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Machine learning-based
glycolysis-associated molecular
classification reveals differences
in prognosis, TME, and
immunotherapy for colorectal
cancer patients

Zhenling Wang1,2†, Yu Shao1,2†, Hongqiang Zhang1,2†,
Yunfei Lu1,2, Yang Chen1,2, Hengyang Shen1,2,
Changzhi Huang1,2, Jingyu Wu1,2 and Zan Fu1,2*

1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
Jiangsu, China, 2The First School of Clinical Medicine, Nanjing Medical University, Nanjing,
Jiangsu, China
Background: Aerobic glycolysis is a process that metabolizes glucose under

aerobic conditions, finally producing pyruvate, lactic acid, and ATP for tumor

cells. Nevertheless, the overall significance of glycolysis-related genes in

colorectal cancer and how they affect the immune microenvironment have

not been investigated.

Methods: By combining the transcriptome and single-cell analysis, we

summarize the various expression patterns of glycolysis-related genes in

colorectal cancer. Three glycolysis-associated clusters (GAC) were identified

with distinct clinical, genomic, and tumor microenvironment (TME). By mapping

GAC to single-cell RNA sequencing analysis (scRNA-seq), we next discovered

that the immune infiltration profile of GACs was similar to that of bulk RNA

sequencing analysis (bulk RNA-seq). In order to determine the kind of GAC for

each sample, we developed the GAC predictor using markers of single cells and

GACs that were most pertinent to clinical prognostic indications. Additionally,

potential drugs for each GAC were discovered using different algorithms.

Results: GAC1 was comparable to the immune-desert type, with a low mutation

probability and a relatively general prognosis; GAC2 was more likely to be

immune-inflamed/excluded, with more immunosuppressive cells and stromal

components, which also carried the risk of the poorest prognosis; Similar to the

immune-activated type, GAC3 had a high mutation rate, more active immune

cells, and excellent therapeutic potential.
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Conclusion: In conclusion, we combined transcriptome and single-cell data to

identify new molecular subtypes using glycolysis-related genes in colorectal

cancer based on machine-learning methods, which provided therapeutic

direction for colorectal patients.
KEYWORDS

glycolysis, colorectal cancer, molecular subtypes, tumor immune infiltration, machine
learning, single-cell analysis
Introduction

Recently, reprogramming of the tumor’s energy metabolism has

emerged as one of the tumor’s hallmarks (1). Since the “Warburg

effect” was put forth, researchers have steadily investigated the

connection between tumors and glycolysis (2, 3). As is a crucial form

of the transformation of energy, glycolysis converts glucose into

pyruvate, eventually creating lactic acid and giving tumor cells

oxygen-independent energy (4). Tumor cells can still restrict energy

metabolism to glycolysis, often known as aerobic glycolysis, even in an

aerobic environment (3). By reducing cell inhibition and apoptosis,

glycolysis creates the conditions for tumor cell growth (5, 6).

Numerous intermediate products of glycolysis serve as starting

materials for the synthesis of nucleosides and amino acids, both of

which aid in the production of new cells (7). Additionally, certain

tumor cells fall into one of two subgroups: aerobic or hypoxic. The

utilization of lactate and glucose in these two subgroups’ energy

metabolisms differs from one another (8). In conclusion, glycolysis is

crucial for the energy metabolism of tumors.

Studying colorectal cancer (CRC) is important due to its high

incidence and fatality rates (9). Glycolysis is implicated in the

development of colorectal cancer, according to increasing

amounts of evidence (10). Many glycolysis-related genes,

including lactate, GLUT1, pyruvate kinase M2, glyceraldehyde-3-

phosphate dehydrogenase, enolase-1, lactate dehydrogenase 5, and

hexokinase 2, are currently discovered to be up-regulated in

colorectal cancer (11–17). Additionally, there is growing

appreciation for the function of the tumor microenvironment

(TME). Studies show that different areas of a tumor mass exhibit

metabolic heterogeneity (18). CRC cells contain both OXPHOS and

glycolysis phenotypes (19). Near the blood capillaries, the majority

of CRC cells have greater OXPHOS, whereas tumor cells farthest
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from the blood vessels exhibit a glycolysis phenotype (20). This

unexpected increase in OXPHOS is described as the “reverse

Warburg effect” (10). Meanwhile, the interaction between tumor

cells and other cells in the TME has an impact on metabolic

remodeling. Lactate is transported from CAF to CRC cells when

mono carbohydrate transporters (MCTs) are upregulated (21). A

study showed the primary enzyme of glycolysis, pyruvate kinase M

(PKM1 and PKM2), which is artificially highly expressed in stromal

cells, has the potential to encourage tumor cell proliferation and

invasion (22). While naive T cells depend on OXPHOS for energy

supply, activated T cells require glycolysis (23). All of the evidence

provided shows that glycolysis is essential for controlling the

interaction between tumor cells and TME.

Immunotherapy has gained significant traction in recent years

for the treatment of advanced solid tumors, including colorectal

cancer. Especially, Immune checkpoint inhibitors (ICIs) are

beneficial for treating patients with metastatic colorectal cancer

who have mismatch-repair-deficient (dMMR) or microsatellite

instability-high (MSI-H). Unfortunately, ICIs have not yet been

effective in CRC patients with mismatch-repair-proficient (pMMR)

or microsatellite-stable (MSS) or low microsatellite instability

(MSI-L) (24, 25). Additionally, acquired resistance has emerged as

one of the impediments to immunotherapy. Hence identifying new

CRC subtypes and screening novel treatment targets are crucial.

Targeted therapy for glycolysis has gained popularity due to the role

glycolysis plays in CRC (4). For instance, compound 2-

deoxyglucose (2-DG), a glycolysis inhibitor, can lessen cell

invasion (26). LND, another glycolysis inhibitor, can also make

chemotherapy treatments more effective and stop the growth of

several tumor cells, including CRC (10, 27). However, due to the

different functions of glycolysis in various cell types and the

heterogeneity of carbohydrate metabolism in tumor cells, targeted

medications for glycolysis are not that effective. Therefore, it is

crucial to investigate the subtypes of glycolysis in CRC to uncover

potential therapeutics. Currently, despite some studies reporting

CRC’s glycolytic signature employing several genes and long non-

coding RNAs (28, 29), there is no research focusing on the gene-

based molecular subtypes of glycolysis in CRC. In this study, we

used the unsupervised clustering method to categorize each CRC

patient using genes associated with glycolysis. The characteristics of

each glycolysis-associated cluster’s (GAC) clinical, genomics, TME,

and enrichment pathway were then addressed. We also examined

the distribution and function of each GAC-like subtype in each cell
frontiersin.org
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after mapping each GAC type to the single-cell data. Based on the

findings above, we integrated the results of single cell and bulk

RNA-seq to develop a model that predicts the GAC of each CRC

patient and verified it, whose role in treatment was also explored.
Materials and methods

Patient population and bulk RNA
expression acquisition

Five colorectal cancer data were involved in this study, including

TCGA-COAD/READ, GSE39582, GSE38832, GSE17538, and

GSE14333. Corresponding clinical features and RNA-seq data were

achieved from UCSC Xena (https://xenabrowser.net/) and the Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/).

We excluded patients with OS and DFS less than 30 to ensure

reliability in accordance with previous studies (30–32). Particularly,

we employed TCGA data as the training set and GEO data as the

verification set. For this study, we obtained the characteristic of 1603

CRCpatients, the baseline ofwhichwas shown inTable S1. Besides,we

downloaded expression profiles and clinical data from the two cohorts

(IMVigor210,GSE78220) for seeking the roleGACpredictor played in

immunotherapy. The batch effect has been removed by the

“Combat” algorithm.
Consensus clustering analysis

198 Glycolysis-related genes were acquired from the MSigDB

Team (HALLMARK_GLCOLYSIS) (Table S2). To further examine

the various expression patterns of glycolysis-related genes in CRC, we

performed consensus clustering using the k-means method with

the”ConsensusClusterPlus” package to classify individuals with CRC

(33).We set 80% sampling each time and 1000 iterations to ensure the

consistency of the clustering process. The optimal number of the

clustering was determined by the consensus heatmap and cumulative

distribution function (CDF) curves. Kaplan–Meier curves were drawn

to exhibit the prognosis of each glycolysis-associated cluster (GAC)

using “survival” and “survminer” packages (34). The same procedure

was conducted once more by using DEGs between the GACs, which

was to acquire gene clusters.
Gene set variation analysis and consensus
molecular subtype classification

Supported by the “GSVA” package, we utilized the GSVA

method to explore the differences in pathways enriched by each

cluster. Gene sets (C2.cp.kegg, C2.cp.reactome, C2.go.bp, and

hallmark gene sets) were downloaded from the MSigDB Team

v2022.1. “limma” package was used to screen significant pathways

(adjusted p-value< 0.05). The symbol pathways of each cluster were

condensed and shown as a heatmap. We performed GSVA in bulk

and single-cell level. Besides, we applied the CMScaller package to

identify each CRC patient’s CMS attribution.
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Single-sample gene set
enrichment analysis

With quantification of pathway enrichment in each patient,

ssGSEA enables the comparability of various pathways in each

sample. The “GSVA” package was utilized in the procedure. To

better reveal the clinical and CMS heterogeneity, we plotted a

heatmap to visualize the differences. Related pathways were

achieved from the “CMScaller” package. Based on Lee et al.’s

study (35), markers of 31 cell types with log2FC >0.25 were

delivered to the ssGSEA scoring system. Besides, marker genes in

Charoentong’s study were utilized (36).
Single-cell data preparation

We obtained GSE132465 for single-cell analysis. Corresponding

RNA-seq and annotation data were downloaded in the GEO

database. Clinical information of 23 CRC patients was acquired

from the original article (35). Based on the “Seurat” package, we

carried out the preliminary processing of the scRNA-seq data

following the criterion of Lee et al.’s study (genes detected in each

cell, mitochondrial gene expression). 23 tumor samples were

extracted and we further run the “Harmony” function to integrate

the scRNA-seq. The top 30 dimensions were selected while

processing the t-SNE.
Identification of GAC at single cell level

We further mapped the consensus clusters (GAC) to the scRNA-

seq to investigate their function at cellular level. With the

“FindAllMarkers” function, we identified the marker genes of each

GAC in bulk-seq data (LogFC >0.5) and then submitted them to the

“AddModuleScore” function in scRNA-seq data. Each cell was given

a score, and the cluster with the highest score was used to determine

the cell’s final annotation result. The annotation was shown in Table

S3. Combing the original and GAC annotation of each cell, we

obtained a new glycolysis-related cell subtype such as “Epithelial-G1”.

Then in scRNA data, we collected the marker genes of each cell

subtype (Table S4). Additionally, glycolysis-related genes signature

was also demonstrated by the “AddModuleScore” function.
Prognosis analysis based on glycolysis-
related cell subtype

With the marker genes of glycolysis-related cell subtype

obtained using the “FindAllMarkers” function, we selected those

with the top 50 ranks in log2FC (If less than 50, follow the existing

options) and applied them to GSVA analyses in bulk-seq data.

Based on the GSVA score, the prognosis-related cell subtypes were

found using Cox regression analysis, and the most significant cell

subtypes were identified by combining the findings from various

cohorts using the “rma” function of the “metafor” package.
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Pseudotime trajectory analysis and cell-cell
communication analysis of glycolysis-
related epithelial cell subtypes

By creating the evolutionary trajectory between cells,

pseudotime analysis predicts the transformation of cells over

time. First, we extracted epithelial cells and performed the same

quality control, integration, and dimension reduction process. Then

we conducted pseudotime analysis on the processed data with the

“monocle3” package. Additionally, cell communication analysis was

completed with the “CellChat” package.
Assessment of TME among GACs using
different algorithms

To depict the landscape of tumor immune infiltration with

bulk-seq data, we performed three algorithms: ssGSEA, Cibersort,

and Estimate. We calculated the ssGSEA score of 31 cell types in Lee

et al.’s research (35). Charoentong’s cell types were also described by

ssGSEA algorithms. We further calculated the proportion of each

immune cell with Cibersort analysis. Estimate algorithm contains

three scores: Stromal score, immune score, and combined score. All

the above analyses were conducted in TCGA and GEO datasets for

the robustness of the results.
Genome-related analysis and cancer stem
cell index

In this part, we focused on the mutation of the tumor, copy

number variation (CNV), methylation, microsatellite stability, and

cancer stem cell index. The somatic mutation data and CNV files

were downloaded from the GDC TCGA database. Supported by the

“maftools” package, we drew waterfall plots to demonstrate the

somatic mutation of COAD and READ patients in TCGA. TMB

was quantified into log(TMB), termed as TMB score. Downloaded by

“TCGAbiolinks”, CNV and methylation were exhibited by lollipop

and violin plots, respectively. MSI status was plotted using a graph of

proportion. Subsequently, Utilizing the data from Progenitor Cell

Biology Consortium (PCBC), we trained the model of mRNAsi

prediction and further applied it to calculate the CSC index of our

samples. The relationship betweenGACandCSC indexwas discussed.
Construction and validation of
GAC predictor using four machine
learning methods

The TCGA cohort served as our training set, and the GEO

cohorts served as our validation set. To increase the reliability of the

results at the macro (Bulk-seq) and micro (scRNA-seq) levels, the

genes used to predict GAC were determined to be the intersection of

DEGs of GAC and marker genes for glycolysis-related single-cell

subtypes that have prognostic implications. Four machine learning
Frontiers in Immunology 04
methods were conducted to select important genes, including least

absolute shrinkage and selection operator (LASSO) regression,

random forest (Boruta), extreme gradient boosting (XGBoost),

and support vector machine (SVM) (37–40). The R package we

used contained “glmnet”, “randomForest”, “Boruta”, “XGBoost”,

“e1071”, and “caret”. We used these important genes to identify the

GAC of each patient. The final model, termed as “GAC predictor”,

was decided as multinomial logistic regression and constructed by

the “multinom” function of the “nnet” package. We estimated

which GAC each patient might belong to using the “prediction”

function, and we chose the GAC with the highest probability.

“pROC” and “caret” packages were used to evaluate the results by

calculating AUCs, accuracy, sensitivity, and specificity. We further

tested the “GAC predictor” in a similar way on the validation sets.

The model was shown as follows:

ModelGAC3 =  oi
1(EstiGAC3i * ExpGeneiÞ

ModelGAC2 =  oi
1(EstiGAC2i * ExpGeneiÞ

ModelGAC1 =  0 (reference group)

PGAC3 = exp(ModelGAC3)=½exp(ModelGAC1) + exp(ModelGAC2)

+ exp(ModelGAC3)�

PGAC2 = exp(ModelGAC2)=½exp(ModelGAC1) + exp(ModelGAC2)

+ exp(ModelGAC3)�

PGAC1 = exp(ModelGAC1)=½exp(ModelGAC1) + exp(ModelGAC2)

+ exp(ModelGAC3)�

EstiGAC3 and EstiGAC2 represented the estimate of

multinomial logistic regression. ExpGene represented the

expression of the gene. P represented the probability that each

patient belongs to each GAC.
Treatment-related analysis

To excavate the treatment of each GAC, we obtained potential

therapeutic compounds related to each GAC based on typical

marker genes using Cmap analysis (https://clue.io/). For each

GAC, the 10 compounds with the lowest enrichment score, which

were considered antagonistic drugs, will be presented in the form of

a heatmap. Besides, to gauge each GAC’s drug sensitivity, we

computed the semi-inhibitory concentration (IC50) values of

common medicines using the “pRRophetic” package.
Statistical analysis

Wilcoxon rank-sum test was applied to show the difference

between the two groups. Wilcoxon signed-rank test was used in two
frontiersin.org
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paired groups. Kruskal-Wallis H test was performed to compare

three or more groups. Dunn test was used for multiple comparisons.

Chi-square test was used in the proportion test. The Pearson test

was used to identify correlations of the data. The log-rank test

method was employed to analyze survival data. All of the statistical

analyses were conducted using R 4.1.3 (p< 0.05).
Results

Classification of glycolysis-associated
molecular clusters in colorectal cancer

The whole follow chart was shown in Figure 1. We collected

198 glycolysis-related genes from the MSigDB Team

(HALLMARK_GLCOLYSIS) for further study. Employing GO

enrichment analysis, we found these genes were characterized by the

metabolic process of carbohydrates and derivatives (Figure 2A). The

comparison of glycolysis-related genes between normal and tumor
Frontiers in Immunology 05
tissues from TCGA COAD/READ was visualized with a PCA map.

The two main components indicated that glycolysis-related genes were

effective at separating tumors from normal tissue (Figure 2B). To

investigate the latent role these genes played in oncogenesis, we used

consensus clustering to categorize CRC patients (TCGA and GEO

datasets). Three glycolysis-associated clusters were identified, namely

GAC, according to Figures 2C and S1. To explore the distribution of

each GAC, t-SNE analysis was employed and showed significant GAC

heterogeneity (Figure 2D).
The clinical discrepancy among GACs

Built on GAC clustering, we discussed the corresponding

clinical features of each GAC. First, we plotted survival curves of

overall survival (OS) and disease-free survival (DFS) for three GACs

and found GAC2 was in an unsatisfactory prognosis (TCGA-OS: p

= 0.05; TCGA-DFS: p = 0.03; GEO-OS: p< 0.001; GEO-DFS: p =

0.011, log-rank test) (Figures 2E–H). Moreover, the relationship
FIGURE 1

The whole flow chart and the summarized features of each GAC.
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between clinical stage and GAC indicated that the proportion of

GAC2 increased with advancing stage and GAC3 on the opposite,

which was consistent with the poor prognosis of GAC2 (Figures 3C,

S2D). According to Figures 3A, S2A, and Table S1, GAC1 has a

larger proportion of Kras mutations, while GAC3 has a higher

proportion of Braf mutations and MSI-H status. Besides, GAC2

possessed the youngest age distribution. The clinical characteristics

of GACs were described in this section as being heterogeneous: 1.

GAC2 had a poor prognosis with advanced stage and younger

trend; 2. GAC3 held a favorable prognosis with an early stage and

higher mutation probability. 3. GAC1 was in the middle position of

various clinical features.
Frontiers in Immunology 06
Biological differences and features of
each GAC

Utilizing “GSVA” algorithm, we elaboratively chose four types

o f phenotype ( immune-re la ted , metabo l i sm-re la ted ,

nucleoside&RNA-related, and stromal-related) as the exhibition

in the form of a heatmap (Figure 2I). The pathways contained

“C2.cp.kegg”, “C2.cp.reactome”, and “C2.go.bp”. With the “limma”

package, differential pathways were identified. GAC1 was enriched

in pathways connected to nucleosides. GAC2 was associated with

stromal and immunological functions. Immune and metabolic traits

were present in GAC3. Built on this, the relationship between GAC
D

A B

E F

G

I

H

C

FIGURE 2

Glycolysis-related molecular subtypes in colorectal cancer. (A) Glycolysis-related pathways presented by GO enrichment analyses using metascape.
(B) Principal component analysis utilizing glycolysis-related genes to separate tumor from normal tissue. (C) Consensus clustering identifying three
clusters with different expression pattern of glycolysis-related genes. (D) tSNE plot visualizing the three GACs with obvious differentiation. (E-H)
Survival curves of OS and DFS for the GACs in TCGA and GEO datasets. (I) GSVA analyses characterizing the biological process of the three GACs.
Red to blue represents the range of enrichment from high to low.
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and CMS was worth discussing. Afterward, we created a heatmap to

display the relationship between GAC and CMS (Figure 3A).

Surprisingly, we found GAC1 and GAC2 overlap mostly with

CMS2 and CMS4, respectively. While in patients with GAC3,

CMS1 and CMS3 occupied an equal and largest proportion

(Figures 3A, B). We further validated these findings using the

classical pathways of the “CMScaller” package. “EMT” and “TGF-

Beta” pathways, associated with CMS4, were enriched in GAC2,

which was a convincing illustration (Figures 3A, S2A, B). We

quantified the glycolysis pathway with ssGSEA and discovered a

high expression in GAC3 (Figures 3A, D, S2A, E). Additionally, we

found that glycolysis was negatively connected with WNT, MSS,

LGR5 stem cells, HNF4A, CMS2, and CMS4, and positively

correlated with MSI, fat acid, DNA repair, CMS1, CMS3, and cell

cycle (Figure 3F). A displayed alluvial diagram of GSE39582 further

demonstrated that GAC1 flows to CIN immune-down and CIN

Wnt-up, GAC3 flows to dMMR and KRASm, and GAC2 flows to

the remainder (Figure 3E). Conclusively, GAC1 shared the most
Frontiers in Immunology 07
features of CMS2. GAC2 was the most similar to CMS4, and GAC3

share the dual features of CMS1 and CMS3. Same discoveries were

found in the GEO dataset (Figure S2).
Mapping glycolysis-associated clusters
onto CRC cells at scRNA-seq level

On the basis of bulk-seq, we attempted to construct this GAC

classification on individual cells. Through preprocessing of

GSE132465, 23 tumor samples were integrated to perform further

analysis. Cell type annotation was based on Lee et al.’s study and

visualized by a t-SNE map (Figure 4A). With “AddModuleScore”

utilized, we successfully mapped three GAC-like subclusters onto

single cells (Figure 4B). Additionally, the glycolysis-related gene

signature (glygene) was confirmed in Figure 4C, demonstrating its

main presence in myeloid, stromal, and epithelial cells. The

proportion of each GAC in each cell was then examined after we
D

A

B

E

FC

FIGURE 3

Biological activities and clinical features of the three GACs. (A) The heatmap comprehensively assessed each GAC’s biological and clinical
parameters in TCGA dataset. Notable CMS subtypes with high correlations to GACs were represented by the black mark box. (B) Bar charts showing
CMSs’ proportion of each GAC with chi-square test. (C) Bar charts showing each stage’s proportion of each GAC with chi-square test. (D) The
distribution of glycolysis score acquired from ssGSEA in the three GACs. Comparations were conducted by Dunn test. (E) Alluvial plot exhibiting the
molecular subtype attribution of GACs in GSE39582. (F) The association between glycolysis and various pathways visualized by a bubble chart.
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added the GAC-like subclusters to each cell type (Figure 4E).

Interestingly, we discovered that epithelial cells were filled only

with GAC1-like (69%) and GAC3-like (31%). Though T and B cells

shared GAC characteristics with epithelial cells, GAC3-like was

presented in higher concentrations than GAC1-like in these cells,

which makes them distinct from epithelial cells. Stromal cells were

almost GAC2-like (95%), consistent with Figures 1I, 2B. Myeloids

contain 65% GAC2-like and 33% GAC3-like. The marker genes of

each cell subtype were depicted by a combined volcano plot

(Figure 4D, Table S4). GSVA analysis revealed distinct biological

pathways among GAC-like subclusters (Figure 4F). Apparently,

pathways of drug response, DNA methylation, and glutamate

metabolism were enriched in myeloids-G2, while myeloid-G3 was

on the opposite. T cell-G2 has a favorable response to drugs. B cell-

G1, 2 had higher mRNA methylation. Importantly, we filtered the

most clinically relevant GAC-like subclusters uniting prognosis (OS

and DFS), the marker genes of which were responsible for later

GAC predictor development. With meta-pool analysis showing the

significance of T cells-G2, T cells-G3, Stromal-G2, Myeloids-G2,
Frontiers in Immunology 08
and Epithelial-G1, we identified these five GAC-like subclusters as

independent prognostic factors (Figures 4G, H).
Analysis of the two GAC-like subclusters in
epithelial cells

We subsequently chose epithelial cells to analyze their

characteristics. The distribution of GAC-like subclusters and CMS

subtypes was presented in the t-SNE map (Figures 5A, B).

Discovery was found that the corresponding relationship between

CMS and GAC-like subclusters was comparable to the bulk-seq’s,

demonstrating the relationship’s robustness. Through GO

enrichment analysis we found that epithelial-G3 was enriched in

the feature of metastasis, whereas epithelial-G1 was mostly

associated with RNA biological process (Figure 5C). Likewise, by

GSVA analysis we displayed 50 hallmark signatures in the two types

of epithelial cells, demonstrating GAC3-like’s anaerobic traits and

GAC1-like’s ability to up-regulate oxidative phosphorylation
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FIGURE 4

The characteristics of the tumor microenvironment in each GAC at single cell level. (A) The distribution of each cell type visualized by tSNE map. (B)
Mapping GACs into each cell and the distribution of GACs at scRNA level. (C) The dispersion of glycolysis score in the tSNE map. (D) Marker genes of
each cell subtype. (E) The bar graph displaying the percentage of each GAC in various cells. (F) GSVA analysis using a heatmap to depict each cell
subtype’s typical biological processes. (G, H) Meta-analysis determining the cell subtypes related to prognosis (OS, RFS).
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(Figure 5E). The results of both enrichment analyses showed that

GAC1-like epithelial cells proliferated and that GAC3-like epithelial

cells invaded. In addition, the study on the clinical characteristics of

the two epithelial subtypes showed varieties. For the CMS subtypes,

CMS2 was GAC1-like at both the scRNA and bulk-RNA levels,

while a significant fraction of GAC3-like was found in CMS1 and

CM3, which was in line with previous results. For stage, patients in

the middle and late phases of CRC demonstrated an increased

percentage of GAC1-like epithelial cells. For mutation, GAC1-like

epithelial cells harbored high levels of TP53 and APCmutations, the

rest site not significant. For MSS, most GAC3-like cells have MSI-H

features (Figure 5D). According to pseudo-time analysis, epithelial

cells will transition from being GAC3-like to being GAC1-like
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(Figure 5F). Meanwhile, HLA-A and HLA-B were primarily

found in GAC3-like cells, suggesting that these cells had a

stronger propensity for immunological responses (Figures 5G, H).

Finally, cell communication analysis was used to investigate the

impact of non-tumor cells on the tumor epithelium. The frequency

of linkages between Sromal-G2 and Myeloid-G2 and epithelial cells

was substantially higher, but Epthelial-G3 was more significantly

impacted by B cells-G2 (Figure 5I). A bubble plot specifically

showed the ligand-receptor network, from which we could tell

SPP1-CD44 was noteworthy in myeloids-epithelial interactions.

CD44 was considered to promote stemness and invasiveness in

colorectal cancer (41). MDK ligands were associated with multiple

receptors to regulate the interaction between stromal and epithelial
frontiersin
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FIGURE 5

The features of the two types of GAC-like tumor cells at single cell level. (A) The distribution of the GAC1-like and GAC3-like tumor cells in tSNE
map. (B) The distribution of each CMS subtype in tSNE map. (C) GO analysis showing the feature of each GAC-like tumor cell. (D) The bar charts
summarizing the clinical features of each tumor cell subtypes. (CMS subtype at scRNA-seq and bulk RNA-seq level, stage, the mutation of TP53,
APC, Kras, and Braf, and MSI status) (E) GSVA analysis revealing the hallmarks of each GAC-like tumor cell. (F) Pseudo-time analysis showing the
development of the two GAC-like tumor cells. (G, H) The expression pattern of HLA-A and HLA-B in the two cell types. (I) Cell-cell communications
described by numbers and weight of intercellular connections. (J) Cell-cell communications described by receptor-ligand analyses using a bubble
chart.
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cells. GZMA-F2RL1 was identified in the communication of T cells-

G3 and Epthelial-G3 (Figure 5J). Conclusively, the proliferative

type, epithelial-G1, and the invasive type, epithelial-G3, were both

regulated by TME.
Correlation between GAC and tumor
microenvironment

We previously discussed the heterogeneity of GAC in TME at

single-cell level, and in this part, we would go back to the bulk level.

First, we collected two groups of TME cell signatures (Lee’s and

Charoentong’s) for ssGSEA analysis. Same as the scRNA level, we
Frontiers in Immunology 10
found stromal cells mainly converged in GAC2 in bulk data. B cells,

Myeloid cells, and T cells were aggregated in GAC2 and 3. The

expression of epithelial cells were in line with the results in scRNA.

Remarkably, GAC2 possessed more regulatory T cells (Tregs)

(Figures 6A, S3A). In Charoentong’s signature, macrophage, T, and

B cell expression trends were similar to Lee’s observed findings

(Figures 6B, S3B, S4A, B). The Cibersort algorithm calculated the

expression proportion of each cell. In Lee’s cell signatures, the fraction

of proliferative ECs was the highest in TME, proliferatingmacrophage

the second, among which GAC2 occupies the lowest and highest,

respectively (Figures 6C, S3C). In LM cell signatures, the same

phenomenon was seen in macrophages, while T cells were the

second proportion of all cells and the lowest in GAC2. It was
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FIGURE 6

Immune infiltration analyses of the three GACs at bulk RNA-seq level in TCGA dataset. (A, B) ssGSEA analyses based on markers of Hae-ock Lee and
Charoentong revealing the expression of TME cells of the GACs. (C, D) Cibersort analysis depicting the percentage of each cell in GACs based on
markers of Hae-ock Lee and LM 22 cells. The proportion was converted to log10 format for better visual effects. Statistical analyses still used the
unconverted original data source. (E) Estimate algorithm calculating stromal, immune and overall score of the GACs. (F) The pie chart showing the
proportion of MSI-H and dMMR in each GAC. (G) Violin chart exhibiting the TMB score of each GAC. (H-J) The expression of PD1, PDL1, and CTLA4
in each GAC. (K) The relationship between TME cells and glycolysis. (*p<0.05, **p<0.01, ***p<0.001).
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noteworthy that the proportion of M2 macrophage in GAC2 was

greater (Figures 6D, S3D). According to the Estimate methodology,

GAC2 and GAC3 had higher stromal and immune scores than GAC1

(Figures 6E, S3E). To predict the responses of different GACs to

immunotherapy, we collected MSS, dMMR, TMB, and PD-1

information. The outcome was significant: GAC3 had more

percentage of MSI-High and dMMR (Figure 6F), and achieved a

higher TMB score (Figure 6G). While GAC2 had relatively higher

expression of PD-1, PDL-1, and CTLA-4 (Figurse 6H–J, S3F, H). The

correlations of Lee’s cells were presented in Figures 6K and S3I, in

whichwe showed the relationship between glycolysis and each cell.We

concluded the same results in the GEO dataset (Figure S3). GAC1 had

the least immune cell infiltration, GAC2 possessed a higher amount of
Frontiers in Immunology 11
stromal and immune cells but also a large proportion of tumor-

promoting cells (Tregs, M2 macrophage), and GAC3 had a higher

immune cell infiltration. Summarily, GAC1 was comparable to the

immune-desert type, GAC2 to an immune-inflamed/excluded type,

and GAC3 to an immune-activated type.
Identification and description of
gene clusters

We identified gene clusters to investigate the intrinsic causes for

the existence of DEGs between GACs (Table S6). To obtain the final
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FIGURE 7

Description of glycolysis-related gene clusters. (A) Intersection of the DEGs of the three GACs. (B) Consensus cluster performed using intersected
DEGs. (C) Survival curves showing the prognosis of each gene cluster (log-rank test). (D) A heatmap characterizing the clinical features and
expression pattern of the gene clusters. (E) Enrichment analysis of each gene cluster based on CMScaller. (F) GO analysis revealing the biological
process of the gene clusters. (G, H) Immune infiltration-based ssGSEA analysis on the gene clusters using markers of Hae-ock Lee and
Charoentong.
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DEGs, the intersection of the DEGs between each pair of GACs was

employed (Figure 7A, Table S5). Then Three clusters, referred to as

gene clusters, were obtained after 108 genes were submitted to

consensus clustering (Figure 7B). In terms of clinical characteristics,

we discovered that gene cluster B had a significant prevalence of

GAC2 and a bad prognosis (Figure 7C). These 108 genes’ clustering

expression patterns and additional clinical traits were displayed in

Figure 7D, showing discrepancies among gene clusters. In terms of

enrichment analysis, gene cluster A has upregulated MSS and MYC.

In gene cluster B, differentiation, MSI, glycolysis, and fatty acids

were highly enriched. TGF-Beta and EMT were activated in gene

cluster C (Figure 7E). According to GO analysis, gene clusters B and

C were linked to extracellular matrix synthesis and epithelial cell

proliferation, whereas gene cluster A was linked to T cell activation

and O-glycan process (Figure 7F). We discovered that the gene

cluster C group has strong expression in the majority of TME cells

using two ssGSEA signatures. Immune cells from gene cluster B

were relatively activated (Figures 7G, H). All considered, the
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clinical, biochemical, and immunological features of GACs were

supported by gene clustering.
Exploration of TMB, CNV, methylation, and
CSC index between GACs

This section focused on the investigation of tumor stemness and

genomics. We displayed the first 10 mutant genes of each GAC in

COAD and READ using waterfall plots. In COAD, the mutation of

GAC1 and GAC2 were similar, while in GAC3 we did not find a

high mutation rate of TP53. In READ, we detected a high mutation

rate of FATA4, especially in GAC2. APC, TP53, TTN, and KRAS

were the genes with the top mutation frequency (Figures 8A, B).

Besides, we noticed that the TMB score and glycolysis score were

favorably connected and GAC3 has high levels of TMB and

glycolysis attributes (Figure 8C). Meanwhile, GAC3 possessed a

lower copy number variation, which indicated an opposite of pro-
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FIGURE 8

Exploration of the properties of each GAC at genomic level. (A, B) Waterfall Plots revealing the genes with top 10 mutation frequency in each GAC
of COAD and READ. (C) The relationship among glycolysis score, tumor mutation burden score, and GACs. (D, E) Copy number variation
(amplification, deletion, log2 transformed) of each GAC. (F) The relationship between methylation and GACs in TCGA dataset. Methylation was
calculated in the form of the mean value of B-value. (G) The relationship between glycolysis score and CSC index (r =0.23, p<0.001). (H) Violin chart
representing the association between GACs and CSC-index.
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tumor effect (Figures 8D, E) (42). The overall methylation of GAC1

was lower than the other two (Figure 8F). Through CNV

calculation, we found CSC index was in a positive correlation

with the glycolysis score, with GAC2 occupying the lowest CSC

index (Figures 8G, H). Taken together, we recognized GAC1 as a

low methylation type, GAC2 as a low CSC type, and GAC3 as a low

CNV and high TMB type.
Machine learning-based construction of
GAC predictor and description of GAC
Predictor-related genes (GP genes)

In this part, we constructed a prediction model for the GAC

status of each patient using four machine-learning techniques. We

referred to TCGA as the training set and GEO as the validation set.
Frontiers in Immunology 13
The whole process was shown in Figure 9A. To ensure the reliability

of the results, we used clinically significant genes at both bulk and

single-cell levels for subsequent analyses. Thus, the intersection of

GAC DEGs and marker genes of significant cell subtypes

(Figures 4G, H) was obtained. To retain the genes that have the

most influence on the prediction results, we used Lasso, SVM,

Randomforest (Boruta), and XGBoost for screening (Figure S5;

Table S7). The radar graphic demonstrated that the four methods’

AUC values in the test set and training set were high. We again

intersected the genes filtered by the four machine-learning methods

to acquire a final gene set, named GP genes. Subsequently, GP genes

were used for multinomial logistic regression to construct the final

GAC predictor (Table S8). With the GAC predictor applied for

verification, in both training and validation sets we gained high

levels of AUC and accuracy values (training set: AUC = 0.9984,

accuracy = 0.9658; validation set: AUC = 0.9380, accuracy = 0.8114)
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FIGURE 9

Construction of the GAC predictor using four machine learning methods and characteristics of the selected gene variable. (A) Flow chart describing
the process of establishing the GAC predictor. (B) Verification of the GAC predictor in sensitivity, specificity, accuracy, and AUC value in both the
train and validation set. (C) Heatmap showing the expression of the 28 GP genes in trainset. (D) CNV frequency of the GP genes. (E) Somatic
mutation landscape of the GP genes in COAD and READ patients. (F) Circle plot showing the location of the GP genes in chromosome.
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(Figure 9B). We further conducted several analyses for GP genes.

The heatmap showed the expression of GP genes in order

(Figure 9C). Genomics-related research on GP genes, including

TMB and CNV analyses, was performed. We discovered EIF2S2,

DPM1, and ISG20 as CNV amplification, GMDS, BNIP3L, and

VCAN as CNV deletion (Figure 9D). All GP genes were presented

in the chromosome loop diagram (Figure 9F). By TMB analysis, we

identified VCAN, PXDN, FN1, and NOTCH3 as genes with high

mutation frequency in both COAD and READ (Figure 9E).
Treatment strategies for each GAC and
immunotherapy cohorts for GAC
predictor validation

Chemotherapy and targeted medications increase the survival

rate of colorectal cancer with advanced stages. However, some

patients are still achieving little benefits or developing treatment

resistance (43). Hence it is necessary to formulate a personalized

drug treatment plan for each CRC patient. Based on the significant

clinical and biological differences among the three GAC, we

assumed that each GAC had its own appropriate treatment and

then investigated the sensitivity and antagonistic effects of typical

chemotherapeutic medicines as well as possible small molecule

medications in three GACs. The “pRRophetic” package and
Frontiers in Immunology 14
Cmap analysis were used to implement the treatment prediction

for each GAC. Drug sensitivity, in the form of IC50, was produced

as Figure 10A showed. For GAC1, camptothecin and paclitaxel were

more sensitive. Gefitinib and gemcitabine had higher sensitivity to

GAC2. Shikonin had more therapeutic potential for GAC3.

Additionally, we conducted Cmap analysis to acquire potential

compounds resisting each GAC. Stronger compounds’ efficacy

resulted from lower scores. 30 compounds were exhibited in

Figure 10B to provide treatment strategies. To test the role of

GAC clustering in the immunotherapy cohorts, we obtained two

datasets for verification (IMVigor210 and GSE78220). With the

GAC predictor applied In IMVigor210, we found GAC2 had a poor

prognosis (p = 0.004, log-rank test), along with immunotherapy

response (Figure 10C, D). In GSE78220, the same conclusion was

achieved that GAC2 was with unfavorable OS rate (p = 0.128, log-

rank test). Even though GSE78220’s p-value is not significant, each

GAC’s survival pattern is clearly visible (Figure 10E, F). Overall, we

explored GAC’s potential compounds and validated the GAC

predictor in the field of immunotherapy.
Discussion

As research into cancer has progressed in depth, it has also been

discovered that cancer possesses aberrant metabolic characteristics.
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FIGURE 10

Application of GACs in treatment area. (A) IC50 of several common chemotherapeutic drugs in each GAC. (B) Cmap analysis revealing potential
small compounds for the treatment of each GAC. (C, D) Validation of IMVigor210 immunotherapy cohort in prognosis of different GACs. (E, F)
Validation of GSE78220 immunotherapy cohort in prognosis of different GACs.
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The evidence of the Warburg effect demonstrates that aerobic

glycolysis has a significant part to play in tumor growth. An

illustration of this is hexokinase 2 (HK2), which is prevalently

expressed in tumors and is able to gain access to ATP in the inner

mitochondrial membrane through voltage-dependent anion

channels, thus enhancing glucose metabolism and preventing cell

death (44). Glycolysis with its high rate of output not only produces

energy rapidly but also furnishes tumor cells with the necessary

components for the assembly of numerous biological

macromolecules (7). Lipids, nucleotides, and amino acids, which

are converted from glycolysis, provide the raw materials for cell

growth and division (45, 46). Furthermore, glycolysis is associated

with numerous carcinogenic signaling pathways and genetic

mutations. Abnormal activity of the Wnt signaling may interfere

with the activity of Pyruvate Dehydrogenase Kinase 1 (PDK1), thus

preventing the connection between glycolysis and the TCA cycle,

consequently hampering OXPHOS (47). HK2, a key enzyme of

glycolysis, can be induced by p53. In the absence of glucose, mutant

p53 can reduce AMPK signaling, resulting in an increase in aerobic

glycolysis (48). Additionally, the focus is gradually being directed to

the metabolic remodeling of TME. Pyruvate is converted by

glycolysis to lactate, which makes the tumor microenvironment

acidic. The immunological effectiveness of NK cells is reduced by

this acidic environment (49). During activation, CD8T cells, NK

cells, and M1 cells all display significant glycolytic characteristics,

whereas Treg cells and M2 cells favor the usage of OXPHOS (50,

51). According to these findings, tumors may have aberrant energy

consumption habits that help them thrive ecologically and impair

immunotherapy (52). As an important promoter of tumor

progression, glucose metabolism has been extensively exploited to

overcome the bottleneck of immunotherapy (53). Glycolysis-

targeted drugs in combination with immunotherapies have shown

to be highly effective in CRC treatment, according to growing

preclinical evidence (54–56). All these demonstrate how

important glycolysis is for the study and treatment of

colorectal cancer.

In this study, we utilized unsupervised clustering to identify

three clusters of CRC patients, termed as GACs, based on the

expression of genes related to glycolysis. The three GACs had

entirely different clinics, biological processes, immune infiltration,

and genomic traits when viewed from bulk-seq perspective.

Bioinformatics methods were used to assign a distinct GAC

composition to each cell group from a single-cell view. It was

discovered that each cell type with a distinct GAC type possessed its

unique traits. Finally, we built the GAC predictor by integrating

bulk and single-cell RNA-seq data to identify the GAC attribution

of each CRC patient.

Initially, when analyzing bulk RNA-seq data, we discovered that

genes related to glycolysis were capable of distinguishing between

tumor and normal samples. We then divided these genes into three

glycolysis-associated clusters via unsupervised clustering algorithm

in CRC patients. Different characteristics of various GACs were

revealed by multiple enrichment analyses (GSVA, ssGSEA). From

the perspective of biological pathways, GAC1 tended to be active in

cell cycle and replication, and its relatively elevated WNT and MYC

pathways were consistent with the CMS2 subtype, as evidenced by
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its high proportion of the CMS2 subtype. GAC2 had the greatest

CMS4 ratio, a tendency to be more stromal-type, and was heavily

enriched in EMT and TGF-Beta pathways. With greater MSI and

fatty acid metabolic pathways and high proportion levels of CMS1

and 3 at the same time, GAC3 has a tendency to be immunologically

and metabolically enriched (Figures 2I, 3A). Each GAC’s

enrichment pathway exhibits a high degree of concordance with

the enrichment pathway of the GAC-associated CMS subtype

described in the previous article (57). From a clinical perspective,

the prognosis of GAC2 was worse while that of GAC3 was better,

both of which were consistent with the corresponding CMS

subtypes. From the perspective of the TME, we used algorithms

like ssGSEA, cibersort, and ESTIMATE to investigate the variations

in the immune microenvironment of GACs. Similar to the immune

desert type, GAC1 is obviously devoid of immune cell infiltration.

In contrast, GAC2 and GAC3 exhibit significant immune

infiltration properties. GAC2 demonstrated a condition of stromal

infiltration, and more tumor-promoting immune cells (Treg, M2

macrophage) were present, indicating that it might be the immune-

inflamed/excluded type. A Study revealed that M2macrophages can

promote the invasion and metastasis of CRC cells by releasing

exosomes that carry mi-RNA (58), This supported the opinion in

the study that GAC2, which was infiltrated by M2 macrophages,

enriched in metastasis-related pathways, such as EMT and TGF-

Beta. GAC3, however, was more like the immune-activated type.

Comparable to Emilie Picard’s article (59), this result mapped the

immune microenvironment of each GAC. From a genomics

perspective, APC mutations were more prevalent in GAC1,

whereas TTN mutations were more prevalent in GAC3

(Figures 8A, B). GAC1 resembled a classical type more due to the

accumulation of the APC/KRAS/TP53 mutation (60). High TTN

mutation rate was related to high TMB status (61), which GAC3

both possessed (Figure 8C). In terms of prospects for

immunotherapy, GAC3 demonstrated a more favorable reaction

than GAC1 and 2. Clinical trials have demonstrated that

immunotherapy is effective for MSI-H/dMMR CRC patients (62,

63). Particularly, in GAC3 there existed simultaneous MSI-H/

dMMR status and better prognosis, the correlation between which

has been verified in many clinical studies and meta-analyses (64,

65), that is, MSI status has a better prognosis than MSS status in

stage II/III colorectal cancer, attributed to the lower probability of

recurrence of MSI status (66). When compared to GAC1, GAC2

and 3 expressed more PD-1, PDL-1, and CTLA-4, while GAC3 had

more MSI-H, and dMMR phenotypes concurrently (Figures 6F, G),

indicating that GAC3 had immunotherapeutic potential.

Meanwhile, our results supported the presence of elevated

immune checkpoint molecule expression in CMS1 and 4 (57, 67,

68). As expected, GAC3 showed a favorable prognosis in the

immunotherapy cohort of bladder and melanoma cancer

(Figure 10). From the perspective of therapeutic drugs, shikonin

had a high sensitivity to GAC3 and a study has demonstrated that it

inhibits the proliferation of colorectal tumor cells when used as a

treatment (69). Meanwhile, gemcitabine was more effective against

GAC2, and the fact that it can cause apoptosis in oxaliplatin-

resistant cells further supports its potential to act as an inhibitor of

colorectal cancer (70).
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When analyzing scRNA-seq data, we uncovered that glycolysis

predominantly occurred in tumor cells, stromal cells, and myeloid cells

(Figures 4A, C), which aligned with the findings of prior research (71,

72). Interestingly, our investigations indicated that stromal cells mainly

belong to the GAC2 subtype, while tumor cells were predominantly

GAC1 and GAC3 (Figures 4B, E), affirming our previous bulk RNA-seq

study’s determination that GAC2 was of stromal-type origin. The

stroma, where cancer-associated fibroblasts interact with cancer cells

to promote invasion, metastasis, EMT, and drug resistance, is crucial in

the development of cancer (73). Since there are only two GAC-like

subtypes of tumor cells, we investigated this more thoroughly and used

enrichment analysis (GO andGSVA) to discover that GAC1-like tumor

cells had a higher propensity for division and replication while GAC3-

like tumor cells were more likely to invade and adhere. Pseudo-time

analysis showed a possible transition of tumors from GAC3-like to

GAC1-like, which was worth exploring. Besides, cell communication

analysis found significant interactions between myeloid and stromal

cells on tumor cells, with stronger signaling from receptor-ligands of

SPP1-CD44, MDK-NCL, and MDK-SDC4. Glioma, pancreatic cancer,

and intrahepatic cholangiocarcinoma have been reported to possess the

SPP1-CD44 axis that is immunosuppressive and pro-tumor (74–76).

Although it was discovered that midkine (MDK) was increased in

colorectal cancer (77) and that nucleolin (NCL) was linked to DNA and

RNA metabolism and proliferation (78), the precise relationship

between the two has not yet undergone experimental verification and

merits more investigation. Syndecan-4 (SDC4) is connected to a poor

prognosis and the invasion of colorectal cancer cells. All these scRNA-

related results enhanced the conclusion derived from bulk RNA-seq

data and excavated the character of tumor cells of different GAC-

like subtypes.

Meanwhile, our study has some limitations. First, the data were

based on retrospective studies obtained from public databases, and

there was a lack of validation of a prospective cohort originating

from our research center. Second, only bioinformatics algorithms

were used to anticipate rather than experimentally validate the

biological properties of tumor cells with different GAC-like

subtypes. Additionally, the sample size used in this study was

insufficient, therefore the GAC predictors’ sensitivity and

accuracy needed to be enhanced by adding samples and validation.
Conclusions

In summary, we identified three glycolysis-related molecular

subtypes of CRC, whose characteristics of the clinic, genomics, and

immune infiltration were discussed based on the integration of bulk

and single-cell RNA-seq data. We simultaneously created predictive

models to forecast the GAC subtype in each sample and offered

medication suggestions for treatment.
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SUPPLEMENTARY FIGURE 1

Consensus clustering of the glycolysis-related genes. (A) The heatmap of
consensus clustering with k from 2 to 8. (B) The CDF threshold curve. (C) The
delta area.

SUPPLEMENTARY FIGURE 2

The validation of clinical and biological pathway characteristics in GEO
datasets. (A) The heatmap comprehensively assessed each GAC’s biological

and clinical parameters in GEO datasets. (B) The boxplots visualizing each
GAC’s pathway enrichment scores (* p<0.05, ** p<0.01, *** p<0.001). (C) The
relationship between GACs and CMS type in GEO datasets. (D) The
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relationship between GACs and stage in GEO datasets. (E) The distribution of
glycolysis score in each GAC.

SUPPLEMENTARY FIGURE 3

The validation of TME features of each GAC in GEO datasets. (A, B) ssGSEA
analyses based on markers of Hae-ock Lee and Charoentong revealing the
expression of TME cells of the GACs in GEO datasets. (C, D) Cibersort analysis
depicting the percentage of each cell in GACs based onmarkers of Hae-ock Lee
and LM 22 cells in GEO datasets (* p<0.05, ** p<0.01, *** p<0.001). (E) Estimate

algorithm calculating stromal, immune and overall score of the GACs in GEO

datasets. (F–H) The expression of PD1, PDL1, and CTLA4 in each GAC in GEO
datasets. (I) The relationship between TME cells and glycolysis score.
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SUPPLEMENTARY FIGURE 4

Further exploration of immune infiltration of GACs in both TCGA and GEO
datasets. (A, B) The boxplots quantifying the ssGSEA score of immune cells in

each GAC for the validation. (C, D) The proportion of GACs in each

immune-subtype.

SUPPLEMENTARY FIGURE 5

The visualization of four machine learning methods contributing to the

selection of important genes. (A, B) The importance of the selected
features using random forest (Boruta) methods. (C) The linear cost

selection of SVM methods. (D, E) The Lasso method filtering variables. (F)
The importance of the selected variables using XGBoost method.
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