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Background: Ameloblastoma is a locally invasive and aggressive epithelial

odontogenic neoplasm. The BRAF-V600E gene mutation is a prevalent genetic

alteration found in this tumor and is considered to have a crucial role in its

pathogenesis. The objective of this study is to develop and validate a radiomics-

based machine learning method for the identification of BRAF-V600E gene

mutations in ameloblastoma patients.

Methods: In this retrospective study, data from 103 patients diagnosed with

ameloblastoma who underwent BRAF-V600E mutation testing were collected.

Of these patients, 72 were included in the training cohort, while 31 were included

in the validation cohort. To address class imbalance, synthetic minority over-

sampling technique (SMOTE) is applied in our study. Radiomics features were

extracted from preprocessed CT images, and the most relevant features,

including both radiomics and clinical data, were selected for analysis. Machine

learning methods were utilized to construct models. The performance of these

models in distinguishing between patients with and without BRAF-V600E gene

mutations was evaluated using the receiver operating characteristic (ROC) curve.

Results: When the analysis was based on radiomics signature, Random Forest

performed better than the others, with the area under the ROC curve (AUC) of

0.87 (95%CI, 0.68-1.00). The performance of XGBoost model is slightly lower

than that of Random Forest, and its AUC is 0.83 (95% CI, 0.60-1.00). The

nomogram evident that among younger women, the affected region primarily

lies within the mandible, and patients with larger tumor diameters exhibit a

heightened risk. Additionally, patients with higher radiomics signature scores are

more susceptible to the BRAF-V600E gene mutations.

Conclusions: Our study presents a comprehensive radiomics-based machine

learning model using five different methods to accurately detect BRAF-V600E

gene mutations in patients diagnosed with ameloblastoma. The Random Forest

model’s high predictive performance, with AUC of 0.87, demonstrates its

potential for facilitating a convenient and cost-effective way of identifying
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patients with the mutation without the need for invasive tumor sampling for

molecular testing. This non-invasive approach has the potential to guide

preoperative or postoperative drug treatment for affected individuals, thereby

improving outcomes.
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Introduction

Ameloblastoma is a common benign tumor of dental origin,

arising from the epithelial component of the developing dental

embryo, and often affecting the mandible or maxilla (1) The BRAF-

V600E gene mutation is frequently reported in approximately 70%

of ameloblastoma (2). Ameloblastoma typically grows slowly but

may show features of local invasion into surrounding tissues or

cause bone resorption (3). Surgical excision is the most commonly

used treatment approach due to the tumor’s complex growth

pattern, but it can lead to facial deformities (4) and disease

recurrence (5). On the other hand, conservative approaches such

as fenestration decompression combined with secondary curettage

and local curettage, lead to a high rate of tumor recurrence, and

radical excisional surgery remains the preferred treatment option

(6, 7). The transformation of ameloblastoma to ameloblastic

carcinoma, although rare in clinical practice, is still a priority for

clinicians when diagnosing the disease (8). Moreover, the

recurrence of ameloblastoma can extend over many years, and a

disease-free period of 5 years does not necessarily imply complete

recovery (9). Therefore, regular follow-up is required. In summary,

there is a pressing need for targeted treatment modalities for this

disease to avoid extensive surgery and disease recurrence. The

pathogenesis of ameloblastoma at the molecular level is not yet

fully understood. However, some studies have identified potential

prognostic markers or therapeutic targets, indicating the need for

further research (2). Interestingly, genetic molecular alterations in

ameloblastoma have been shown to be associated with clinical

features and patient prognosis (10, 11). The BRAF-V600E gene

mutation has been identified as a crucial factor in the pathogenesis

of ameloblastoma (12). The MAPK/ERK pathway has been found to

be activated by the BRAF-V600E gene mutation (13), leading to

increased cell proliferation and inhibition of apoptosis and

promoting the development of ameloblastoma (14). The

prevalence of BRAF-V600E gene mutation in aggressive and

recurrent ameloblastoma suggests a potential role in the biological

behavior of the tumor (15). Other molecular mechanisms, such as

the activation of the Wnt/b-catenin pathway, have also been

implicated in the pathogenesis of ameloblastoma, leading to

increased cell proliferation and inhibition of apoptosis (16).

Further investigation into these pathways may provide important

insights into the development and progression of ameloblastoma

and facilitate the development of targeted therapies.
02
Radiomics is an increasingly important discipline in the medical

field, providing quantitative analysis of medical images using

advanced computational techniques to extract multiple features

and increase the accuracy of clinical decision making by physicians

(17, 18). Radiomics analysis has been applied to predict mutations

in tumor somatic cells in various cancers (19). Yang et al. (20)

showed good area under the curve (AUC) and specificity in

predicting KRAS/NRAS/BRAF gene mutations in colorectal

cancer patients based on radiomics features of computed

tomography (CT). Radiomics has also been used to predict

response to chemotherapy and radiotherapy in non-small cell

lung cancer patients, assisting clinicians in making treatment

decisions (21). While some studies have explored the relationship

between radiomics features and BRAF gene mutation status, the

role of CT-based machine learning (ML) for radiomics in

identifying BRAF-V600E gene mutations in ameloblastoma

remains to be investigated.

Therefore, the objective of this study is to develop a radiomics-

based model that predicts the BRAF-V600E gene mutation status in

patients with ameloblastoma. This study will employ five ML

algorithms based on CT and combine radiomics and clinical

features of patients to evaluate the model’s effectiveness in

predicting BRAF-V600E gene mutations in ameloblastoma. The

outcomes of this study may prove valuable in distinguishing

patients with ameloblastoma who have developed BRAF-V600E

gene mutations, and help clinicians make treatment decisions

without resorting to invasive testing.
Methods

Patients

The inclusion criteria and procedures for participant

recruitment in this retrospective study were in accordance with

the guidelines stipulated in the 1964 Helsinki Declaration. Approval

for this study was obtained from the Ethics Committee of the First

Affiliated Hospital of Zhengzhou University (approval number:

2023-KY-0140). One hundred and three patients diagnosed with

ameloblastoma at the First Affiliated Hospital of Zhengzhou

University between January 2012 and December 2022 were

included in this study. The clinical information of patients

includes age, gender, tumor site, and tumor diameter. The
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inclusion criteria were as follows: (1) a pathological diagnosis of

ameloblastoma; (2) clear CT images prior to surgery; and (3)

detection of the BRAF-V600E gene mutation after surgery. The

exclusion criteria (Figure 1) were as follows: (1) CT images cannot

be used (n=82); (2) without clinical data (n=15); (3) without BRAF-

mutant test (n=135); and (4) accepted prior surgery treatment

because of ameloblastoma (n=37). Patients were allocated into

two distinct groups, namely a training cohort and a validation

cohort, based on the chronological sequence of their surgical

procedures. The training cohort comprised 72 patients who

underwent surgery within the timeframe spanning January 2012

to January 2020. On the other hand, the validation cohort

incorporated 31 patients whose surgical procedures took place

between February 2020 and December 2022.
Image acquisition and processing

The CT machine utilized in this study was the Aquilion 16 CT

(Toshiba, Japan), located at the First Affiliated Hospital of

Zhengzhou University. The following scan parameters were

employed: voltage 120kV, current 200 mA, and a slice thickness

of 5mm.
Regions of interest (ROI) segmentation and
mask dilation

Our radiomics analysis encompassed various stages: lesion

segmentation, feature extraction, feature selection, and feature

analysis and evaluation (Figure 2). Prior to initiating the lesion

segmentation, we implemented a resampling process to standardize

the images in accordance with the Image Biomarker

Standardization Initiative (IBSI) guidelines (22), which involved

resampling voxel sizes of 1 mm × 1 mm × 1 mm. The patient CT
Frontiers in Immunology 03
images collected for this study were obtained at a resolution of

512 × 512.

ROIs were manually segmented on a slice-by-slice basis along

the lesions utilizing ITK-SNAP software (version 3.8.0, www.ITK-

SNAP.org). An oral surgeon with over three years of experience

undertook this segmentation, with the individual blinded to the

clinical information of the patients. Another senior dentist with five

years of experience verified all manual delineations. The delineated

ROIs were saved in Neuroimaging Informatics Technology

Initiative (NII) format for further analysis. Subsequently,

quantitative radiomic features were extracted from CT images,

u s ing Pyrad iomic s so f tware (ve r s ion 2 .2 . 0 , h t tp : / /

pyradiomics.readthedocs.io) (23). The intraclass correlation

coefficients (ICCs) were calculated to gauge the consistency

between the features extracted by the two radiologists. Any

features presenting intra-observer or inter-observer ICCs less than

0.75 were excluded, attributable to their comparatively low

robustness (24).
Analysis of BRAF-V600E gene mutations

Based on the specimen, BRAF-V600E gene mutations were

examined using real-time fluorescent polymerase chain reaction

(PCR) and DNA sequencing (ABI Step One/ABI sequence

Analyzer) technologies (25). The nucleic acid ’s original

concentration was 184 ng/ml. In the present study, wild-type

BRAF-V600E referred to the absence of mutations in those loci.
Radiomics feature extraction

The hand-crafted features can be categorized into three groups:

(1) geometric features, (2) intensity features, and (3) texture

features. Extracted features comprised 360 first-order features,

440 gray-level co-occurrence matrix (GLCM) features, 280 gray-

level dependence matrix (GLDM) features, 320 gray-level run

length matrix (GLRLM) features, 320 gray-level size zone matrix

(GLSZM) features, 100 neighboring gray tone difference matrix

(NGTDM) features and 14 shape features (Supplementary

Datasheet 1). In total 1834 radiomics features were extracted

from ROIs.
Feature selection

Prior to in-depth analysis, all extracted radiomics features

underwent standardization into a normal distribution using z-

scores, thereby nullifying potential discrepancies in data value

scales. Given the contrast between the relatively low dimensional

sample size and the high dimensional radiomics features, feature

selection was indispensable to prevent overfitting (26). We

conducted a Student’s t-test for features adhering to a normal

distribution, only considering features with a p-value less than

0.05 for subsequent analysis.
FIGURE 1

Flow diagram of the study population.
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Spearman’s rank correlation coefficient was used to assess the

correlation between features with high repeatability (27). To avoid

redundancy, we retained only one feature from any pair with a

correlation coefficient greater than 0.9 (28). To maximize the

informative value of the feature set, we employed a greedy

recursive deletion strategy for feature filtering. This involved

removing the feature with the greatest redundancy in the current

set until 51 features remained.

We employed the Least Absolute Shrinkage and Selection

Operator (LASSO) regression model to construct a signature

based on the discovery dataset. LASSO regression shrinks all

regression coefficients towards zero and sets many coefficients of

uncorrelated features to exactly zero. The optimal regularization

weight l was determined using a minimum criterion and 10-fold

cross-validation. Retained features with non-zero coefficients were

used to fit the regression model and combined to form radiomics

features. A radiomics score was then calculated for each patient by

weighting the linear combination of the retained features by their

model coefficients. We used the Python scikit-learn package (29) for

LASSO regression modeling.
Radiomics signature

Radiomics data were balanced using synthetic minority over-

sampling technique (SMOTE) algorithm synthesis (30). In this

work, we processed hyperparameter optimization using grid

search to optimize the parameters of models and apply the best

parameters to predict BRAF-V600E gene mutations in

ameloblastoma. After LASSO feature screening, the final features

were input into various ML models, including K-Nearest Neighbor
Frontiers in Immunology 04
(KNN), Random Forest, ExtraTrees, eXtreme Gradient Boosting

(XGBoost) and Multilayer Perceptron (MLP), for constructing the

risk model. To obtain the final radiomics signature, a 5-fold cross-

validation approach was adopted. Radiomics-clinical nomogram

was developed by combining the radiomics signature and clinical

features using the logistic regression algorithm.
Statistical analysis

In an endeavor to ascertain the equivalence of patient attributes

across cohorts, we applied differing statistical approaches for data

analysis. Student’s t-test were utilized for the analysis of normally

distributed data, whilst non-normally distributed data were scrutinized

using the Mann-Whitney U test. For categorical variables, chi-square

tests proved the method of choice for evaluation. Furthermore, we

conducted an assessment of the predictive power of three distinctive

models using ROC curves. The calculation of the AUC was

undertaken, followed by the computation of the balanced sensitivity

and specificity of the cut-off point, yielding the maximum value of the

Youden index. We calculated the 95% confidence interval (CI) of the

AUC utilizing the bootstrap method with 1000 intervals for increased

precision. This comprehensive and rigorous analysis approach serves to

illuminate the strengths and potential limitations of our study,

providing a more robust understanding of the data and underlying

patterns therein. The AUC ranged from 0.5 to 1.0. The discriminative

test was deemed perfect when the AUC equaled 1.0. An AUC between

0.8 and 1.0 was indicative of a good discriminant test, whereas an AUC

ranging from 0.6 to 0.8 represented a moderate test. If the AUC fell

within the 0.5 to 0.6 range, the discriminant test was considered poor

(31, 32).We performed statistical analyses using SPSS software (version
FIGURE 2

Workflow of the study. LASSO, the least absolute shrinkage and selection operator; n, Number of features; ROC, receiver operating characteristic;
DCA, decision curve analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1180908
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1180908
21.0). A two-sided p-value of less than or equal to 0.05 was stipulated as

the threshold for statistical significance.
Results

Clinical characteristics

The baseline clinical characteristics of the enrolled patients are

presented in Table 1. No significant differences were observed in

terms of age, gender, tumor site, and tumor diameter between gene

mutation and non-mutation groups (p-value > 0.05). There was no

statistically significant difference (p-value > 0.05) between clinical

characteristics and predicted BRAF-V600E mutation on univariate

analysis (Supplementary Table 1).
LASSO feature selection

We selected 1834 features for the extraction of ROIs, and the

categories of features and the corresponding p-values are shown in

Figure 3A and in Supplementary Datasheet 1. We kept 155 features

that the p-value was less or equal to 0.05. The correlation

coefficients for each feature were visualized and can be seen in

Supplementary Datasheet 2. Subsequently, six nonzero coefficient

features were selected to create radiomics-scores with a LASSO

logistic regression model (l = 0.0297) (Figures 3B, C). The

histograms of the feature scores are shown in Figure 3D.
Diagnostic performance among radiomics
model and nomogram

For the validation cohort, the AUC value for each classifier across

the different ML algorithms are presented in Figure 4 (more details in

Supplementary Table 2). When the analysis was based on radiomics

signature, Random Forest performed better than the others, with AUC
Frontiers in Immunology 05
of 0.87 (95%CI, 0.68-1.00) (Figure 5A). The performance of XGBoost

model is slightly lower than that of Random Forest, and its AUC is 0.83

(95% CI, 0.60-1.00). These two models have a good performance. The

other three models performed moderately. In this study, we evaluated

the model through decision curve analysis (DCA). The DCA for

Random Forest model is presented in Figure 5B.

The nomogram combined the clinical features (gender, age,

tumor site and diameter) and radiomics signature (Figure 5C). It is

evident from Figure 5C that among younger women, the affected

region primarily lies within the mandible, and patients with larger

tumor diameters exhibit a heightened risk. Additionally, patients

with higher radiomics signature scores are more susceptible to the

BRAF-V600E gene mutation.
Discussion

Ameloblastoma is a common tumor of dental origin, and its

biological behavior is complex and not yet fully understood. This

disease is prone to recurrence and has a tendency to becomemalignant,

often classified as borderline tumors. Pulmonary metastases have also

been reported in some cases of ameloblastoma (33). The conventional

treatment for ameloblastoma is surgical resection, which depends on

various factors such as tumor location, size, histological type, patient’s

age, and general health (34). The goal is to achieve complete removal of

the tumor while preserving the patient’s physical function and aesthetic

appearance as much as possible. However, due to the slow growth of

ameloblastoma, patients often present with large tumors at the time of

consultation, which may result in facial deformities after resection and

impair oral and maxillofacial function, leading to physical and mental

health issues (35). Therefore, early detection, diagnosis, and treatment

of ameloblastoma are crucial. It is also important to explore new

adjuvant treatments in combination with surgery to reduce the

recurrence rate of this disease. In the realm of ameloblastoma

research, the focus of existing radiomics studies has largely been on

the differential diagnosis of the disease. For instance, Liu et al. (36)

utilized a Convolutional Neural Network (CNN) methodology to
TABLE 1 Characteristics of patients in training and validation cohorts.

Variable Training cohort p-value Validation cohort p-value

Wild-type Mutant-type Wild-type Mutant-type

Age (years, mean ± SD) 35.62±20.94 39.80±14.59 0.39 46.50±26.55 34.40±15.92 0.15

Gender, n (%) 0.95 0.99

Male 8 (61.54) 33 (55.93) 4 (66.67) 16 (64.00)

Female 5 (38.46) 26 (44.07) 2 (33.33) 9 (36.00)

Site, n (%) 0.27 0.58

Mandible 10 (76.92) 52 (88.14) 6 (100.00) 21 (84.00)

Maxilla 3 (23.08) 5 (8.47) 0 (0.00) 3 (12.00)

Other (temporal, orbital) 0 (0.00) 2 (3.39) 0 (0.00) 1 (4.00)

Diameter (mm, mean ± SD) 39.77±15.45 39.90±15.31 0.98 39.83±6.71 44.00±17.19 0.57
fron
SD, Standard Deviation.
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FIGURE 4

ROC curves of the five models for the validation cohort. AUC, area under ROC curve; ROC, receiver operating characteristic; CI, confidence interval;
KNN, K-Nearest Neighbor; XGBoost, eXtreme Gradient Boosting; MLP, Multilayer Perceptron.
B

C D

A

FIGURE 3

(A) Statistics of radiomic features. Points represent features. GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM,
gray-level run length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring gray tone difference matrix. (B) Mean square error of cross-
validation of LASSO model. The optimal l value is 0.0297. MSE: mean square error. (C) LASSO coefficient solution path of features. The optimal l
value is 0.0297. (D) The histogram of the feature score. The y-axis indicates the selected six radiomics features, and the x-axis represents the
coefficients of LASSO model. LASSO, the least absolute shrinkage and selection operator; LLL, low-low-low-pass filtered image; HLH, high-low-
high-pass filtered image.
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distinguish between ameloblastoma and odontogenic keratocyst,

drawing on the patients’ panoramic radiographs for their analyses.

Alternatively, Chai et al. (37) adopted a similar CNN modeling

approach, but their study was distinctive in that it relied on patients’

cone beam computed tomography (CBCT) data to differentiate

between the two conditions.

Ameloblastoma is a heterogeneous tumor that can be classified

into different subtypes based on their histological characteristics,

including conventional, unicystic, and desmoplastic types, among

others. Each subtype exhibits distinct biological behaviors and

treatment responses (38). Meanwhile, it has been found that

ameloblastoma carrying mutations in the BRAF gene tend to

occur more frequently in the mandible and in younger patients

(39). In the era of precision medicine, it is crucial to identify the

molecular features of different disease subtypes and develop

targeted therapies accordingly. Previous studies have used

radiomics features as the primary investigative tool to identify the

molecular subtypes of various gene mutations present in low-grade

gliomas (40). Multiple studies have demonstrated that the BRAF-

V600E gene mutation contributes to the activation of the MAPK

signaling pathway and plays a crucial role in the pathogenesis of

ameloblastoma (41). Therefore, the development of BRAF-V600E-

specific inhibitors represents a promising approach to improve the

treatment of ameloblastoma in addition to surgery. Currently,
Frontiers in Immunology 07
BRAF-V600E inhibitors such as Zelboraf and Dabrafenib are

approved for the treatment of melanoma (42), while their use in

ameloblastoma is still under investigation. However, some studies

have shown promising clinical outcomes with the use of Dabrafenib

in ameloblastoma (43). As research into the BRAF-V600E gene

mutation continues, the use of targeted therapeutic agents for this

mutation in ameloblastoma is expected to become a valuable

adjuvant treatment to reduce the recurrence rate of patients.

In this study, we propose a predictive model based on a

combination of non-invasive CT images and patient clinical features

to predict BRAF-V600E gene mutation status in patients with

ameloblastoma. We included clinical information such as age,

gender, tumor location, and tumor diameter of patients with

ameloblastoma to establish a correlation between this clinical

information and the BRAF-V600E gene mutation. ML algorithms

were used to identify patterns and relationships in the data. Five ML

models were trained on 72 patients, and their performance was

validated with 31 patients. The Random Forest model performed

good predictability with AUC of 0.87 (95%CI, 0.68-1.00) in the

validation cohort, indicating that it may handle noisy data in CT

imagesmore effectively than other tree-basedmodels. The performance

of XGBoost model is slightly lower than that of Random Forest, and its

AUC is 0.83 (95% CI, 0.60-1.00). These two models have a

good performance.
B

C

A

FIGURE 5

(A) ROC curve of the Random Forest model. CI, confidence interval; ROC, receiver operating characteristic; AUC, area under ROC curve. (B) DCA of
the Random Forest model. DCA: decision curve analysis. (C) Nomogram based on the clinical and radiomics features prediction model to predict the
risk of BRAF-V600E gene mutation. Gender, 0; male, 1; female. Tumor site, 0; mandible, 1; maxilla, 2; other (temporal, orbital).
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The nomogram showed the importance ranking of individual

features, with radiomics features having greater importance than

patient clinical information, which is consistent with the results

derived from the Random Forest model. This study provides

evidence of a clear association between CT image features and

BRAF-V600E genotype, and demonstrates the ability of radiomics

to identify BRAF-V600E gene mutation status. The prediction of

BRAF-V600E gene mutations based on Random Forest models has

the potential to replace conventional invasive biopsies. To our

knowledge, this is the first study to build a ML model to predict

BRAF-V600E mutation status in patients with ameloblastoma.

Therefore, this study makes a significant contribution to existing

research in this field.

Supervised learning and unsupervised learning are the two main

ML methods. While supervised learning has been the primary

method in the field of data mining (44), all five ML models used

in this study are supervised learning methods. Our retrospective

study demonstrated that the Random Forest models were viable for

predicting BRAF-V600E gene mutation status.

There are several limitations to this study that should be

acknowledged. Firstly, being a retrospective study, it may have

some inherent limitations such as data selection bias. Secondly,

the sample size of patients included in the study was relatively small

after a rigorous screening process. However, we believe that the

inclusion of more than 100 patients for radiological analysis is

desirable in the current study (45). In future studies, we plan to

expand the sample size to assess the stability and clinical application

of the Random Forest models. Simultaneously, we will persist in our

patient follow-up efforts and utilize radiomics features to

prognosticate their progression-free survival, particularly

concerning recurrence of ameloblastoma, drawing inspiration

from the research trajectory established by Le et al. (46).

Additionally, we aim to employ semi-automated or automated

radiological methods in future studies to enhance the robustness

of the prediction models used in this study.
Conclusion

In conclusion, this study demonstrated that a combination of

radiomics signatures and clinical features can accurately predict

BRAF-V600E gene mutation status in patients with ameloblastoma.

While these findings require validation with a larger sample size, the

use of machine learning models provides a non-invasive and cost-

effective approach for predicting BRAF-V600E gene mutations. This

approach could potentially aid in screening patients before resorting

to invasive sampling and in developing personalized treatment plans

to optimize outcomes for patients with ameloblastoma.
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et al. Introduction to radiomics. J Nucl Med (2020) 61(4):488–95. doi: 10.2967/
jnumed.118.222893

19. Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, et al.
Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res (2017)
77(14):3922–30. doi: 10.1158/0008-5472.CAN-17-0122

20. Yang L, Dong D, Fang M, Zhu Y, Zang Y, Liu Z, et al. Can CT-based radiomics
signature predict KRAS/NRAS/BRAF mutations in colorectal cancer. Eur Radiol (2018)
28(5):2058–67. doi: 10.1007/s00330-017-5146-8

21. Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, et al. Radiomics for response
and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat
(2018) 17:1533033818782788. doi: 10.1177/1533033818782788

22. Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A,
et al. The image biomarker standardization initiative: standardized quantitative
radiomics for high-throughput image-based phenotyping. Radiology (2020) 295
(2):328–38. doi: 10.1148/radiol.2020191145

23. van Griethuysen J, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al.
Computational radiomics system to decode the radiographic phenotype. Cancer Res
(2017) 77(21):e104–104e107. doi: 10.1158/0008-5472.CAN-17-0339
Frontiers in Immunology 09
24. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation
coefficients for reliability research. J Chiropr Med (2016) 15(2):155–63. doi: 10.1016/
j.jcm.2016.02.012

25. Pereira NB, Pereira KM, Coura BP, Diniz MG, de Castro WH, Gomes CC, et al.
BRAFV600E mutation in the diagnosis of unicystic ameloblastoma. J Oral Pathol Med
(2016) 45(10):780–5. doi: 10.1111/jop.12443

26. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative
radiomics studies for tissue characterization: a review of technology and
methodological procedures. Br J Radiol (2017) 90(1070):20160665. doi: 10.1259/
bjr.20160665

27. Luo Y, Sun X, Kong X, Tong X, Xi F, Mao Y, et al. A DWI-based radiomics-
clinical machine learning model to preoperatively predict the futile recanalization after
endovascular treatment of acute basilar artery occlusion patients. Eur J Radiol (2023)
161:110731. doi: 10.1016/j.ejrad.2023.110731

28. Wang W, Peng Y, Feng X, Zhao Y, Seeruttun SR, Zhang J, et al. Development
and validation of a computed tomography-based radiomics signature to predict
response to neoadjuvant chemotherapy for locally advanced gastric cancer. JAMA
Netw Open (2021) 4(8):e2121143. doi: 10.1001/jamanetworkopen.2021.21143

29. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in python. J Mach Learn Res (2011) 12:2825–30.
doi: 10.5555/1953048.2078195

30. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic
minority over-sampling technique. J Artif Intell Res (2002) 16:321–57. doi: 10.1613/
jair.953

31. Weinstein MC, Fineberg HV, Elstein AS, Frazier HS, Neuhauser D, Neutra RR,
et al. Clinical decision analysis. (Philadelphia: W.B. Saunders Company) (1980).

32. Meehan AJ, Baldwin JR, Lewis SJ, MacLeod JG, Danese A. Poor individual risk
classification from adverse childhood experiences screening. Am J Prev Med (2022) 62
(3):427–32. doi: 10.1016/j.amepre.2021.08.008

33. Henderson JM, Sonnet JR, Schlesinger C, Ord RA. Pulmonary metastasis of
ameloblastoma: case report and review of the literature.Oral Surg Oral Med Oral Pathol
Oral Radiol Endod (1999) 88(2):170–6. doi: 10.1016/s1079-2104(99)70113-7

34. Carlson ER, Marx RE. The ameloblastoma: primary, curative surgical
management. J Oral Maxillofac Surg (2006) 64(3):484–94. doi: 10.1016/
j.joms.2005.11.032

35. Abe M, Zong L, Abe T, Takeshima H, Ji J, Ushijima T, et al. BRAF inhibitor: a
novel therapy for ameloblastoma in mandible. Chin J Cancer Res (2018) 30(6):677–8.
doi: 10.21147/j.issn.1000-9604.2018.06.12

36. Liu Z, Liu J, Zhou Z, Zhang Q, Wu H, Zhai G, et al. Differential diagnosis of
ameloblastoma and odontogenic keratocyst by machine learning of panoramic
radiographs. Int J Comput Assist Radiol Surg (2021) 16(3):415–22. doi: 10.1007/
s11548-021-02309-0

37. Chai ZK, Mao L, Chen H, Sun TG, Shen XM, Liu J, et al. Improved diagnostic
accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial
intelligence. Front Oncol (2021) 11:793417. doi: 10.3389/fonc.2021.793417

38. Lee SK, Kim YS. Current concepts and occurrence of epithelial odontogenic
tumors: I. Ameloblastoma and adenomatoid odontogenic tumor. Korean J Pathol
(2013) 47(3):191–202. doi: 10.4132/KoreanJPathol.2013.47.3.191

39. Brown NA, Rolland D, McHugh JB, Weigelin HC, Zhao L, Lim MS, et al.
Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res (2014) 20
(21):5517–26. doi: 10.1158/1078-0432.CCR-14-1069

40. Lam L, Do DT, Diep D, Nguyet D, Truong QD, Tri TT, et al. Molecular subtype
classification of low-grade gliomas using magnetic resonance imaging-based radiomics
and machine learning. NMR BioMed (2022) 35(11):e4792. doi: 10.1002/nbm.4792

41. You Z, Liu SP, Du J, Wu YH, Zhang SZ. Advancements in MAPK signaling
pathways and MAPK-targeted therapies for ameloblastoma: A review. J Oral Pathol
Med (2019) 48(3):201–5. doi: 10.1111/jop.12807

42. Menzies AM, Long GV. Systemic treatment for BRAF-mutant melanoma:
where do we go next. Lancet Oncol (2014) 15(9):e371–81. doi: 10.1016/S1470-2045
(14)70072-5

43. Tan S, Pollack JR, Kaplan MJ, Colevas AD, West RB. BRAF inhibitor treatment
of primary BRAF-mutant ameloblastoma with pathologic assessment of response. Oral
Surg Oral Med Oral Pathol Oral Radiol (2016) 122(1):e5–7. doi: 10.1016/
j.oooo.2015.12.016

44. Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised
machine learning algorithms for disease prediction. BMC Med Inform Decis Mak
(2019) 19(1):281. doi: 10.1186/s12911-019-1004-8

45. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.2015151169

46. Le VH, Kha QH, Minh T, Nguyen VH, Le VL, Le N. Development and
validation of CT-based radiomics signature for overall survival prediction in multi-
organ cancer. J Digit Imaging (2023) 36(3):911–22. doi: 10.1007/s10278-023-00778-0
frontiersin.org

https://doi.org/10.1007/s12105-021-01404-7
https://doi.org/10.4137/BIC.S29329
https://doi.org/10.3892/ijo.2016.3350
https://doi.org/10.1016/j.tripleo.2007.01.033
https://doi.org/10.4317/jced.55452
https://doi.org/10.1177/0022034514560373
https://doi.org/10.1111/jop.12428
https://doi.org/10.1016/j.tripleo.2009.06.045
https://doi.org/10.1016/j.yexmp.2014.09.001
https://doi.org/10.1016/j.yexmp.2014.09.001
https://doi.org/10.1038/ng.2986
https://doi.org/10.1136/jclinpath-2021-207527
https://doi.org/10.1111/jop.13278
https://doi.org/10.3389/froh.2021.740788
https://doi.org/10.1111/odi.12646
https://doi.org/10.5306/wjco.v11.i1.31
https://doi.org/10.1111/jop.12761
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1158/0008-5472.CAN-17-0122
https://doi.org/10.1007/s00330-017-5146-8
https://doi.org/10.1177/1533033818782788
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1111/jop.12443
https://doi.org/10.1259/bjr.20160665
https://doi.org/10.1259/bjr.20160665
https://doi.org/10.1016/j.ejrad.2023.110731
https://doi.org/10.1001/jamanetworkopen.2021.21143
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.amepre.2021.08.008
https://doi.org/10.1016/s1079-2104(99)70113-7
https://doi.org/10.1016/j.joms.2005.11.032
https://doi.org/10.1016/j.joms.2005.11.032
https://doi.org/10.21147/j.issn.1000-9604.2018.06.12
https://doi.org/10.1007/s11548-021-02309-0
https://doi.org/10.1007/s11548-021-02309-0
https://doi.org/10.3389/fonc.2021.793417
https://doi.org/10.4132/KoreanJPathol.2013.47.3.191
https://doi.org/10.1158/1078-0432.CCR-14-1069
https://doi.org/10.1002/nbm.4792
https://doi.org/10.1111/jop.12807
https://doi.org/10.1016/S1470-2045(14)70072-5
https://doi.org/10.1016/S1470-2045(14)70072-5
https://doi.org/10.1016/j.oooo.2015.12.016
https://doi.org/10.1016/j.oooo.2015.12.016
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s10278-023-00778-0
https://doi.org/10.3389/fimmu.2023.1180908
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Machine learning-based radiomics for predicting BRAF-V600E mutations in ameloblastoma
	Introduction
	Methods
	Patients
	Image acquisition and processing
	Regions of interest (ROI) segmentation and mask dilation
	Analysis of BRAF-V600E gene mutations
	Radiomics feature extraction
	Feature selection
	Radiomics signature
	Statistical analysis

	Results
	Clinical characteristics
	LASSO feature selection
	Diagnostic performance among radiomics model and nomogram

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


