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Integrative single-cell RNA
sequencing and metabolomics
decipher the imbalanced lipid-
metabolism in maladaptive
immune responses during sepsis
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Yi Hu2*, Liangming Liu1* and Tao Li1*
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Daping Hospital, Army Medical University, Chongqing, China, 2Department of Anesthesiology, Daping
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Background: To identify differentially expressed lipid metabolism-related genes

(DE-LMRGs) responsible for immune dysfunction in sepsis.

Methods: The lipid metabolism-related hub genes were screened using machine

learning algorithms, and the immune cell infiltration of these hub genes were

assessed by CIBERSORT and Single-sample GSEA. Next, the immune function of

these hub genes at the single-cell level were validated by comparing multiregional

immune landscapes between septic patients (SP) and healthy control (HC). Then,

the support vector machine-recursive feature elimination (SVM-RFE) algorithm

was conducted to compare the significantly altered metabolites critical to hub

genes between SP and HC. Furthermore, the role of the key hub gene was verified

in sepsis rats and LPS-induced cardiomyocytes, respectively.

Results: A total of 508 DE-LMRGs were identified between SP and HC, and 5 hub

genes relevant to lipid metabolism (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2)

were screened. Then, we found an immunosuppressive microenvironment in

sepsis. The role of hub genes in immune cells was further confirmed by the

single-cell RNA landscape. Moreover, significantly alteredmetabolites weremainly

enriched in lipid metabolism-related signaling pathways and were associated with

MAPK14. Finally, inhibitingMAPK14 decreased the levels of inflammatory cytokines

and improved the survival and myocardial injury of sepsis.

Conclusion: The lipid metabolism-related hub genes may have great potential in

prognosis prediction and precise treatment for sepsis patients.

KEYWORDS

sepsis, l ipid-metabolism, machine learning algorithm, single-cell RNA
sequencing, metabolomics
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Introduction

Sepsis can advance to fatal organ failure which is caused by

uncontrolled immune response to infection and associated with

high morbidity and mortality (1, 2), despite evolving concepts and

developments in multi-disciplinary approaches (3). Early diagnosis

in order to early intervention before organ dysfunction is critical to

improving survival rate of sepsis (4). Due to their poor sensitivity

and specificity in assessing the substantial disease heterogeneity, the

existing biological markers cannot be used for sepsis prognosis

prediction (5–8). Therefore, further studies are required to

investigate the pathogenesis of sepsis and identify more sensitive

and specific therapeutic targets.

Metabolic and immune reactions often occur in the early stage

of sepsis without intense histologic changes, and can reflect the

severity of later organ failure (9–11). Lipid metabolic changes and

the activation of lipid-related pathways are important features

underlying the pathophysiology of sepsis (12). However, the

underlying metabolites and their association with lipid

metabolism-related genes in septic patients remain unidentified.

A better understanding of the alterations in lipid metabolism and

immune cell infiltration could contribute to identifying more

potential therapeutic targets to modulate lipid metabolism during

sepsis pharmacologically. In recent years, the application of

machine learning has received widespread attention and

recognition due to its ability to promote personalized medicine

and assist computer-aided diagnosis (13). Besides, the emerging

‘Omic’ technologies can provided more comprehensive knowledge

about the whole picture of immune cell profiles in sepsis (14, 15).

Metabolomics, which integrate genomics, transcriptomics, and

proteomics based on the omics technology, exhibit huge

advantages in exploring biology (16, 17). Thus, we used machine

learning algorithms for screening lipid metabolism-related hub

genes, and characterized them with metabolomic profiling (18).

The activation of immune cells in reaction to the pathogens

accountable for the onset of sepsis i s regulated by

immunometabolism, which is the metabolic stage of the immune

cells. An alteration in the immunometabolism can trigger the

disturbance of immune response during sepsis (19). To explore the

molecular mechanisms underlying sepsis, previous studies mainly

characterized changes in gene expression profiles and relevant

cellular pathways (20, 21). Although sufficient information has been

obtained for analysis, studies that sequence pooled populations of

immune cells, rather than each individual cell, enlarge the cellular

heterogeneity and probably confound the interpretation of the immune

response. Thanks to the technological advances, gene expression

analysis can be performed at a higher resolution, and single-cell

RNA sequencing enables the determination of the precise gene

expression patterns at the single-cell level (22). However, changes in

transcriptional states of immune cell-type specific signatures during

sepsis are miscellaneous and largely unknown. Thus, we characterized

the spectrum of immune cell states of sepsis patients by single-cell-

resolved gene expression profiling.

In the present study, we identified novel lipid metabolism-

related hub genes in sepsis via machine learning algorithms, and
Frontiers in Immunology 02
investigated the roles of these hub genes in immune cell infiltration

features by single-cell RNA-seq analysis. Metabolomics was used to

determine the most relevant metabolites with these hub genes. We

aimed to discover the possible treatment intervention for sepsis.
Materials and methods

Reagents

SB203580 (Cat . HY-10256) was purchased f rom

MedChemExpress (Monmouth, NJ, America). Lipopolysaccharide

was purchased from Sigma (Cat. L4130, St. Louis, MO, America).

Antibodies for MAPK14 (Cat. 8690S) and b-actin (Cat. 4970S) were

purchased from Cell Signaling Technology (Danvers, Massachusetts,

America). Cell counting kit-8 (Cat. C0038) was purchased from

Beyotime Biotechnology (Shanghai, China). Enzyme-linked

immunosorbent assay (ELISA) detection kit of pro-inflammatory

cytokines TNF-a (E-EL-R2856c), interleukin (IL)-6 (E-EL-R0015c),

and IL-1b (E-EL-R0012c) were purchased from Elabscience (Wuhan,

China). In situ cell death detection kit (Cat. 11684795910) was

purchased from Roche (Huntsville, German).
Study design and population recruitment

A total of 30 sepsis patients diagnosed according to the Sepsis-3

criteria were recruited from Daping Hospital, along with 15 age-

matched healthy volunteers (the inclusion and exclusion criteria for

sepsis patients are presented in Supplementary Table 1). The study

received approval from the Ethics Committee and was registered

with the Chinese Clinical Trial Registry (ChiCTR2200055772). The

healthy controls did not take any medications and had no

comorbidities. All participants were admitted between December

2021 and April 2022 and provided written informed consent prior

to inclusion in the study. Blood samples were collected from all

participants within 24 hours of admission or enrollment, and the

serum was subsequently isolated and stored at −80°C for

further analysis.
Dataset collection

The mRNA matrix for this study was obtained from the Gene

Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/

). Three datasets were collected for subsequent analysis, including

GSE65682, GSE95233, and GSE54514. GSE65682, which contains

760 sepsis patients and 42 healthy controls, was used as the training

cohort for machine learning. GSE95233 (consisting of 51 sepsis

patients and 22 healthy controls) and GSE54514 (comprising 35

sepsis patients and 18 healthy controls) were merged as a validation

cohort to verify the mRNA expression and diagnostic performance

of hub genes. Lipid metabolism-related genes (LMRGs) were

obtained from the KEGG, Reactome, and Uniprot databases by

searching for the term “lipid metabolism,” resulting in a total of
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1079 LMRGs for investigation. The analysis of differentially

expressed LMRGs between sepsis patients (SP) and healthy

controls (HC) was conducted using the “limma” R package, with

a threshold set at a P-value < 0.05.
Sepsis model establishment

Animal experiments in this study were conducted in accordance

with the Animal Research: Reporting of In Vivo Experiments

(ARRIVE) guidelines. Adult Sprague-Dawley rats weighing 200-

220g (n=192) were bred in the animal facility and provided with ad

libitum food and water. The rats were randomly divided into three

groups: the control group, the sepsis group, and the SB203580-

treated sepsis group. To establish a sepsis model, cecal ligation and

puncture (CLP) were performed as previously described (23).

SB203580 (500 mg/kg) was administered via the tail vein 30

minutes prior to sepsis induction, while the sepsis group received

an equal volume of ddH2O in the same manner. Myocardial tissues

and peripheral blood were collected 12 hours after CLP.
Gene co-expression networks
of DE-LMRGs

To screen co-expression networks of differentially expressed

lipid metabolism-related genes (DE-LMRGs) in sepsis, the weighted

gene co-expression network analysis (WGCNA) algorithm

implemented in the R package was employed. The appropriate

power index of b was selected using the criterion of scale-free

topology with an R2 cutoff of 0.85. The adjacency matrix was then

transformed into a topological overlap matrix, and average linkage

hierarchical clustering was applied to classify all DEGs with similar

expression profiles into different modules. The most central genes

in these modules were further identified as hub genes.
Identification of DE-LMRGs via LASSO and
random forest algorithm

To identify diagnostic feature biomarkers, this study applied

multiple machine learning algorithms. First, LASSO logistic regression

was performed with ten-fold cross-validation to screen candidate

iteratively reweighted least square. The algorithm was run for 1000

cycles to select feature variables based on 1-se criteria or minimum

criteria. Next, the RF algorithm based on classification and regression

tree was applied, with the expression matrix of all genes as features and

disease state as a label. A Venn diagram was used to identify the

common hub genes among RF, LASSO, and WGCNA. The different

expressions of these hub genes were analyzed between SP and HC in the

training and validation datasets, respectively. Finally, the classification

performance of the hub genes in both the training and validation

cohorts was assessed using the receiver operating characteristic (ROC)

curve, and the area under the curve was calculated.
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Immune infiltration analysis

To determine the proportions of immune cells, this study

applied the CIBERSORT and ssGSEA algorithms. Correlation

analysis was then performed to analyze the association between

immune cells and LMRGs.
Single cell RNA-seq analysis

The scRNA-seq dataset GSE167363 (24) (included 5 sepsis patients

and 2 healthy controls) was analyzed in this study. Quality control was

performed, and expression matrix files were generated based on gene

counts and UMI counts. Cells were filtered based on gene counts

between 200 to 5,000 and UMI counts below 30,000, and a total of

38,562 cells were retained for downstream analysis. Seurat v3.1.2 (25)

was used for dimension reduction and clustering, and Harmony was

used for batch correction. The top 2000 variable genes were selected,

and cells were separated into 23 clusters by the Find Clusters function.

Sub-clustering analysis of cell types was performed with a resolution of

1.2. Cells were visualized in a two-dimensional space using UMAP.

Cell-cell interaction (CCI) analysis between HC and SP was performed

using Cellphone DB v2.1.0, based on ligand-receptor pairs. Cell

differentiation trajectory was reconstructed with Monocle2 (26), and

DDRTree was used for FindVariableFeatures and dimension reduction.

The trajectory was visualized using the plot_cell_trajectory function.

DEGs were used to sor t ce l l s in order of spat ia l -

temporal differentiation.
Metabolomics profiling

Metabolomics analysis was conducted on peripheral blood

specimens using a UHPLC system (Vanquish, Thermo Fisher

Scientific). The MS/MS spectra were acquired by the Orbitrap

Exploris 120 mass spectrometer (Xcalibur, Thermo) on information-

dependent acquisition (IDA)mode under the control of the acquisition

software. Filter individual peaks to remove noise. Filter deviation values

based on relative standard deviation (RSD), which is the coefficient of

variation (CV). Afterwards, simulate missing value recoding in the

original data. The numerical simulation method fills in half of the

minimum value. The resulting three-dimensional data, which included

peak number, sample name, and normalized peak area, were input into

the SIMCA14+metaboanalyst tool package (Umetrics, Umea, Sweden)

for PCA analysis (27). The significantly different expressions of

metabolites and metabolic pathways were analyzed by heatmap and

bubble plot. The significantly different expressions of metabolites and

metabolic pathways were analyzed using a heatmap and bubble plot.

Subsequently, a support vector machine was used to develop a classifier

to verify the key metabolites that can distinguish sepsis patients from

healthy controls. The metabolomics profiling data for this study has

been deposited into the CNGB Sequence Archive (CNSA) of the China

National GeneBank DataBase (CNGBdb) (https://db.cngb.org/

data_access/) with the accession number CNP0004111.
frontiersin.org

https://db.cngb.org/data_access/
https://db.cngb.org/data_access/
https://doi.org/10.3389/fimmu.2023.1181697
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


She et al. 10.3389/fimmu.2023.1181697
Agarose gel electrophoresis of reverse
transcriptase-polymerase chain reaction

RNA was extracted from human blood samples and rat cardiac

tissues as previously described (23). Following reverse transcription,

the resulting products in each experimental group were subjected to

PCR amplification. The PCR products were then separated by

electrophoresis and visualized under ultraviolet light. The primers

utilized in these experiments are listed in Supplementary Table 2.
Cell culture and treatment

The H9C2 cells were cultured in DMEM (Invitrogen, CA, USA)

supplemented with 10% fetal bovine serum (v/v) (FBS; Gibco, MD,

USA), 1000 U/ml penicillin, and 100 mg/ml streptomycin

(Invitrogen, CA, USA). To establish a sepsis model, cells were

stimulated with 500 ng/ml LPS for 12 hours. Cells in the normal

group were incubated with an equal volume of DMEM. In the

SB203580 group, cells were pre-incubated with SB203580 at a

concentration of 2 mM for 30 minutes before stimulation with LPS.
Western blotting

Cells were lysed with RIPA lysis buffer with protease inhibitor

(Roche, USA). Cells were lysed using RIPA lysis buffer with a

protease inhibitor (Roche, USA). The total protein concentration

was quantified using a BCA protein assay kit. After separation by

SDS-PAGE, the proteins were transferred onto a PVDF membrane.

The membrane was then blocked with 5% bovine serum albumin

for 1 hour at room temperature and incubated with primary

antibodies against MAPK14 (1:1000) and b-actin (1:4000)

overnight at 4°C. Subsequently, the membrane was rinsed with

PBS and incubated with a goat anti-rabbit secondary antibody

(1:20000) for 1 hour at room temperature. The signals were read

and analyzed using Image Lab software (Bio-Rad).
Statistical analysis

The statistical analyses were conducted using R software,

version 4.1.2 (http://www.r-project.org). Pearson’s correlation was

used to adjust the correlation of co-expression. A p-value less than

0.05 was considered statistically significant.
Results

The lipid metabolism-related hubgenes in
sepsis were screened via various machine
learning algorithms

The flow chart of this study is shown in Figure 1. The results of

PCA showed that gene expression patterns were significantly

different between sepsis patients and healthy controls (Figure 2A).
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Compared with the healthy control group, a total of 508

differentially expressed lipid metabolism-related genes (DE-

LMRGs) were involved in GSE65682, 307 of which were

upregulated and 201 downregulated (fold-change > 1, P< 0.05)

(Figure 2B). As for GO analysis, Cellular compounds (CCs) showed

that 56.5% of these DE-LMRGs were distributed in the cytoplasm,

23% in the cytosol, and 20.3% in the endoplasmic reticulum

(Figure 2C). The top 10 Molecular functions (MFs) included

catalytic activity, serine-threonine kinase activity, acyltransferase

activity, lipid kinase activity, etc. (Figure 2D). In addition, the top 10

Biological Pathways (BPs) of DE-LMRGs were shown in Figure 2E,

including the metabolism of lipids and lipoproteins, TNF receptor

signaling pathway, fatty acid, and ketone body metabolism, and IL-

1-mediated signaling events.

WGCNA was performed to find suspected modules of sepsis. A

soft threshold of b=5 was chosen to ensure the network is scale-free

(Figure 3A). The expression matrix was transformed into an

adjacency matrix and converted into a topological matrix. Genes

were then hierarchically clustered and visualized in a dendrogram

according to the dissimilarity topological overlap matrix. The

module eigengenes (MEs) were determined as the first principal

component of each gene module. We then sought correlations

between MEs with disease, age, and gender to determine sepsis-

associated modules. The blue module had the highest correlation

with sepsis (r = 0.42, P = 5e -35) (Figure 3B). The genes in the blue

module were shown (Figure 3C).

LASSO logistic regression was established to shrink the

regression coefficients towards zero and select out DE-LMRGs. As

shown in Figures 3D, E, a total of 23 DE-LMRGs were screened.

Likewise, RF was also built with minimum error regression trees for

DE-LMRGs screening (Figures 3F, G), and 21 DE-LMRGs

were screened.

By intersection of these 3 methods (WGCNA, LASSO, and RF),

5 hub genes (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2) were

determined (Figure 3H). Then, the expressions of these 5 hub genes

were validated in the training cohort (GSE65682) and the merged

validation cohort (GSE95233 and GSE54514), respectively

(Figures 3I, J). ROC curves showed that these hub genes had an

excellent prediction ability for sepsis in the training cohort

GSE65682 with the AUC ratio>90% (Figure 3K). In the merged

validation cohort, the prediction ability ofMAPK 14, EPHX2, BMX,

FCER1A, and PAFAH2 were validated with an AUC of 0.713, 0.832,

0.762, 0.672, and 0.649, respectively (Figure 3L).
The lipid metabolism-related hubgenes
could affect the immune cell
infiltration in sepsis

The immune-cell infiltration between SP and HC was analyzed.

First, immune-cell proportion comparisons were analyzed by

CIBERSORT in each sample of the training dataset GSE65682

(Figure 4A). Next, as the Pearson’s showed (Figure 4B), there was a

positive correlation between 3 hub genes (PAFAH2, EPHX2, FCER1A)

and CD4+ T cells, CD8+ T cells, resting NK cells, and regulatory T cells.

In contrast, a positive correlation was found between the other 2 hub
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genes (MAPK14 and BMX) and M1 macrophages, M2 macrophages,

monocytes, and activated mast cells. The above results were also

validated by the ssGSEA algorithm (Figures 4C, D), suggesting an

immunosuppressive microenvironment in sepsis, which might provide

novel strategies for immunotherapy.
MAPK14 was involved in the differentiation
of monocytes in sepsis

To further investigate the immune cell landscape of these hub

genes at the single cell level, we downloaded scRNA-seq data from
Frontiers in Immunology 05
GSE167363 (HC=2, SP=5) to explore subpopulations in sepsis. The

samples in this data were peripheral blood mononuclear cells

(PBMCs). We obtained 38562 high-quality single-cell data after

the quality control. Then normalization, unsupervised

dimensionality reduction, and graph-based clustering were

performed, and the cell type of each cluster was determined with

the expression of canonical markers found in the DEGs using the

SynEcoSys database. Finally, 7 cell clusters (plasmacytoid dendritic

cells, erythrocytes, neutrophils, platelets, monocytes, T cells, and B

cells) were obtained in the UMAP plot, which distributed unevenly

between HC and SP (Figure 5A). The top 5 markers of each cluster

were visualized in the bubble chart (Figure 5B). The clusters in each
FIGURE 1

Study flowchart. The scheme diagram of data analyzing. *: as compared with the Control group, P <0.05; **: as compared with the Control group,
P<0.01; ***: as compared with the Control group, P<0.001; ns: as compared with the Control group,no significant difference. NA:Not available.
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sample were displayed separately in UMAP plots (Supplementary

Figure 1A). The top 3 ranked cell populations were T cells, B cells,

and monocytes in both HC and SP. DEGs between HC and SP in T

cells, B cells, and monocytes were shown respectively in

Supplementary Figure 1B.

To identify subtypes of immune cells in sepsis, we clustered T

cells, B cells, and monocytes, respectively. Five subsets of T cells

were identified, including Treg, NK, CD8+ Teff, NK T cells, and

naive T cells, and they were distributed unevenly between SP and

HC (Figure 5C). Three subsets of B cells were identified, including

plasma cells, memory B cells, and naive B cells (Figure 5D). Three

subsets of monocytes were identified, including DCs, non-classical

monocytes, and classical monocytes, and the fraction of non-

classical monocytes was higher in SP than that in HC (Figure 5E).

In addition, platelets were subclustered into 10 subsets

(Supplementary Figure 2A). Neutrophils were subclustered into 4

sub-populations in SP, while only one sub-population in HC

(Supplementary Figure 2B). From the heatmaps of the ligand-

receptor pairs across cell subgroups from HC (upper panel) and

SP (lower panel) (Figure 5F), we found that the monocytes

population (DCs, non-classical monocytes, and classical

monocytes) harbored the maximum number of cell-cell crosstalk

with other neighboring cells both in SP and in HC. Then, the

expressions of 5 hub genes (PAFAH2, MAPK14, EPHX2, FCER1A,
Frontiers in Immunology 06
and BMX) in each subpopulation were shown respectively in

Figure 5G. All these hub genes showed significant differences

between SP and HC, indicating that lipid metabolism-related

genes may play key roles in most immune cell subclusters

during sepsis.

Because monocytes played an essential role in cell communication,

we focused further investigated cell differentiation by trajectory and

pseudotime analysis via Monocle. The classical monocytes were first

developed into non-classical monocytes, which further developed into

the DCs. In SP, all the 3 states of cells could be detected, while only state

1 was found in HC (Figures 6A–D). Interestingly, one of the hub genes,

MAPK14, was simultaneously present in all the states (Figure 6E).

DEGs were identified along the main stem of the pseudotime

trajectory, and the top 30 representative DEGs were shown in the

clustering and expression kinetics (Figure 6F). Cells in clusters

expressing MAPK14 were labeled “positive”; otherwise, cells were

labeled “negative”. In addition, the top 40 DEGs between non-

classical monocytes (positive) and non-classical mo-(negative) cells in

HC and SP were exhibited in the heatmaps (Figures 6G, H). Based on

GO analysis, the biological processes of DEGs between non-classical

monocytes and non-classical mo- cells in SP were identified as humoral

immune response, synapse pruning, and immunoglobulin-mediated

immune response (Figures 6I, J). By GSVA analysis, we detected that

the up-regulated pathways in non-classical monocytes (positive) were
B C

D E

A

FIGURE 2

Identification of differentially expressed lipid metabolism-related genes (DE-LMRGs) from GEO dataset. (A) Principal Components Analysis (PCA)
score plot of GSE65682. Each scatter represents a sample. The red represents the control group, and the green represents the sepsis group.
(B) Volcano plot of DE-LMRGs in GSE65682. The blue dots indicate down-regulated DEGs while the red dots indicate up-regulated DEGs.
Statistically significant DEGs were identified as those with a student’s t-test P < 0.05 and a fold-change > 1. Cellular compound (C), Molecular
function (D) and Biological Pathway (E) of DE-LMRGs analyzed by Funrich.
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the B cell receptor signaling pathway, oxidative phosphorylation and so

on (Figure 6K).
The role of MAPK14 in sepsis patients, rats
and LPS-induced cardiomyocytes

To verify the effect of MAPK14, the only hub gene that was

involved in all the states of monocyte differentiation in sepsis,
Frontiers in Immunology 07
metabolomics was performed by a UHPLC-MS system (the clinical

information of was shown in Supplementary Table 3). The PCA score

plot indicated that the two groups of samples have significant

differentiation and were basically within the 95% confidence interval

(Figure 7A). Then the orthogonal partial least squares-discriminant

analysis (OPLS-DA) was established for pattern recognition of the two

groups and to explore the differentially expressed metabolites (DEMs)

(Figure 7B). A total of 449 DEMs were obtained, of which 309 were

upregulated and 140 were downregulated in the sepsis group (VIP-
B C

D E F

G H I

J K L

A

FIGURE 3

Screening of DE-LMRGs via the comprehensive strategy. (A) Clustering dendrogram of differentially expressed genes related to sepsis. (B) Heatmap
between the correlation between modules and disease (Each cell contained the correlation coefficient and corresponding P-value). (C) The gene
significance for sepsis in the blue module. (D, E) Least absolute shrinkage and selection operator (LASSO) logistic regression algorithm to screen DE-
LMRGs. Different colors represent different genes. (F, G) Based on random forest (RF) algorithm to screen DE-LMRGs. Genes with an importance
score greater than 1 were used for subsequent signature establishment. (H) VENN diagram of hub genes. (I, J) Validation of expression of hub genes
in patients with sepsis and normal control in the training cohort and the validation cohort. (K, L) ROC of hub genes in the training cohort and the
validation cohort. **: as compared with the Control group, P <0.01; ***: as compared with the Control group, P<0.001.
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value > 1, P-value < 0.05), and the super-classes of DEMs were shown

in the pie chart (Figures 7C–E). DEMs were enriched in pathways, such

as phenylalanine metabolism, phenylalanine, tyrosine and tryptophan

biosynthesis, and pyruvate metabolism (Figure 7F). In addition, a total

of 16 hub metabolites were identified by SVM (Figure 7G). The

correlation between hub metabolites and identified hub genes were

further analyzed by Pearson’s correlation analysis. Interestingly, these

hub metabolites were all positively correlated withMAPK14 and BMX

and negatively correlated with FCER1A , PAFAH2 , and

EPHX2 (Figure 7H).

We established a sepsis rat model using CLP and administered

them with a MAPK14 antagonist SB203580. First, the inhibitory

effectiveness of SB203580 on MAPK14 was confirmed in

myocardial tissue of sepsis rats by gel electrophoresis (Figure 8A).

The serum levels of pro-inflammatory cytokines IL-1b, IL-6, and
TNF-a were significantly increased after sepsis, and down-

regulated by inhibiting MAPK14 to 56.7%, 64.8%, and 72.6%

compared with the sepsis group, respectively (Figures 8B–D). The

MAP declined from 12h after CLP, which was partly reversed by

SB203580 treatment (Figure 8E). The survival rate of sepsis rat at

24h was 0, and the average survival time was 6.03 ± 4.96h, whereas

the survival rate in the SB203580 group was 18.75% (3/16), and the

average survival time was significantly extended to 13.28 ± 8.173h

(Figures 8F, G).
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Organ damage was an important cause of death in sepsis

patients, and myocardial injury is one of the most severe

complications of sepsis. To explore the effect of MAPK14

antagonism on myocardial function in sepsis, we observed the

structural changes of myocardial fibers in sepsis rats. The

myocardial fibers were disorganized, and the space between fibers

was widened after sepsis, and these changes were ameliorated by

inhibiting MAPK14 as the HE staining shown (Figure 8H). Then,

we used a myocardial sepsis model in vitro by stimulating H9C2

cells with LPS (500 ng/ml) for 12h. The inhibitory effectiveness of

SB203580 on MAPK14 was verified by Western blot (Figures 8I, J).

Next, TUNEL staining was performed to observe cell apoptosis in

H9C2 cells. The TUNEL-positive cells were reduced in SB203580-

treated H9C2 cells compared with LPS-induced ones (Figure 8K).

In addition, the cell viability of H9C2 cells was decreased by 64.6%

after being stimulated with LPS, while SB203580+LPS treatment

increased the cell viability by 74.5% compared with the LPS

stimulation (Figure 8L).
Discussion

In the present study, we identified 508 DE-LMRGs between SP and

HC and screened 5 lipid metabolism-related hub genes MAPK14,
B

C D

A

FIGURE 4

The landscape of Immune cell infiltration and correlation analysis in GSE65682. (A) Analysis of immune-cell proportion comparisons between sepsis
patients and healthy controls by CIBERSORT. (B) Person’s correlation analysis of CIBERSORT between infiltrating immune cells and identified hub
genes. Red nodes indicate positive correlation while blue nodes indicate negative correlation. (C) Analysis of immune-cell proportion comparisons
between sepsis patients and healthy controls (The blue and red boxplots stand for control and sepsis, respectively) by ssGSEA. (D) Person’s
correlation analysis of ssGSEA between infiltrating immune cells and identified hub genes. Red nodes indicate positive correlation while blue nodes
indicate negative correlation. *: as compared with the Control group, P <0.05; **: as compared with the Control group, P<0.01; ***: as compared
with the Control group, P<0.001.
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EPHX2, BMX, FCER1A, and PAFAH2 via machine learning

algorithms. By analyzing the relationship between hub genes and

immune-cell infiltration, we found an immunosuppressive and

exhausted microenvironment in sepsis. Then, we investigated the

immune cell landscape of these hub genes at the single-cell level by

analyzing scRNA-seq data and identified the pivotal role of lipid

metabolism in immune cells in sepsis. Finally, we validated the role

of MAPK14 in sepsis patients, rats, and LPS-induced cardiomyocytes.

Sepsis can advance to multiorgan system dysfunction that is

caused by a dysregulated immune response to the infection and
Frontiers in Immunology 09
associated with high mortality and morbidity. Currently, there are

still no effective treatment therapies to lower sepsis mortality due to

the complex pathophysiology (28, 29). Although sepsis is

fundamentally associated with inflammation, recent studies have

reported that metabolism, especially lipid metabolism, plays a

critical role in the pathogenesis and pathophysiology of sepsis

(23, 30). Serum levels of the prostaglandins PGE2 and PGD2, two

eicosanoid lipid mediators, are found to be elevated in patients with

sepsis, accompanying with increased COX-2 activity (31). To

explore the molecular mechanisms underlying sepsis, we analyzed
B

C

D

E

F

G

A

FIGURE 5

Single-cell gene expression analysis of peripheral blood mononuclear cells (PBMC) in sepsis. (A) UMAP plot of the cell clusters annotated by the SingleR
package. (B) Bubble chart of the top five markers of each cluster. (C) Subclusters of T cells. (D) Subclusters of B cells. (E) Subclusters of monocytes.
(F) Heatmaps of number of ligand-receptor pairs across cell subgroups in HC and SP. (G) The expressions of the 5 hub genes in each subclusters. *: as
compared with the Control group, P <0.05; **: as compared with the Control group, P <0.01; ***: as compared with the Control group, P<0.001;
****: as compared with the Control group, P<0.0001. ns: as compared with the Control group, no significant difference. NA: Not available.
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public datasets and found that 508 DEGs were related to lipid

metabolism, indicating that LMRGs might play critical roles in the

sepsis pathophysiology.

Then the most relevant featured genes with sepsis were

identified by WGCNA. Crucial DEGs were identified using

LASSO logistic regression and RF. A total of 5 hub genes were

found by taking the intersection of the results of multiple machine

learning algorithms including LASSO, RF, and WGCNA, and they

were all good candidates to predict sepsis validated by ROC curves.
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Based on these findings, these 5 hub genes could be used as

prognostic indicators to predict the outcomes of patients

with sepsis.

Platelet-activating factor acetyl-hydrolase type 2 (PAFAH2) is a

hydrolytic enzyme that can remove oxidatively damaged lipids.

PAFAH2 has been found to repair oxidative-stress induced tissue

injury and thus reduce related cell death (32). Therefore, PAFAH2,

as a hub gene, may play a crucial role in lipid metabolism during

sepsis and can predict the outcome of sepsis patients.
B

C

D

E F

G H

I J K

A

FIGURE 6

Trajectory and pseudo-time analysis of immune cells. (A) Monocle pseudotime trajectory of monocytes. (B) Curve plot showing the progression of
classical monocytes, non-classical monocytes and DCs. (C) The pseudotime trajectory revealed 3 different states of monocytes. (D) Monocle
pseudotime trajectory showing the progression of classical monocytes, non-classical monocytes and DCs in HC and SP. (E) Monocle pseudotime
trajectory of MAPK14. (F) The clustering and expression kinetics shows top 30 representative DEGs along the main stem of the pseudotime
trajectory. (G) Heatmap showing the top 40 DEGs between non-classical monocytes and non-classical mo- cells in HC. (H) Heatmap showing the
top 40 DEGs between non-classical monocytes and non-classical mo- cells in SP. (I) Bar graph of GO Enrichment analysis in HC. (J) Bar graph of
GO Enrichment analysis in SP. (K) Bar plot of GSVA analysis (Mo+ vs Mo-).
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Belonged to the MAP kinase family, MAPK14 act as an

integration point for multiple biochemical signals, and

participates in various cellular processes. MAPK14 can be induced

by many proinflammatory cytokines and is considered as a good

predictor for sepsis, which is consistent with other bioinformatics

analyses of sepsis (33–35).

EPHX2 is a member of the epoxide hydrolase family. Mutations

of EPHX2 are associated with familial hypercholesterolemia, and

EPHX2 has also been proven to exacerbate acute vascular

inflammatory responses (36), suggesting its role in lipid

metabolism and inflammation. Therefore, EPHX2 is a good

candidate for predicting the prognosis of sepsis.
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Bone marrow kinase on the X chromosome (BMX) encodes a

non-receptor tyrosine kinase belonging to the Tec kinase family.

BMX has been shown to attenuate endothelial permeability and

vascular leakage during sepsis (37). In addition, BMX can regulate

LPS-induced IL-6 and VEGF production and is involved in the

phagocytosis of pathogens (38, 39). Thus, BMX may play a key role

in the pathophysiology of sepsis as a hub gene.

FCER1A, an IgE receptor, is the initiator of the allergic response.

In the present study, FCER1A was determined as a hub gene to the

predict prognosis of sepsis, which was consistent with a previous

study showing that FCER1A was identified as a potential diagnostic

biomarker for sepsis (40, 41). In addition, FCER1A has been
B C

D E F
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A

FIGURE 7

Metabolomics profiling of healthy control and sepsis patients. (A) Principal component analysis (PCA) scores plot for metabolomics analysis in sepsis
and control. (B) OPLSDA plot. The ordinate represents the value of R2Y or Q2, the abscissa represents the degree of substitution retention, the red
dot represents the R2Y value of the substitution test, the blue dot represents the Q2 value of the substitution test, and the two dashed lines represent
the regression lines of R2Y and Q2, respectively. (C) Pie chart analysis of differentially-expressed metabolites categories. Each color represents a
different category of substances. (D) Volcano plot, and (E) Heat map analyzed by TBtools showing the significantly changed metabolites in sepsis
and control. (F) Bubble plot of enriched pathways of differentially-expressed metabolites. Each bubble represents a metabolic pathway, with the
position and size of the bubble indicating the impact of the pathway in the topological analysis. The color of the bubble indicates the P-value, with
redder colors indicating smaller P-value and more significant enrichment. (G) Support vector machine (SVM) for hub metabolites, the optimal
variables were screened out based on the “e1071” package. (H) Person’s correlation analysis between hub metabolisms and identified hub genes. *:
as compared with the Control group, P <0.05; **: as compared with the Control group, P <0.01; ***: as compared with the Control group, P<0.001.
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demonstrated to be associated with lipid metabolism and immune

functions (42), supporting our findings.

Immune cells have different metabolic states and can preferentially

utilize specificmetabolites to perform corresponding functions (43). The

alterations of these 5 hub genes in various immune cell types between SP

and HC indicated that lipid metabolic changes played distinct roles in

different immune cells. Besides, we found that some hub genes were

positively correlated with the numbers of CD4+ T cells, CD8+ T cells,

resting NK cells, and regulatory T cells, but negatively correlated with

those of M1 macrophages, M2 macrophages, monocytes, and activated

mast cells; whereas, the other hub genes showed the opposite trend,

which provided novel insights into the regulation of subsets of immune
Frontiers in Immunology 12
cells. Metabolism reprogramming has been reported to be associated

with immune cell infiltration (44). However, the exact metabolic

pathways through which the 5 hub genes affecting the immune

microenvironment of sepsis need to be further studied.

To further explore cellular and molecular features of each immune

cell type involved in sepsis, we identified 7 cell clusters in PBMCs of

sepsis patients using a public scRNA-seq dataset, and these immune

cells were subclustered. First, the proportions of primary cell

populations changed during disease progression. The proportions of

monocytes and platelets increased while that of T cells and B cells

decreased, suggesting phenotypic alterations of immune cells induced by

sepsis. Among all these immune cells, we found that monocytes (DCs,
B C
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FIGURE 8

The role of MAPK14 in sepsis rats and LPS-induced cardiomyocytes. (A) RT-PCR detecting the inhibitory effectiveness of SB203580 on MAPK14 in
heart tissues. ELISA showing the levels of (B) IL-1b, (C) IL-6, and (D) TNF-a between three groups. (E) MAP within 6h detecting starting at 12h after
CLP. (F) The survival time and (G) rate of rats. (H) Representative HE staining images of myocardial fibers. (I) Quantification of Western blotting
results of MAPK14. (J) Representative Western blotting images of MAPK14. (K) Representative TUNEL staining images of H9C2 cells. (L) CCK-8
detecting the cell viability of H9C2 cells. **: as compared with the Control or Normal group, P< 0.01; ***: as compared with the Control or Normal
group, P< 0.001; #: as compared with the Sepsis or LPS group, P< 0.05; ##: as compared with the Sepsis or LPS group, P< 0.01.
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non-classical monocytes, and classical monocytes) harbored the

maximum number of cell-cell crosstalk with other neighboring cells

in sepsis. All the 3 subsets of monocytes played crucial roles in the

pathological process of sepsis. Accelerated differentiation of monocytes

into DCs in sepsis patients were also reported (45, 46). Second, DEGs in

each immune cell population was identified between HC and SP,

indicating that sepsis could induce functional changes in different

immune cells. Third, many immune cell subtypes were identified, and

sepsis caused altered the expressions of 5 hub genes in almost all the

subtypes, suggesting their pivotal roles in the immune system

during sepsis.

The hub gene MAPK14 might be critical in regulating the

differentiation and function of monocytes as MAPK14 was found

to be involved in all the states of monocytes along the timeline

during sepsis progression, and therefore, MAPK14 might become a

novel therapeutic target for sepsis. In addition to monocytes, the

differentiation of T cells and B cells also played vital roles in the

development of sepsis. However, the association between LMRGs

and the differentiation of T and B cells remains unclear, which

needs further investigation.

In this study, we also identified altered metabolite profiles of

sepsis using metabolomics. The highest proportion of DEMs in

sepsis is lipids and lipid-like molecules (41.9%). DEMs are mainly

enriched in pyruvate metabolism. A total of 16 hub metabolites

were found through the SVM algorithm, and their expressions were

correlated with the expressions of the hub genes, indicating that the

featured hub genes might have a pivotal role in the interplays

among the dysregulated metabolites in sepsis. A recent study

showed that the pathogenesis was influenced by metabolic

homeostasis in sepsis (44). We also found that MAPK14 was

positively correlated with hub metabolites. In addition, the role of

MAPK14 in the development of sepsis was validated in vivo and in

vitro. But the mechanism of the protective effect of MAPK14 on

monocyte differentiation and sepsis induced cardiac dysfunction

was still unknown, and will be investigated in the future. Therefore,

the novel sepsis biomarkers associated with metabolism, including

MAPK14 have the potential to develop targeted therapies for sepsis.
Conclusions

In the present study, we identified 5 lipid metabolism-related hub

genes (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2) that have the

possibility of diagnostic and therapeutic in patients with sepsis by

machine learning analysis. The single-cell RNA landscape revealed that

LMRGs might play pivotal roles in the immune system during sepsis.

The protective effect of inhibiting MAPK14 on sepsis indicated that

these lipid-metabolic hub genes might have great potential in prognosis

prediction and precise treatment for sepsis patients.
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SUPPLEMENTARY FIGURE 1

(A) UMAP plots of clusters in each sample. (B) DEGs between HC and SP in T
cells, B cells, and monocytes.
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(A) Subclusters and populations of Platelets. (B) Subclusters and populations
of Neutrophils.
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