of large tissues and overall cells under different genetics and

environments, leaving out the consideration of the diversity of

biological processes within individual cells. It is worth noting that

immune cells living in the AD microenvironment including T cells,

B cells, macrophages, monocytes, and others, play a pivotal role in

the initiation and progression of AD (13, 14). Furthermore, it has

been reported that the circadian rhythm regulates multiple aspects

of immunity through a complex reorganization of cellular

connections, thereby preventing cytokine-mediated inflammatory

responses during the development of chronic inflammation and

carcinogenesis (15). Furthermore, overexpression of BMAL1 in

malignant tumors has been shown to be positively related to T

cell infiltration and activation (16). However, whether circadian

rhythm drives AD progression in the complex immune

microenvironment, as well as the potential mechanism underlying

the interaction between circadian gene dysregulation and AD

progression at single-cell resolution, remain unknown and require

further research.

In this study, we exhibited the CRD state in the AD immune

microenvironment at the at single‐cell level based on the

transcriptomic profiles of circadian‐related genes (CRGs). What’s

more, we investigated the impact of the CRscore on the main

immune cells, including B cells, CD4+ T cells, and CD8+ T cells,

based on the single-cell sequencing data derived from the AD

sample. Our results revealed that different levels of CRscore in

each immune cell type subpopulation were closely related to distinct

immune characteristics, intercellular communications, metabolic

pathways, and transcription characteristics. Importantly, bulk

transcriptomic analysis demonstrated that a lower CRscore was

significantly correlated with AD pathogenesis and progression.

Furthermore, characteristic CRGs selected by multiple integrative

machine learning algorithms were utilized to construct a robust

model for predicting the onset of AD. In conclusion, we clarified the

close relationship between CRD and AD heterogeneity by

combining bulk RNA sequencing and single-cell analysis, and

pharmacological modulation targeting circadian genes may be a

promising therapeutic strategy for AD combination therapy.
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Methods

Data acquisition and processing

The single-cell mRNA sequence (scRNA-seq) matrix of GEO

dataset GSE181279, including 2 normal and 3 AD peripheral

blood samples, was downloaded from the Gene Expression

Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) database and

further reanalyzed in the current study. Using the R software’s

Seurat package, we generated Seurat objects for all specific cell

types comprising the scRNA-seq gene expression matrix. Then,

the Seurat package’s IntegrateData was utilized to perform batch

elimination and sample integration. Using FindVariableFeatures

from the Seurat package, the top 2000 genes with highly variable

expression were identified. In addition, we chose cells that

expressed between 200 and 4000 genes, and less than 20%

mitochondrial genes. The remaining scRNA-seq data were

normalized and scaled using the NormalizeData and ScaleData

functions from the Seurat package for additional analysis. Using

RunPCA of the Seurat package, the number of principal

components (PC) was estimated, and the uniform manifold

approximation and projection (UMAP) reduction analysis was

employed to summarize the top principal components. The cell

types were manually annotated using known gene markers based

on previous publications. Using the Idents and DimPlot tools,

general cell types or subtypes of individual cell types were

annotated and shown.

To demonstrate the reliability and clinical efficacy of the bulk

transcriptome-based CRscore, ten public datasets containing

microarray data were obtained from the GEO database

(Additional file 1: Table S1). The raw data were log2-transformed

and normalized using the Robust Multiple Array Average (RMA) of

the affy R package. Differential analysis was performed based on the

“limma” R package.
Calculation of the CRscore based on the
differential circadian‐related genes

Circadian‐related genes (CRGs) were extracted according to

previous publications (17). DEGs for each cell cluster were

determined utilizing the FindAllMarkers function from the Seurat

package with an adjusted p-value less than 0.05. Differentially

expressed CRGs were finally determined after integration.

To assess the degree of circadian rhythm disruption in each cell

or sample, we utilized a previously reported algorithm that

calculates the change in signal-to-noise ratio for different genes

and cells based on the expression profile of CRGs (18). Briefly, after

calculating the average normalized values for microarray data and

TPM for scRNAseq, a random sampling approach with 1000

repeats was utilized to divide all genes into fifty expression bins,

and the random signature genes from each expression bin were then

selected. According to the pertinent formulas, the CRscore

belonging to normal distributions or mixtures of normal

distributions were determined.
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The threshold for the CRscore in single-cells was set at 75%

based on quartiles, whereas the median value was chosen for

microarray data.
Cell–cell communication analysis

Cell–cell interaction analysis was performed using the

CellphoneDB package (www.cellphonedb.org), which investigates

the ligand-receptor interactions on the basis of the expression of

ligand/receptor among different cell types (clusters). The group-

separated scRNA-seq counts matrix identified by Seurat was

utilized for further investigation. Clusters containing fewer than

50 cells were eliminated. The number of statistical iterations was set

to 1000, and genes expressed by fewer than 10% of each cluster cell

were eliminated. The CellPhoneDB repository informs subsequent

interactions. P-value < 0.05 was deemed statistically significant for

cell-cell interactions. the level of average receptor expression in a

cluster and the level of average ligand expression in the interacting

cluster were calculated. Dot plots were employed to illustrate the

difference between the mean values of ligand-receptor interactions

in low- and high-CRscore groups.
SCENIC analysis for different
CRscore groups

The python-based pySCENIC package (version: 0.12.0) was

utilized to investigate the gene regulatory network of transcription

factors (TFs) in AD with default parameters (19). First, the GENIE3

algorithm was performed to identify modules of co-expressed genes

and transcription factors (TFs) from the counts matrix of scRNA-

seq data. Then, these modules are trimmed by performing cis-

regulatory motif identification on the probable target genes using

RcisTarget, so that only genes containing the binding motif for the

TF are retained in the module. This set of TFs and their potential

target genes is known as a regulon. Finally, the activity of each

regulon is quantified in each cell utilizing a recovery analysis in

which all genes in a given cell are scored from low to high

expression and plotted against the number of genes in a given

regulon that can be recovered in that cell. Finally, the differences in

TF activity scores between the low- and high-CRscore groups were

visualized using a heatmap.
Pseudotime trajectory analysis

Pseudotime trajectory analysis was conducted using the R

package Monocle 3 (20). Seurat object was converted to a cd

object using the new_cell_data_set function, followed by

normalization using the preprocess_cds function. Then, UMAP

dimensional reduction analysis and cell clustering were applied for

this object with the reduce_dimension and cluster_cell functions

from the Monocle 3 R package, respectively. With the use of the

learn_graph function, a primary graph was trained from previously
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dimensional reduction and visualized to depict the development

trajectory. The graph was then employed to sort cells through the

developmental program (order_cells function) based on the cells

expressing chosen markers as the trajectory root cells.
Functional enrichment analysis

Differentially expressed CRGs were enrolled in the functional

enrichment analysis. With the usage of the STRING database,

functional network and gene connectivity data were collected.

STRING provides gene connection data based on multiple pieces

of evidence (direct interaction, co-localization, gene-regulation, and

co-citation), grouping closely linked genes with the highest degree

of certainty (0.9 interaction score). The output data from STRING

database was then analyzed using the R package iGraph,

Subsequently, a network analysis of the retrieved connectivity

data was performed to highlight subnetworks or neighborhoods

based on the random walk approach. The generated neighborhoods

were enriched for the Kyoto Encyclopedia of Genes and Genomes

(KEGG) using the clusterProfiler R package (21).

Activity scores of classical cancer-related signaling pathways

between low- and high-CRscore groups were calculated using the R

package of progeny, as previously reported (22).

Single-cell metabolic activity was quantified using the R package

scMetabolism. We selected the VISION pipeline to analyze the

signature scores of KEGG metabolic gene sets due to its quick

execution and applicability to huge datasets. The resulting matrix of

signature scores for metabolic gene sets was also incorporated into

the Seurat object, and the differences in metabolic activity between

low- and high-CRscore groups were visualized using a heatmap.
Gene set variation analysis

On the basis of the “GSVA” R package, the Gene Set Variation

Analysis (GSVA) enrichment was performed to examine the

heterogeneity of a variety of biological processes. The hallmark

gene set was extracted from the molecular signature database

(MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

The limma R package was utilized to identify the significantly

different biological functions between the low‐ and high‐CRscore

groups, and absolute t-values with a GSVA score more than 2 were

deemed statistically significant.
Estimation of the immune
microenvironment in public bulk
RNA−sequence datasets

The immune infiltrating levels in public bulk RNAsequence

datasets were determined using the ssGSEA, MCPcounter, xCell,

ABIS, and ESTIMATE algorithms, as previously described (23).

Briefly, the proportions of various immune cell subtypes in each

sample were evaluated utilizing global marker genes, and the

aforementioned algorithms were conducted to calculate fractional
Frontiers in Immunology 04
enrichment or a relative percentage for each immune cell subset.

The Wilcoxon rank-sum test was utilized to compare the degree of

immunological infiltration between groups. Multiple algorithm-

based immune infiltration levels were visualized using a heatmap.

In addition, the ImmuneScore between groups were computed

using the “ESTIMATE” R package to assess the immunological

microenvironment of AD patients. Finally, the levels of

expression of various immunoregulatory genes, such as MHC-I,

MHC-II, immunoinhibitor, chemokine, and chemokine

receptor, were determined in order to investigate the differences

in immunological competence between low- and high-

CRscore groups.
Connectivity map analysis

A popular approach, CMap analysis, was conducted to predict

treatments for individuals based on similar gene expression profiles

(24). In this investigation, the top 100 up-regulated and 100 down-

regulated genes in AD patients with high-risk and low-risk,

respectively, were chosen as input data. The drug signature

information acquired from the CMap database was selected as the

preferred drug information. Then, the similarity of gene expression

and drug signatures was compared using the eXtreme Sum (XSum)

algorithm, and the CMap scores were computed to evaluate

potential therapeutic drugs targeting AD patients at different risks.
Generation of characteristic CRGs based
on machine learning-dependent
integrative approaches

As previously reported (25), gene expression profiles were

transformed into z-scores across all datasets to improve

comparability between various cohorts. T We combined 12

machine learning algorithms and generated 113 algorithm

combinations to further filter consensus CRGs with good

accuracy and stability. The integrative algorithms included

random forest (RF), least absolute shrinkage and selection

operator (Lasso), Ridge, elastic network (Enet), Stepglm, support

vector machine (SVM), glmBoost, Linear Discriminant Analysis

(LDA), Gradient Boosting Machine (GBM), eXtreme Gradient

Boosting (XGBoost), and NaiveBayes. The process for creating

signatures was as follows: (a) Expression profiles of CRGs with

differential expression found in single-cell data were chosen. (b)

Then, 113 algorithm combinations were performed on the

differentially expressed CRGs to fit diagnostic models based on

the 10‐fold cross‐validation in the GSE63060 dataset; (c) All models

were verified in four validation datasets (GSE122063, GSE140829,

GSE33000, and GSE36990); (d) For each model, the area under

receiver operating characteristic curve (AUC) value was determined

across all validation datasets, and the model with the highest mean

AUC was deemed optimal; (e) In GSE5281, Characteristic CRGs

generated from the optimal machine learning model were fitted into

the Lasso model to obtain the corresponding coefficients for the

most predictive genes; (f) In GSE5281, Characteristic CRGs
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generated from the optimal machine learning model were fitted into

the Lasso model to obtain the corresponding coefficients of the

most predictive genes; (g) The performance of riskScore was

compared with other clinical features in GSE5281, GSE28146,

GSE33000, GSE122063, GSE140829, and GSE36980.
Primary culture of cortical neurons

Cultures of cortical neurons were performed in embryonic

Sprague-Dawley rats (16-18 days) euthanized according to previous

reported (26). Briefly, cortices from embryonic rats were extracted,

chopped into 2mmsegments, and trypsinized for 20min at 37°C using

0.25% trypsin solution (Gibco, NY, USA). After washing with PBS, the

digested tissue was mechanically dissociated with a sterile fine bore

glass pasteur pipette in the presence of a small amount of DNase1. The

cell suspension was filtered through a 22-microm strainer to eliminate

as many cell aggregations as possible. Neurons were seeded on 100 mg/
ml poly-L-lysine coated 6-well plates at a density of 3 × 106 cells/per

well, and then incubated with a neurobasal medium (Gibco, NY, USA)

containing 2% B27 supplement (Gibco, NY, USA), 0.5-mM L-

glutamine (Gibco, NY, USA), and 50 U/ml of penicillin-

streptomycin (Gibco, NY, USA). The entire culture medium was

changed after 8 h, and half of the medium was renewed every 2-3

days. The cortical neurons cultured on days 7-9 at 37°C and 5% CO2

were utilized for further analysis. This work was authorized by the

Institutional Animal Care and Use Committee of Fujian Medical

University and conducted in accordance with the Guidelines for the

Care and Use of Laboratory Animals.
The preparation of Ab1-42 oligomer and
establishment of an in vitro model of AD

Ab 1 - 4 2 w a s i n i t i a l l y d i s s o l v e d i n p r e - c o o l e d

hexafluoroisopropanol (HFIP) to a concentration of 1mmol/L.

After sonication, incubation at room temperature, and

lyophilization, the obtained Ab1-42 peptide membrane was re-

dissolved in dimethyl sulfoxide (DMSO) (Gibco, NY, USA) and

the F-12 medium (Gibco, NY, USA) was added to the A1-42 peptide

membrane and then incubated overnight at 4°C to sustain oligomeric

conditions. To simulate the in vitro model of AD, primary cortical

neurons (DIV 7-8) grown in 6-well plates were treated with 20 umol/

L Ab1-42 oligomer for 12 hours at 37°C. Subsequently, the culture

medium was replaced with standard neurobasal medium, and the

cells were cultured in a 37°C incubator with 5% CO2.
Real-time RT-PCR analysis

The TRIzol reagent (ThermoFisher Scientific, MA, USA)

was utilized to extract total RNA from primary cortical neurons

grown in 6-well plates for 7-8 days according to the manufacturer’s

instructions. Then, the RevertAid First Strand cDNA Synthesis

Kit (Thermo Fisher Scientific, MA, USA) was used to reverse the
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total RNA into complementary DNA (cDNA). The primers employed

for RT-PCR analysis were as follows: GLRX: forward, 5′- TGTG

AACTGCAAGATTCAGTCTG′, reverse, 5′-TGTTGTAAATA
ATCTTGAATCGCAT-3’; MEF2C: forward, 5′-AGATATT

GATCTAATGATCAGCAGG-3′, reverse, 5′- TGTCACACCAGGA

GACATACTATTC-3’; PSMA5: forward, 5′-ATGTCTAGCTGTGGA
GAAGAGAATT-3′, reverse, 5′- TTGTCTCATTATAGGTGAAC

CAGTG-3′; NR4A1: forward, 5′-GCTTCTTCAAGCGCACAGTAC-
3′, reverse, 5′-GAATGAGGGACGTGAGGAGATT-3′; SEC61G:
forward, 5′-TGGATCAGGTAATGCAGTTTGT-3′, reverse, 5′- GT

TATTAATAGGGATGTGGATCAGT-3′; RGS1: forward, 5′-TG
GAATGGACATGAAAGCATATC-3 ′ , reverse , 5 ′-TGT

TCTCTTCACTGAATTCAGACTT-3′; CEBPB: forward, 5′-CA
CGCTGCGGAACTTGTT-3 ′ , r everse , 5 ′ -TGATCCGG

ATTGCATCAAGT-3′. The qRT-PCR was conducted using a

SYBR® Premix Ex Taq™ II (Takara, Shiga, Japan) in an ABI 7500

Real-Time PCR system (Applied Biosystems, CA, USA). The quantity

of mRNA was estimated using cycle threshold (CT) values that were

normalized against the amount of rat b-actin mRNA. DCT was

calculated by subtracting the CT value of the b-actin from the CT

value of respective target gene. Further calculation was conducted using

the2-DDCT method, and the results were characterized as a relative

increase in mRNA expression compared to control values.
Other statistical analysis

All statistical analyses and visualizations were conducted

utilizing the R 4.1.0 software.

Continuous variables were visualized as means ± standard

deviations (SD), and Counts or percentages (%) were employed to

summarize categorical variables. The chi‐square test was utilized to

compare the frequencies to categorical variables. TheWilcoxon sum-

rank test or t-test was applied for comparing the difference of

continuous variables between two groups. The ROC curve analysis

was performed to evaluating the performance of binary categorical

variables. A two-sided p-value less than 0.05 was considered to be

statistically significant.
Results

CRD-based single-cell transcription atlas in
AD immune microenvironment

To clarify the processes underlying CRD during AD, we initially

re-analyzed a previously published scRNA-seq dataset

(GSE181279) that included 2 normal and 3 AD peripheral blood

samples using the Seurat approach. The flowchart of this study was

shown in Figure 1. After quality control filtering, a total of 18400

unique genes were obtained from 36725 cells originating from five

samples (Figure 2A). After normalizing gene expression, we

performed the PCA and clustered cells using UMAP‐based

clustering on the informative PCA space (n = 15), and a total of

12 distinct cell clusters were determined on the basis of highly
frontiersin.org
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variable genes (Figure S1A). These cell clusters were classified into

recognized cell types based on multiple cell markers: CD4+ T cells

(18929 cells), CD8+ T cells (8577 cells), NK cells (4113 cells), B cells

(4535 cells), myeloid cells (457 cells), and megakaryocyte (114 cells)

(Figures 2B, C). Among them, approximately 14013 cells belonged

to control samples, while 22712 cells originated from AD patients

(Figure S1B). The proportions of distinct cell types in each sample

are depicted in Figure 2D, revealing that CD4+ T cells, CD8+ T cells,

B cells, and megakaryocyte were abundant in AD patients.

Figure 2E exhibits the expression landscapes of the top 20 feature

genes in each cell subtype, indicating that these unique markers

could differentiate cell subtypes precisely.

Next, we crossed 2091 CRGs with 1098 AD-related DEGs and

finally determined 201 differentially expressed CRGs. On the basis

of the STRING database, we performed interaction analysis to

predict the relationships among these 201 CRGs and identified

corresponding subnetworks or neighborhoods based on functional

annotation analysis. Pathway enrichment analysis revealed that

these differentially expressed CRGs primarily affect the cytokine-

cytokine receptor interaction, cAMP signaling pathway, FoxO

signaling pathway, circadian rhythm, antigen processing and

presentation, and protein processing in endoplasmic reticulum

(Figure 2F). It was reported that circadian rhythm disruption is

closely related to the pathogenesis of AD (6, 27, 28). While the

underlying mechanisms remain largely unknown. Therefore, we

subsequently focused on the relationship between cells of AD

sample origin and CRD. A scoring algorithm was employed to

quantify the CRscore in AD cells. As shown in Figure 2G and Figure

S1C, CRscore was significantly greater in the various clusters

(clusters 1, 2, 3, 4, and 5). Obviously, B cells exhibited a higher

degree of CRscore, that is, a rather stronger CR, compared with the

other cell subtypes. In addition, the AD cells were classified into

high- and low CR groups in terms of CRscore (Figure S1D).

Meanwhile, 9 cyclin-related genes (CCNC, CCND2, CCND3,

CCNH, CCNI, CCNK, CCNL1, CCNL2, and CCNT1) were
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significantly upregulated in low-CR AD cells (Figure S1E),

suggesting cell cycle activation was significant in low-CR group.
CRscore-based B cell subsets revealed by
scRNA-seq in AD

To generate a comprehensive transcriptional atlas of B cells in AD,

we extracted 2811 B cells originating fromAD samples for further sub-

clustering analysis, and a total of 7 distinct cell clusters were finally

identified (Figure 3A). These cell clusters were further subdivided into

four B-cell subgroups, including naive B cells (1384 cells), memory B

cells (873 cells), interferon-stimulated genes (ISG+) B cells (230 cells),

and germinal center (GC) B cells (300 cells) (Figure 3B). The average

number and cell proportion of B cell subsets showed a considerable

difference between low- and high-CR groups (Figure 3C). Figure 3D

displays the expression landscapes of the top 30 signature genes and

marker genes in each cell type, indicating a significantly distinct

expression among these four B-cell subgroups. It was observed that

the expression of antigen presenting and surface markers, apart from

protein export and MMPs, was significantly greater in the high-CR

group relative to the low-CR group, while the low-CR group exhibited

a notable higher expression of proinflammatory and chemokine

receptors (Figure 3E). CellPhoneDB-based cell-cell commination

analysis revealed that GC B cells in the high-CR group frequently

interacted with naive B cells, memory B cells, and ISG+ B cells through

several ligand-receptor pairs such as CD40LG_CD40 and

CD70_CD27. Meanwhile, memory B cells in the high-CR group

could also interact with GC B cells through HLA-F_LILRB1,

CD70_CD27, and APP_SORL1 (Figure 3F). Furthermore, the

SCENIC analysis was conducted to determine the alterations in TFs

from low-CR to high-CR. It was found that the high-CR group

exhibited activated TFs (including NFKB2, FOS, IRF1, ATF5,

KDM5B, JUN, EGR1, RELB, MAFF, TAF7, FLI1, BHLHE40, REST,

CHD2, ETS1, JUND, FOSB, JUNB, BCLAF1, ETV5, IRF4, RAD21,
FIGURE 1

The flowchart of this study. *p < 0.05.
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KLF12, HCFC1, IKZF1, MYC, XBP1, BRF1, YY1, SREBF1, ELF1,

KLF6, and IRF8) and inhibited TFs (including BHLHE41 and E2F6)

(Figure 3G), suggesting that CRD is closely associated with TF

dysregulation in AD patients.

To estimate the differences in biological functions between AD

patients with different levels of CR, we performed GSVA and

detected that the metabolic process, mitochondrial electron

transport, ribosome assembly, ubiquitin protein ligase activity, and

negative regulation of cell division were the enriched signatures in

high-CR group (Figure 3H). Further comparison using metabolic
Frontiers in Immunology 07
pathway enrichment analysis demonstrated that the metabolic

processes associated with ascorbate and aldarate, glycosphingolipid

biosynthesis, other glycan degradation, tryptophan, b-alanine,
glycerophospholipid, pentose phosphate, and glutamate were

prominently upregulated in the high-CR group (Figure S2A). The

pseudotime analysis depicted the temporal sequence of distinct B

cells differentiation. Naive B cells were mainly localized at the start of

the differentiation pathway, while GC B cells were prevalent at the

end (Figure 3I). These findings revealed that naive B cells could

convert into GC B cells. During this process, surface markers,
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FIGURE 2

Overview of CRD heterogeneity in AD peripheral blood samples. (A, B) Sample distribution (A) and cell type annotations (B) by using the uniform
manifold approximation and projection (UMAP) plot of 36725 cells. (C) Violin plot of marker genes for distinct cell types. Color scale represents the
median expression of marker genes in each cell type, and the violin size indicates the fraction of cells expressing the marker genes inside each cell
cluster. (D) Bar plots exhibit the proportion of 6 main cell types across different samples (left panel), as well as the total cell number in each cell type
(right panel). (E) The heat map exhibits the expression profiles of the top 20 feature genes in each cell type. Red color represents up-regulation, and
blue color represents down-regulation. Highly expressed marker genes of each cell type are annotated. (F) Gene interaction networks of the
differentially expressed CRGs from ScRNA-seq analysis are constructed using the STRING database. Subnetworks (Neighborhoods) are colored and
labeled with enriched functional categories. Gray and red lines represent connections within a neighborhood and between neighborhoods,
respectively. (G) A global landscape of CRscore in AD samples was displayed using the UMAP plot.
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chemokine receptors, and protein export related genes, were

observed to be considerably altered (Figure S2B).
CRscore-based CD4+ T cells exhibit
distinct molecular characteristics in AD

As we were aware, AD patients exhibited higher proportions of

CD4+ T cells. In the current study, the presence of CRscore-based

CD4+ T cells in AD patients encouraged us to explore their subtype

status. Six distinct subgroups in the AD CD4+ T cell cluster were

determined on basis of UMAP analysis (Figure 4A). Previously

known markers, including ANXA1, ANXA2, CCR7, LEF1, TCF7,

SELL, CCL5, GZMK, and GZMA could accurately subdivide CD4+

T cells into three subgroups, including CD4_C01_ANXA1 (5318

cells), CD4_C02_CCR7 (5645 cells), and CD4_C03_CCL5 (1148

cells) (Figure 4B). The corresponding abundances for each cluster

between low- and high-CR groups were discrepant (Figure 4C).

Here, subpopulation marker genes and the top thirty differentially

expressed genes for each cluster are depicted in Figure 4D. For CD4

+T cells, CD4_C01_ANXA1 was assigned to central memory CD4+

T cells, which were characterized by the expression of ANXA1 and

ANXA2; CD4_C02_CCR7 with high expression of naive markers

(CCR7, SELL, TCF7, and LEF1) represented naive CD4+T cells.

Meanwhile, CD4_C03_CCL5 exhibited increased expression of

cytotoxic effectors (GZMK, GZMA, and CCL5) revealing that

they were closely related to cytotoxic effector CD4+ T cells.
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We next compared the cell-cell interactions of CD4+ T cell

subgroups between groups using CellPhoneDB. It was found that

multiple l igand-receptor pairs , including APP_CD74,

COPA_CD74, MIF_CD74, and SIRPG_CD47, were active in the

low-CR group from CD4_C01_ANXA1 and CD4_C02_CCR7

cells to CD4_C03_CCL5 cells (Figure 4E). In addition, the

PROGENy analysis revealed that the low-CR group showed

significant upregulation in 11 out of 14 classic disease

progression-related pathways (Figure 4F), suggesting that low

levels of CRscore in CD4+ T cells seem to be more closely

related to AD progression. Notably, the increased expression of

most genes associated with antigen presentation (HLA-A, HLA-B,

HLA-DPA1, HLA-DQA1, HLA-DQB1, HLA-DQB2, MICA, and

MICB), surface markers (MS4A1, CD22, CD52, CD74, CD83,

CD63, TNFRSF17, TNFRSF18, and SEC61B), chemokine

receptors (IL4R, CXCR4, CXCR5, CCR6, and CCR10), and

protein export (SEC61B, SPCS2, SPCS3, and SEC11C) were

observed in low-CR group (Figure 4G).

Meanwhile, GSVA revealed that the low-CR group was

predominantly involved in weakening circadian rhythm, cellular

homeostasis, macrophage migration, RNA migration, and toll like

receptor2 signaling pathway (Figure S3A). Subsequently, we

further comprehensively assessed the differences in metabolic

pathways between CD4+ T cells with different levels of CRscore.

We observed that 44 out of 85 metabolic pathways were notably

different between low- and high-CR groups. Interestingly, CD4+ T

cells with a low CRscore enriched in a larger number of metabolic
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FIGURE 3

CRD altered the features of B cells. (A, B) UMAP visualization of 2811 B cells from AD samples, colored by cell clusters (A) and cell subtypes (B). (C) The
proportion of 4 B cell subtypes in the low- and high-CR groups and the total cell number in each B cell subtype (right panel) are exhibited using bar plots.
(D) Heatmap exhibits the expression profiles of the top 30 feature genes in each B cell subtype. Red color and blue color represent up-regulated and down-
regulated genes, respectively. The highly expressed marker genes of each B cell subtype are annotated. (E) Heatmap displaying the expression profiles of
genes associated with antigen presentation, surface markers, protein export, chemokine receptors, pro-inflammatory and MMPs in B cells with low- and
high-CRscore. (F) Dot plot shows the intercellular interactions between low- and high-CR B cells in AD patients. (G) Heatmap indicates the significantly
expressed TFs between low- and high-CR B cells in AD patients. (H) GSVA exhibits the abundant biological functions between low- and high-CR B cells in
AD patients. The higher the t value, the more significant the biological functions. (I) Trajectory analysis reveals the differentiation process of B cells.
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pathways and genes (Figures 4H, I). We further performed the

SCENIC analysis to estimate the upstream TFs for CRD during the

differentiation of CD4+ T cells. The results revealed that the

responsible TFs in the low-CR group were CR1D1, RELB,

PRDM1, CREM, RORC, KLF10, NR3C1, BHLHE40, FOSB,

NFKB2, ATF3, CEBPD, JUN, DDIT3, ELF1, IRF1, JUNB, FLI1,

ETV7, YY1, FOS, STAT1, JUND, KLF6, and SPIB. As the

modulators of cAMP responsive element, JUNB and CREM

have been reported to suppress the functions of CD4+

regulatory T cells (29, 30) (Figure 4J). To confirm that the

population of CD4+ T cells consisted of groupings of cells

positioned in distinct stages along the course of differentiation,

we cross-validated our findings using the Monocle 3 approach. As

a result, we found that the differentiation state began to alter

around the CD4_C02_CCR7 cluster, while the CD4_C03_CCL5

was located at the terminal of developmental stage (Figure 4K).

On the basis of the starting stage of the differentiation, several

surface markers (CR2, CD63, CD40, CD37, CD27, and CD38) and

CCR7 were decreased, whereas other surface markers (MS4A1,

CD63, and TNFRSF18), chemokine receptors (CXCR4, CXCR5,

and CCR6), and protein export genes (SEC61B, SPCS1, SPCS2,

and SPCS3) were increased along the course of differentiation

(Figure S3B).
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CRscore-based CD8+ T cells display
dysregulation in signaling, intercellular
communications, and differentiation
during AD

For elucidating the heterogeneity among CD8+ T cells, 5250

CD8+ T cells were re-clustered into 7 clusters using UMAP analysis

(Figure 5A), which were further grouped into CD8_C01_CCR7

(naive cells, 301 cells), CD8_C02_GNLY (TEMRA cells, 3168 cells),

CD8_C03_GZMK (cytotoxic effector cells, 585 cells), and

CD8_C04_SLC4A10 (MAIT cells, 1050 cells) (Figure 5B).

Compared to samples from the high-CR group, the number and

proportions of these four subtypes decreased in the low-CR group

(Figure 5C). Figure 5D depicts the top 30 differentially expressed

genes for each cluster. Cell-cell interactions analysis of CD8+ T cells

subsets between low-CR and high-CR groups suggested that the

low-CR group displayed the increased activity of APP_CD74,

APP_SORL1, COPA_CD74, HLA-E_KLRC1, LGALS9_SORL1,

SELL_SELPLG, TNFSF10_RIPK1, and TYROBP_CD44 ligand-

receptor pairs from CD8_C01_CCR7 cells to the rest of CD8+ T

cell subtypes. In addition, the enrichment of CCL4L2_PGRMC2,

CD58_CD2, TNFSF12_TNFRSF25, and TNFSF14_TNFRSF14 in

low-CR group proved the potential role of CD8_C04_SLC4A10 in
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FIGURE 4

CRD-mediated CD4+ T cell subtypes impact AD molecular functions. (A, B) UMAP visualization of CD4+ T cells from AD samples, colored by cell
clusters (A) and cell subtypes (B). (C) The proportion of each defined CD4+ T cell subtype across low- and high-CR groups (left panel) and the total
cell number in each CD4+ T cell subtype (right panel) are exhibited using bar plots. (D) Heatmap exhibits the expression profiles of the top 30
feature genes in each CD4+ T cell subtype. Red color and blue color represent up-regulated and down-regulated genes, respectively. (E) Dot plot
shows differential cell-cell interactions between low- and high-CR CD4+ T cells in AD samples. (F) Heatmap displays differences in the activity of 14
classic pathological pathways between low- and high-CR CD4+ T cells in AD samples. (G) Heatmap displays the expression profiles of genes
associated with antigen presentation, surface markers, protein export, chemokine receptors, pro-inflammatory and MMPs in CD4+ T cells with low-
and high-CRscore. (H–J) Heatmap exhibits significantly different metabolic pathways (H) and genes (I), as well as TFs (J). (K) Trajectory analysis
reveals the differentiation process of CD4+ T cells.
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recruiting the other three subsets of CD8+ T cells (Figure 5E).

Moreover, the PROGENy analysis demonstrated that the classical

pathogenic pathways, including NFkB, TNFa, androgen, EGFR,
p53, hypoxia, MAPK, and TGFb were significantly enriched in the

low-CR group, whereas high-CR group was close associated with

the activation of PI3K, WNT, estrogen, JAK-STAT, and VEGF

signaling pathways (Figure 5F). Furthermore, the expression of

most marker genes associated with antigen presentation, surface

markers, chemokine receptors, proinflammatory, and MMPS, was

reinforced in the low-CR group, except for protein export

genes (Figure 5G).

To better elucidate the differences in molecular characteristics

between these two groups, we performed GSVA and found the high-

CR group exhibited the increment of immune response, immune cell

differentiation, mitochondrial electron transport, and neuro-

inflammatory response, whereas the low-CR group was mainly

regulated by neuron apoptotic process, the activation of neutrophil,

mast cells, and myeloid cells, and the lipoxygenase pathway (Figure

S4A). Enrichment analysis of 85metabolic pathways further revealed

that 27 of themwere substantially distinct between the low- and high-

CR groups, with 13 metabolic pathways being activated in the high-

CR group and the other 14 metabolic pathways being repressed in
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the low-CR group (Figure 5H). Consistently, the low-CR group

also concentrated on more metabolic genes (Figure 5I).

The SCENIC analysis was conducted to detect the differences

in TFs between groups. It was found that 24 of the 45 dysregulated

TFs were enriched in the low-CR group, including FOS, FOSB,

IFR1, GFI1, E2F4, SMARCB1, SAP30, ERF, ZNF362, RUNX1,

E2F3, IRF9, IKZF1, TBX19, ETV1, JUNB, JUN, TCF3, TP53,

SMARCA4, TBX21, ELF4, KLF2, and ETV1 (Figure 5J).

Subsequently, in the diffusion map pseudotime, CD8_C01_CCR7

cells were mainly located in the most undifferentiated status, the

CD8_C02_GNLY, and CD8_C03_GZMK cells were located in a

distinct downstream trajectory of the CD8_C01_CCR7 cluster, and

the CD8_C04_SLC4A10 was located in the final differentiation stage

(Figure 5K). Significant differences in gene expression distribution

patterns were observed during the differentiation of CD8+ T cell

subpopulations. For example, the surface marker CD27 and

chemokine receptors (CXCR5 and CCR6, and CCR7) were

prominently expressed in the undifferentiated status during the

pseudotime process, while other surface markers (CD52, CD40,

CD37, CD38, CD63, and TNFRSF18) and protein export markers

(SEC61B, SPCS1, SPCS2, and SPCS3) were curtailed along the stage

of CD8+ T cell differentiation (Figure S4B).
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FIGURE 5

CRscore-based CD8+ T cells. (A, B) UMAP visualization of CD8+ T cells from AD samples, Distinct cell clusters (A) and cell types (B) are labeled with
different colors. (C) Represent bar plots depict the proportion of each defined CD8+ T cell subtype across low- and high-CR groups (left panel) and
the total cell number in each CD8+ T cell subtype (right panel). (D) Represent heatmap depicts the expression landscapes of top 30 feature genes in
each CD8+ T cell subtype. Red color and blue color represent up-regulated and down-regulated genes, respectively. (E) Represent dot plot depicts
differential intercellular communications between low- and high-CR CD4+ T cells in AD samples. (F) Represent heatmap displays difference in the
activity of 14 classic pathological pathways between low- and high-CR CD8+ T cells in AD samples. (G) Represent heatmap exhibits the expression
landscapes of genes associated with antigen presentation, surface markers, protein export, chemokine receptors, proinflammatory and MMPs in
CD8+ T cells with low- and high-CRscore. (H–J) Represent heatmap displays notably different metabolic pathways (H) and genes (I), as well as TFs
(J). (K) Trajectory analysis reveals the differentiation process of CD4+ T cells.
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Verification of the effectiveness and
robustness of CRscore based on bulk
transcriptomic datasets

Due to the insufficient samples involving the scRNA-seq

dataset, we therefore collected several independent gene

expression datasets related to AD to verify the performance of
Frontiers in Immunology 11
CRscore. In the GSE106241 dataset, we classified a total of 60 AD

samples into low- and high-CR groups based on their median value

of CRscore. The heatmap displayed the expression patterns of 1387

up-regulated and 1217 down-regulated DEGs between the low- and

high-CR groups (Figure 6A). In these cases, samples with a high-CR

had a significantly higher CRscore than those from the low-CR

group (Figure 6B). More AD patients in advanced stages (p < 0.05)
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FIGURE 6

The clinical characteristics and predictive drugs of CRD groups in bulk transcriptomic datasets. (A) Representative heatmap depicts the expression
landscapes of differentially expressed genes between AD patients with low- and high-CR in GSE106241. (B) The CRscore of low- and high-CR patients
are compared in GSE106241. (C) Pie charts depict the differences in clinical characteristics (age, gender, and stage) between AD patients with low- and
high-CR in GSE106241. (D–G) Representative violin plots depict the differences in AD pathological hallmarks (Ab42, a-secretase, b-secretase, and g-
secretase) between AD patients with low- and high-CR in GSE106241. (H) Representative heatmap depicts the differences in 14 classic pathological
pathways between AD patients with low- and high-CR in GSE106241. (I) Representative heatmap depicts the expression landscapes of differentially
expressed genes between AD patients with low- and high-CR in the combined datasets of GSE84422 and GSE48350. (J) The CRscore of low- and
high-CR patients are compared in GSE84422 and GSE48350. (K) Pie charts depict the differences in clinical characteristics (age, gender, and stage)
between AD patients with low- and high-CR in GSE84422 and GSE48350. (L) Representative heatmap depicts the differences in 14 classic pathological
pathways between AD patients with low- and high-CR in GSE84422 and GSE48350. (M, N) CMap study depicts the top five predictive drugs for patients
with low- (M) and high-CR (N) in GSE84422 and GSE48350. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1182307
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2023.1182307
were observed in the low-CR group, while the distribution of age

and gender was not statistically different (Figure 6C). In addition,

relative to the high-CR group, the CRscore of the low-CR group

exhibited increased activity of several typical AD-related

pathological markers, including Ab42, a-secretase, b-secretase,
and g-secretase (Figures 6D–G). Furthermore, among the 12

classical pathogenic pathways, the low-CR group was mainly

responsible for the activation of TGFb, JAK-STAT, p53, VEGF,
TNFa, androgen, NFkB, and EGFR signaling pathways (Figure 6H).

In the combined datasets of GSE84422 and GSE48350, 154 AD

brain samples were divided into 77 low-CR and 77 high-CR groups

in terms of CRscore, which exhibited notably distinct gene

expression patterns and CRscore distribution between the two

groups (Figures 6I, J). Consistently, the proportion of patients

who belonged to stage V+VI was also higher in the low-CR group

than that in the high-CR group (p < 0.05) (Figure 6K). Additionally,

the activation of pathogenic pathways similar to those in the

GSE106241 dataset can also be observed in the low-risk group of

the combined dataset (Figure 6L). These findings indicated that the

CRscore algorithm, which is based on the differentially expressed

circadian gene feature, can accurately define the CR activity of AD

patients in bulk transcriptome datasets.

Using the CMap database, we investigated prospective

therapeutic drugs for low- and high-CR patients in order to

evaluate individualized clinical treatments for AD patients. X4-5-

dianilinophthalimide, fasudil, PHA-00816795, TTNPB, and MK-

886 were the top five medicines with personalized therapeutic

potential for the low-CR group (Figure 6M). While the RRNPB,

NU-1025, arachidonyltrifluoromethane, exisulind, and MS-275

were the five most effective treatment medications for AD

patients with a high CRscore (Figure 6N). Specifically, MK-866
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and MS-275 had the lowest CMap scores in the low- and high-CR

groups, respectively, showing the greatest treatment benefit in AD

patients with varying CRscore.
CRD involves the alterations in the immune
microenvironment of AD

We then evaluated the association between CRD level and

immune cell infiltration using the ssGSEA, MCPcounter, xCell,

ABIS, and ESTIMATE algorithms in AD samples of the combined

dataset, and found that the infiltration levels of immune cell subsets

were significantly greater in patients with low-CR than those with

high CRscore, as evidenced by the fact that the majority of immune

cells based on the ssGSEA, MCPcounter, xCell, and ABIS

algorithms were notably enriched in the low-scoring group

(Figure 7A). Meanwhile, several immune chemokines, including

CCL5 and CCL20, were elevated in the low-CR condition and were

verified to perform critical roles in the accumulation of regulatory T

cells. In addition, a generally elevated MHC-I, MHC-II,

immunoinhibitor, immunostimulator, chemokine, and chemokine

receptor was observed in low-CR patients, whereas the expression

levels of HLA-DOB, KIR2DL1, PVR, CXCL14, CXCL12, CX3CL1,

and CCL1 were higher in high-CR samples (Figure 7B). On the

other hand, the level of immune score was pronouncedly enriched

in patients with a low CRscore (Figure 7C). As demonstrated by the

ssGSEA algorithm, a negative association occurred between the

CRscore and the abundance of a majority of infiltrated immune

cells, including NK cells, dendritic cells, CD8+ T cells, CD8+ T cells,

B cells, macrophages, neutrophils, Th17, Treg, and Th1 cells

(Figure 7D). The other dataset, GSE106241 was employed to
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FIGURE 7

The immunological characteristics of AD patients with low- and high-CR in the combined datasets. (A) Heatmap exhibits the expression landscapes of
infiltrated immune cells between AD patients with low- and high-CR based on the ssGSEA, MCPcounter, xCell, ABIS, and ESTIMATE algorithms. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001. (B) Heatmap exhibits the expression landscapes of immunoregulatory genes between AD patients with low- and
high-CR. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) The immunological score of low- and high-CR patients are compared. (D) Lollipop plots
depict the correlation between the CRscore and 28 immune cell subpopulations.
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validate the association between the CRscore and immunological

characteristics in patients with AD. Similarly, low-CR patients also

had higher levels of immune cell infiltration and immune response.

These results revealed that CRD can induce a remodel of the

immune microenvironment in AD patients, providing additional

support for the observations made at the single‐cell level (Figures

S5A–D).
Integrative construction of a characteristic
CRD signature

To further screen for characteristic CR regulators associated with

AD, these differentially expressed 201 CRGs in single-cell dataset were

first fitted into our machine learning-based integrative model to

establish a consensus CRD signature. A total of 110 kinds of

prediction models in the GSE63060 were performed via 10-fold

cross-validation, and the AUC value of each model across all

validation datasets, including the GSE140829, GSE33000, GSE36980,

and GSE122063, was calculated. It is worth noting that the

combination of RF+Lasso was identified as the optimal model with

the highest average AUC value (0.753). Furthermore, this combined

model also exhibited a relatively high AUC value in all validation

datasets (Figure 8A). Based on the expression landscapes of 201

differentially expressed CRGs, the Boruta algorithm identified 27

important CRGs in GSE5281. Subsequently, these 27 CRGs were

fitted into the Lasso model based on their expression data, and the

optimal lambda value of 0.0222 was proved to achieve the minimum

partial likelihood deviance based on the 10-fold cross-validation

(Figures 8B, C). Finally, the Lasso-based machine learning model

identified a set of 9 characteristic CRD signatures with non-zero

coefficients (Figure 8D).

Next, utilizing the expression of 9 characteristic CRGs weighted

by their coefficients in the Lasso model, a riskScore was calculated

for each patient. Six external datasets were employed to compare

the diagnostic efficacy of riskScore with other clinical variables (age

and gender) in predicting AD progression. It was found that the

riskScore displayed notably superior accuracy to other clinical

characteristics, including age and gender in GSE5281, GSE33000,

GSE122063 and GSE140829 (GSE5281: AUC=0.960, GSE28146:

AUC=0.727, GSE33000: AUC=0.917, GSE122063: AUC=0.781,

GSE140829: AUC=0.769, and GSE36890: AUC=0.718)

(Figures 8E–J). These results led us to infer that the 9 CRGs-

based riskScore may provide novel insights into the initial diagnosis

of AD.
Validation in pan-cancer cohorts and
cortical neurons

To further validate the performance of the characteristic CRGs

constituting the riskScore, we next explore the expression levels of

these CRGs between the 20 cancer types and the corresponding

adjacent normal tissues. The results demonstrated that MEF2C,

NR4A1, and MAST4 were significantly downregulated in most of

the tumors, while almost all tumors notably expressed PSMA5,
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SEC61G, RGS1, CEBPB, and H2AFV (Figure 9A). In addition, we

aimed to illustrate the correlation between these 9 characteristic

CRGs and the prognosis of 33 types of cancer. It was found that all

of these genes displayed a considerable correlation with overall

survival in at least three cancer types. In particular, H2AFV,

CEBPB, SEC61G, GLRX, and PSMA5 exhibited dramatically

worse overall survival in multiple cancers, which was consistent

with their high expression in a variety of cancer tissues (Figure 9B).

Additionally, RT-PCR analysis revealed that the expression levels of

GLRX, MEF2C, PSMA5, NR4A1, and SEC61G were notably

decreased in AD cortical neurons, while RGS1 and CEBPB genes

were significantly greater in AD group relative to control

sample (Figure 9C).
Discussion

The current investigation found that the CR activity of B and T

cells in individual AD patients differed significantly from the other

immune cell types, lending credence to the idea that AD

development is frequently accompanied with d less-robust

circadian rhythms. B and T cells were shown to be involved in

the immunological responses to AD and are strongly associated to

the progression of AD (31–33), while the potential mechanisms

have not been thoroughly explored. We first revealed the differences

in the molecular properties of distinct levels of CR in B- and T-cell

subtypes. Accordingly, we further evaluated the intercellular

contacts between CRD-associated immune cell subtypes and AD

cells at the single-cell level. This novel perspective allows us to

comprehend how CRD in the cellular components of different AD

immune microenvironments affects the outcome of individual

AD patients.

Second, previous research reported that the progression of AD is

inevitable and that infiltrating B cells in the brain parenchyma may

lead to immunoglobulin deposition around Ab plaques, thus favoring
this process (31). Correspondingly, we found the CRscore was

markedly higher in the B cells of patients with AD. It is worth

noting that a total of four B cell subtypes in AD patients were

observed in this study, all of which exhibited varying degrees of CR

activity. In addition, we found that B cells with high-CR seemed to

involve OXPHOS activity, together with microenvironment

metabolism involving ascorbate, glycosphingolipid biosynthesis,

tryptophan, b-Alanine, glycerophospholipid, pentose phosphate

pathway, and glutamate, which play a critical role in promoting

mitochondrial turnover and sustaining higher energetic activity,

thereby facilitating the maintenance of mitochondria quality control

in neurons (34, 35). However, low-CR B cells were mainly enriched in

immune responses and calcium ion transport, accompanied by up-

regulated pro-inflammatory genes and chemokine receptors.

Furthermore, cellphone analysis exhibited that most ligand-receptor

pairs, including BST2_LILRA4, CCL4_CNR2, GRN_TNFRSF1A,

GRN_TNFRSFA1B, HLA-F_LILRB1 , LGALS9_CD44 ,

LGALS9_SLC1A5, and F10_TNFRSF10A communicated frequently

in low-CR B cells. The increased chemokine CCL4 and GRN

mutations were found to closely associated with AD pathology (36,

37), suggesting a poor prognosis in AD patients. Additionally, the
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pseudotime analysis demonstrated that the CRD is involved in the

transformation of naive B cells into GC B cells, thus resulting in the

progression of AD. Our results on the molecular differences in B-cell

subtypes at different CR activity may illustrate, at least in part, the

heterogeneity of AD, emphasizing the significance of additional

research into the roles and tracer systems of CRD-based B-

cell subtypes.

As the primary immune cells in the adaptive immune system, T

cells are frequently dysfunctional in Alzheimer’s disease (AD) and

are invo lved in AD patho logy v ia cont r ibu t ing to

neuroinflammation (38). It is demonstrated that AD patients and

mouse models exhibit a greater number of CD4+ and CD8+ T cells

relative to normal individuals, indicating an activated immune

response (39, 40). Meanwhile, the heterogeneity of T cells in AD

reveals patient responsiveness to treatment and influences
Frontiers in Immunology 14
prognosis (41–43). To date, few studies have thoroughly explored

the specific T cell subtypes in the AD immune microenvironment,

as well as the potential role of CRD in T cells. In our study, we

consistently found a higher proportion of CD4+ and CD8+ T cells.

Further subtype analysis revealed three subgroups in CD4+ T cells,

inc lud ing CD4_C01_ANXA1 , CD4_C02_CCR7 , and

CD4_C03_CCL5. While we could classify CD8+ T cells into

CD8_C01_CCR7, CD8_C02_GNLY, CD8_C03_GZMK, and

CD8_C04_SLC4A10, all of which displayed distinct expression

patterns. Interestingly, we identified that the CD4+ and CD8+ T

cells in the low-CR group all had an elevated expression of antigen

presentation and chemokine receptors. In addition, classical

pathogenic pathways analysis indicated the involvement of low-

CR CD4+ and CD8+ T cells in NFkB, TNFa, p53, MAPK, and

hypoxia associated signaling pathways, while the high-CR group
B C
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FIGURE 8

A characteristic CRD signature was constructed and validated based on the machine learning-based integrative model. (A) A total of 113 kinds of
prediction models were evaluated via 10-fold cross-validation framework, and the AUC value of each model across all validation datasets was further
calculated. (B, C) Selection of optimal l for the Lasso model based on 10-fold cross-validation and generation of Lasso coefficients of the predicted
CRGs in GSE5281. (D) The specific coefficients of 9 CRGs finally obtained by the optimal lambda value in the Lasso model. (E–J) ROC curves depict
the performances of riskScore, age, and gender in predicting the initiation of AD in six representative validation datasets.
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were mainly regulated by metabolic-related processes. It is well

known that these activated pathways could promote AD

development (44–48). Therefore, these results explain, at least in

part, that low-CR activity CD4+ and CD8+ T cells can collectively

contribute to the pathology of AD by mediating the activation of

these pathogenic pathways. Further trajectory analysis indicated

effector CD4+ and CD8+ T cells might be generated by the naive

CD4+ and CD8+ T cells, which might be driven by CRD. It is worth

noting that compared to the high-CR group, the expression of

proinflammatory factors and MMPs, such as CXCL12, IL6, MMP9,

and MMP11, was significantly elevated in CD8+ T cells with low-

CR, while low-CR CD4+ T cells exhibited a higher expression of
Frontiers in Immunology 15
protein export factors. Additionally, CRD-mediated CD4+ and

CD8+ T cells also showed a distinct expression landscape of

metabolism-related genes, suggesting the CRD-induced T-cell

dysfunction may be subtype-specific.

To further estimate cell-specific gene regulatory networks

associated with CRD, we conducted an analysis of TFs at the single-

cell level. In general, CRD-based B cells, CD4+ T cells, andCD8+T cells

all manifest distinct TFs characteristics. For B cells, most TF gene

signatures were markedly enriched in low-CR group relative to high-

CR group, such as NF-kB, FOS, ATF5, and RELB. Previous studies

have reported the relationship between circadian rhythm-related genes

and the expression of NF-kB, FOS, ATF5, and RELB (49–52),
B

C

A

FIGURE 9

Pan-cancer and experimental validation of CRD signatures. (A) Histogram (upper panel) exhibits the number of DEGs that are up-regulated or down-
regulated, and the heatmap depicts the fold change and FDR of 9 CRD signatures in each cancer. Red and green colors represent up-regulated and
down-regulated CRD signatures, respectively. (B) Heatmap depicts the correlation between 9 CRD signatures and cancer patient survival. Red color
corresponds to a greater expression of a CRD signature associated with poorer survival, while the blue color corresponds to a better survival
association. Only p-values less than 0.05 were displayed. (C) Bar plots exhibiting the expressional differences in GLRX, MEF2C, PSMA5, NR4A1,
SEC61G, RGS1, and CEBPB between control and AD groups. *p < 0.05.
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suggesting the role of CRD in the regulation of B cells. Moreover, for

CD4+ andCD8+ T cells, we also observed distinct TF features of CRD-

mediated cell subtypes. Overall, CRD-mediated cell subgroups may

formdistinct TF regulatory networks to reconstruct and reprogram the

immune microenvironment of AD. Furthermore, cell-cell

communication analysis revealed that these CRD-mediated immune

cells exhibited a variety of ligand-receptor pairs, indicating that the

dysregulation of AD microenvironment might be partially influenced

by CRD. More effort is urgently needed to investigate the key TFs and

ligand-receptor pairs that regulate the CRD-based immune cells and

determine their function.

Considering the intricate intrinsic patterns of CRD in the

immune microenvironment of AD, we further summarized the

relationships of CRscore with pathology and immune response

from the public bulk RNA-seq AD cohorts. In addition, only a few

patients responded favorably to the treatment of AD (53–55), and

the accuracy of biomarkers or models in early diagnosis needs to be

further improved. Our current results suggest that lower CR activity

is notably associated with AD-related pathological markers and

pathogenic pathways, which have been shown to predict AD

progression. Meanwhile, CRscore at different levels also exhibited

markedly distinct immune cell infiltrating, immunomodulator

expression, and immuneScore, suggesting that AD patients with

different CR activity have distinct immune therapy responses. In

view of this, we aim to develop an integrative pipeline to construct a

characteristic CRD signature on the basis of the expression profiles

of these differentially expressed CRGs. A total of 110 kinds of

machine learning models were fitted to the training dataset via 10-

fold cross-validation, and the subsequent validations in four

independent test datasets demonstrated that the combination of

RF+Lasso was identified as the optimal model. The benefit of

integrative procedures is that they can be utilized to fit a model

with consistent performance in AD diagnosis using various machine

learning approaches and their combinations. The combination of

algorithms could further eliminate the dimensionality of variables

and makes the model more straightforward and plausible. The

constructed riskScore based on nine characteristic CRGs

demonstrated that the riskScore could maintain higher accuracy

and more stable performance than age and gender on other

independent validation datasets, suggesting that the riskScore has

great potential for clinical applications in AD diagnosis.

Finally, we performed external validation in pan-cancer cohorts

and expression experiments in cortical neurons to elucidate the

specific roles of these characteristic CRGs in disease progression. Of

note, the results suggested that all characteristic CRGs were strongly

associated with overall survival in multiple cancer types, which was

consistent with the findings that CRD is one of the causes

contributing to the development of various cancers (56–58). RT-

PCR analysis of cortical neurons revealed that the initiation of AD

was often accompanied by a dysregulation of these characteristic

CRGs, indicating that the deterioration and progression of diseases

might be partially determined by CRD.

Some limitations need to be elucidated in our study. First, since

our research was primarily based on retrospective studies, the
Frontiers in Immunology 16
robustness of our predictive model was limited. The findings of

our research should be verified in a prospective cohort of AD

patients. Second, additional clinical factors should be enrolled in the

prediction model to improve accuracy and diagnostic performance.

In addition, further experiments are needed to investigate the

potential functional mechanisms of CRD in regulating AD.
Conclusion

We, for the first time, revealed CRD-based cell subtypes in AD

microenvironment at single-cell level. Based on a variety of

bioinformat ics and machine leaning approaches , we

comprehensively illustrate the expression landscapes of circadian‐

related genes and established a reliable and powerful signature for

AD diagnosis. Our findings broaden the understanding of biological

function heterogeneity and CRD-induced remodeling of the AD

immune microenvironment. Such knowledge is critical for better

developing and improving responsiveness to AD treatment, as well

as for guiding the development of individualized therapies for

AD patients.
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