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Multimodal analysis of
granulocytes, monocytes, and
platelets in patients with cystic
fibrosis before and after
Elexacaftor–Tezacaftor–
Ivacaftor treatment
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and David Alexander Christian Messerer2,5*

1Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany, 2Institute
of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany, 3Institute
of Transfusion Medicine, Ulm University, Ulm, Germany, 4Institute of Clinical Transfusion Medicine
and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital Ulm,
Ulm, Germany, 5Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander
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Cystic fibrosis (CF) is a monogenetic disease caused by an impairment of the

cystic fibrosis transmembrane conductance regulator (CFTR). CF affects multiple

organs and is associated with acute and chronic inflammation. In 2020,

Elexacaftor–Tezacaftor–Ivacaftor (ETI) was approved to enhance and restore

the remaining CFTR functionality. This study investigates cellular innate

immunity, with a focus on neutrophil activation and phenotype, comparing

healthy volunteers with patients with CF before (T1, n = 13) and after six

months (T2, n = 11) of ETI treatment. ETI treatment reduced sweat chloride

(T1: 95 mmol/l (83|108) vs. T2: 32 mmol/l (25|62), p < 0.01, median, first|third

quartile) and significantly improved pulmonal function (FEV1 T1: 2.66 l (1.92|3.04)

vs. T2: 3.69 l (3.00|4.03), p < 0.01). Moreover, there was a significant decrease in

the biomarker human epididymis protein 4 (T1: 6.2 ng/ml (4.6|6.3) vs. T2: 3.0 ng/

ml (2.2|3.7), p < 0.01) and a small but significant decrease in matrix

metallopeptidase 9 (T1: 45.5 ng/ml (32.5|140.1) vs. T2: 28.2 ng/ml (18.2|33.6),

p < 0.05). Neutrophil phenotype (CD10, CD11b, CD62L, and CD66b) and function

(radical oxygen species generation, chemotactic and phagocytic activity)

remained largely unaffected by ETI treatment. Likewise, monocyte phenotype

and markers of platelet activation were similar at T1 and T2. In summary, the
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present study confirmed a positive impact on patients with CF after ETI

treatment. However, neither beneficial nor harmful effects of ETI treatment on

cellular innate immunity could be detected, possibly due to the study population

consisting of patients with well-controlled CF.
KEYWORDS

cystic fibrosis, neutrophils, monocytes, Elexacaftor–Tezacaftor–Ivacaftor, cystic
fibrosis transmembrane conductance regulator, CFTR modulator therapy
1 Introduction

Cystic fibrosis (CF) is one of the most common life-threatening

autosomal-recessive monogenetic diseases affecting over 100 000

people globally and is caused by mutations in the gene that codes

for the cystic fibrosis transmembrane conductance regulator (CFTR)

(1–3). CFTR is an epithelial ion channel that transports chloride and

bicarbonate across the apical surface of secretory epithelia (1, 4).

Therefore, CF is a multi-organ pathology that alters mucus secretion

in the upper and lower airways, the gastrointestinal tract that includes

the pancreas, and the endocrine and reproductive systems (1, 2, 4, 5).

Currently, over 2000 different mutations have been described, which

are summarized in six classes (2). However, in approximately 85% of

patients with CF, at least one allele of the CFTR gene is affected by the

most common mutation c.1521_1523del, resulting in the deletion of

p.Phe508 (NM_000492.3: c.1521_1523del, hereafter referred to as

p.Phe508del, dbSNP: rs113993960). This causes defective

intracellular processing, impaired trafficking, and decreased protein

stability, subsequently reducing the levels of intact CFTR protein on

the apical surface of epithelial cells (1, 3, 4, 6, 7).

While the initial treatment focused on symptomatic

intervention, for example, by assisting expectoration, nutritional

supplementation, and antibiotic treatment of chronic and/or

exacerbated infections, modern treatments also aim to directly

restore CFTR function (1, 4). Depending on the individual

mutations, these CFTR modulators partially restore CFTR defects

improving clinical outcome in patients with CF (1, 4). The first

CFTR modulator (Ivacaftor (IVA)) was approved by the European

Medicines Agency (EMA) and the US-American Federal Drug

Agency (FDA) in 2012. Although many patients with CF

experienced a benefit by IVA therapy (or subsequently developed

combinations of IVA and a second modulator, Tezacaftor (TEZ)),

there were no sufficient treatment options for approximately 30% of

the patients with CF. This group included patients with CF who are

heterozygous for p.Phe508del and a mutation of minimal function

(defined as a mutation that does not produce protein or produces

protein that is resistant to IVA, TEZ, or the combination of IVA–

TEZ) (1, 4, 8).

To address this hitherto unmet clinical need, a triple combination

of CFTR modulators (Elexacaftor–Tezacaftor–Ivacaftor, tradename

EU: Kaftrio, tradename USA: Trikafta, hereafter referred to as ETI)

was developed (4). The next-generation corrector Elexacaftor
02
improves CFTR protein processing and trafficking via a mechanism

different from that of the first-generation corrector TEZ. The

potentiator IVA increases CFTR channel open probability. In vitro,

the ETI combination restored CFTR functionmore effectively than its

single components (9). Phase 2 and 3 clinical trials confirmed

substantial beneficial effects on clinical endpoints, including the

forced expiratory volume in one second (FEV1), pulmonary

exacerbations, sweat chloride concentration, and body mass index

(BMI = kg/m²) (4, 9). ETI was first approved by the FDA and the

EMA in 2019 and 2020, respectively (10). Currently, ETI is licensed

by the EMA for the treatment of patients aged from 6 years with CF

with at least one p.Phe508del mutation (11).

Sustained inflammation plays a critical role in CF lung disease,

which is predominantly neutrophil driven but also promoted by

monocytes and platelets (12, 13). Recurrent lung infections and

infectious exacerbations contribute relevantly to disease progression

(1, 12). Because neutrophils provide the first line of cellular defense

in bacterial lung infections, proper neutrophil function, particularly

in the context of CF, is crucial for the clearing of bacteria and

resolving inflammation (12, 14). However, functional investigation

of neutrophils and monocytes as the vanguard of innate immunity

in CF revealed cellular dysfunction, including impaired ability to

kill phagocytosed bacteria (5, 15), alterations in migration and

chemotaxis (16, 17), and delayed apoptosis (18). The described

defects in innate immunity presumably contribute to the failure to

clear bacterial infections despite high levels of neutrophil

recruitment (12, 18). In general, the neutrophil count was

reported to increase in patients with CF, but decreased after ETI

treatment (19). Additionally, the neutrophil phenotype in patients

with CF was similar to that of healthy volunteers, but changed

during infectious exacerbation (20).

Neutrophils, monocytes, and platelets can become activated by

a variety of mediators of inflammation, for example, cytokines such

as tumor necrosis factor (TNF), lipid-derived mediators such as

platelet-activating factor (PAF), and microbe-associated molecular

patterns (MAMPs, e.g., N-formylmethionyl-leucyl-phenylalanine

(fMLF) or lipopolysaccharide (LPS)), and others (21–23). Upon

activation, neutrophils respond with a defined response in changes

of cellular physiology such as the intracellular pH and alterations in

markers of cellular activation (21, 22, 24, 25). The latter include the

expression of CD11b and CD62L on neutrophils and monocytes as

well as CD42b and CD62P on platelets, respectively (22, 26, 27).
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Besides their involvement in cellular activity such as extravasation

or the formation of platelet-neutrophil complexes (PNCs) or

platelet-monocyte complexes (PMCs), respectively, these

activation markers are also used as surrogates to monitor

infection related inflammation in general as well as in the context

of CF (20, 24–26). For example, patients with CF responded with a

more pronounced CD11b upregulation upon stimulation with

fMLF in comparison to healthy subjects (26).

In summary, it remains a matter for debate whether

dysregulation of innate immunity in CF is acquired or

constitutive (28) and whether CFTR modulator therapy directly

affects cellular innate immunity (29, 30). Therefore, the present

study investigated the phenotype and cellular function of

neutrophils and monocytes under resting conditions and after

their exposure to inflammatory mediators, the cells being from

patients with CF before and after ETI treatment compared to

healthy volunteers.
2 Methods

2.1 Study cohort, blood sampling, and
clinical data

All experiments were performed in accordance with the Helsinki

declaration (31), after ethical approval (number 327/20, Local

Independent Ethics Committee of the University of Ulm), and after

obtaining written informed consent. The study included patients with

previously diagnosed CF as well as age- (± 1 year) and sex-matched

healthy volunteers (HV) as summarized in Figure 1. CF patients were

analyzed prior to the initiation of treatment (T1) and during a follow-

up visit after 6 months ((T2), median 6 months (6.0|6.5)). Patients

were screened for eligibility to receive ETI treatment (either as a first

CF-specific treatment or as a change in treatment regimen) during

routine visits to the outpatient clinic of the Department of Pediatrics

and Adolescent Medicine, University Medical Center Ulm. Inclusion

criteria were (I) age > 18 years and (II) homozygous p.Phe508del

mutation or compound heterozygous p.Phe508del mutation (in

accordance with the approved indications for ETI). Exclusion

criteria were (I) acute infection (II), fever or invasive procedures

during the previous seven days (III), immunosuppressive medication,

and (IV) systemic antimicrobial therapy during the three days prior

to blood sampling.

Blood was drawn by peripheral venipuncture in adherence to

the guidelines of the World Health Organization (32) and collected

in monovettes containing 3.2% trisodium citrate (Sarstedt,

Nümbrecht, Germany), 35 IU/ml Heparin (Sarstedt), or 1.6 mg/

ml K3 EDTA (Sarstedt). During the respective consultation in the

outpatient clinic, routine clinical data was obtained and analyzed

including height, weight, BMI, chloride concentration of sweat

collected via pilocarpine iontophoresis (Macroduct Sweat

collector Webster Modell 3700, Wesco, Logan, USA), and lung

function (MasterScreen Body, Vyaire Medical GmbH, Höchberg,

Germany). Aspartate transaminase (AST) and alanine transaminase

(ALT) were determined by photometric analysis using the Cobas c
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system (photometric measurement, Roche, Basel, Switzerland), and

the differential blood count was obtained using a standard

hematology analyzer (Sysmex CN 2000, Sysmex, Kobe, Japan). To

estimate the microbial burden of the patients, sputum (or in case of

non-expectorating patients: throat swaps) was collected during

regular visits for microbial analysis. To reduce false-negative

findings, the results of two independent samples were included

when available (T1: approximately 3 months prior to the initiation

of treatment and at the initiation of the treatment; T2: 6 months

after the initiation of the treatment and in a follow-up visit

approximately 9 months after the initiation of the treatment). If

one of the two samples for the respective measurement point

became positive, the patient was considered positive for the

respective microbial agent. It should be noted that the microbial

data set should be interpreted with caution, because the distribution

of sputum and throat swaps changed after ETI treatment (T1: 84%

vs. T2: 43% sputum).

For stimulation and subsequent staining, 10 μl citrate-

anticoagulated blood were added to PBS++ (Dulbecco’s Phosphate

Buffered Saline including calcium and magnesium, #14040-091,

Gibco Thermo Fisher Scientific, Darmstadt, Germany) adjusted to

pH 7.3. The total volume of blood and PBS including stimuli and

staining reagents cumulated to 50 μL. Blood was stimulated with

PBS as buffer control, 1 μM PAF (PAF C-18:1, #85966-90-1,

Cayman Chemical Company, Ann Arbor, USA), 100 ng/ml LPS

from Escherichia coli (hereafter referred to as LPS EC, Escherichia

coli O55:B5, #L2880, Sigma Aldrich, Steinheim, Germany), 1 μg/mL

LPS from Pseudomonas aeruginosa (hereafter refered to as LPS

PsA, Pseudomonas aeruginosa 10, #L8643, Sigma Aldrich), or a

mixture of inflammatory mediators (hereafter referred to as the

mixture of proinflammatory mediators or Cocktail in the figures)

consisting of 1 μM PAF, 10 μM fMLF (#F3506, Sigma Aldrich), and

2.3 μM TNF (#570104, BioLegend, San Diego, USA) as indicated in

the figure captions. Subsequently, the cells were stained, chemically

fixed, and measured as described below. PAF, LPS, fMLF, and TNF

were chosen as commonly used and clinically relevant stimuli of

cellular innate immunity (21, 22, 26, 27). Stimulation only by PAF

and the stimulation with the mixture of proinflammatory mediators

was chosen to elicit a medium and a strong inflammatory response

based on unpublished preliminary results and as confirmed in

Figure 3. LPS from Pseudomonas aeruginosa and Escherichia coli

was used to briefly simulate exposure to pathogens.
2.2 ELISA

Citrate anticoagulated blood was centrifuged for 10 minutes at

400 × g. The sampled plasma was stored at −80°C until further use

for the analysis of humoral markers of inflammation. Measurement

of plasma levels of interleukin 6 (BD OptEIA Human IL-6 ELISA

Set, #555220, BD Biosciences, San Jose, USA), interleukin 8

(DuoSet® Human IL-8/CXCL8 ELISA Kit, #DY208, R&D

Systems, Minneapolis, USA), matrix metallopeptidase 9 (DuoSet®

Human MMP9 ELISA Kit, #DY911, R&D Systems), and human

epididymal protein 4 (also known as WAP four-disulfide core

domain protein 2 (WFDC2), DuoSet® Human HE4/WFDC2
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ELISA Kit, #DY6274-05, R&D Systems) was carried out using

standard enzyme-linked immunosorbent assays (ELISAs) as

indicated by the manufacturers.
2.3 Flow cytometry analysis of neutrophils
and monocytes

For the analysis of the neutrophil and monocyte phenotype as

previously described (21, 22), 10 μl citrate-anticoagulated blood

were added to 40 μl PBS++ adjusted to pH 7.3 including prior added

stimuli and antibodies as listed below and incubated for 15 minutes

in a light-protected water bath at 37°C. The diluted whole blood was

stained as indicated with anti-CD10 (PE-Cyanine7 anti-human

CD10, dilution 1:1666.7, #312214, BioLegend), anti-CD11b (APC

anti-mouse/human CD11b, dilution 1:3333, #101212, BioLegend),

anti-CD62L (PE anti-human CD62L, dilution 1:400, #304806,

BioLegend), anti-CD66b (APC-Cyanine7 anti-human CD66b,

dilution 1:200, #305126, BioLegend), or corresponding isotype

controls (all from BioLegend). In addition, the diluted whole

blood was stimulated with either PBS++ (as buffer control,

hereafter referred to as Ctrl), PAF, LPS or with the mixture of

proinflammatory mediators described above.

Similarly, to assess neutrophil activity, 10 μl heparin-

anticoagulated blood were added to 40 μl PBS++ adjusted to pH

7.3 (including prior added stimuli as listed above and fluorescent

reagents as subsequently listed) and incubated for 30 minutes at 37°

C in a light-protected water bath. Phagocytosis was analyzed using

fluorescent microspheres (Fluoresbrite BB Carboxylate 0.50 Micron

Microspheres, Polysciences, Inc., Warrington, USA). The

microspheres were dissolved 1:10 in PBS++ followed by a washing

procedure (3 × at 4000 × g for 5 minutes). Of this microsphere

solution, 5 μl was added to the above-mentioned mixture resulting

in a total volume of 50 μl. Radical oxygen species (ROS) generation

was determined by adding 5 μM CellROX Deep Red (#C10422,

Thermo Fisher Scientific). Following stimulation and staining of

diluted whole blood as described above, erythrocytes were lysed and

leukocytes fixed in a sample volume made up to 1 mL with 1 × BD

FACS lysing solution (#349202, BD Biosciences) for 30 minutes and

incubated at room temperature in the dark. Following

centrifugation of the samples for 5 minutes at 340 × g, the pellet

was resuspended in 100 μl PBS++ containing 0.1% bovine serum

albumin (Sigma Aldrich) and stored at room temperature in the

dark until further analysis.

To briefly analyze changes in neutrophil cellular physiology, the

membrane potential (MP) and intracellular pH (pHi) was

monitored by using fluorescent dyes as described before (33–36)

with brief modifications as subsequently described. 5μl citrate

anticoagulated blood was mixed with 40 μl PBS−− (Dulbecco’s

Phosphate Buffered Saline, #14190-094, Gibco Thermo Fisher

Scientific) including anti-CD45 (Pacific Blue anti-human CD45,

di lution 1:100, #368540, BioLegend), 50 nM bis(1,3-

dibutylbarbituric acid) trimethine oxonol (DiBAC4(3), #D8189,

Sigma Aldrich, for MP), and 2.4 μM SNARF 5-(and-6)-carboxy-

SNARF-1 (SNARF, #C1272, Invitrogen Thermo Fisher, Dreieich,

Germany, for pHi). After 10 min of incubation in the dark at room
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temperature, the diluted blood was mixed with 950 μl Hanks’

Balanced Salt Solution (HBSS++, #14025-050, Gibco Thermo

Fisher Scientific) adjusted to pH 7.3 including 50 nM DiBAC4(3)

and transferred to a light-protected water bath at 37°C. After a

resting period of 2 min, neutrophils were stimulated with either

PBS++ (as buffer control), PAF or with the mixture of

proinflammatory mediators described above. After exclusion of

erythrocytes as CD45 negative cells, neutrophils were identified as

described below. An increase in DiBAC4(3) indicates

depolarization, and a decrease in PE/PerCP ratio in SNARF

indicates alkalization, respectively (33–36).

For the analysis by flow cytometry, doublets were removed by

plotting the forward scatter (FSC) area versus the height.

Neutrophils and monocytes were identified on the basis of their

forward and side scatter (SSC) area properties. The spillover

between the fluorescence channels was corrected by a

compensation matrix. For all antigens, appropriate isotype

controls and single staining controls were performed (data not

shown). For all experiments, a minimum of 3000 neutrophils and

500 monocytes were recorded using a BD FACSLyric (BD

Biosciences). The gating strategy for the analysis of neutrophils

and monocytes is illustrated in Supplemental Figure 1.
2.4 Flow cytometry analysis of platelets

For the brief analysis of platelet activation, 50 μl citrate-

anticoagulated blood was diluted with 562.5 μl HBSS++ adjusted

to pH 7.3. Hereafter, 10 μl of this diluted whole blood was added to

40 μl PBS++ adjusted to pH 7.3 including prior added stimuli (either

PBS++ as Ctrl, PAF, or the mixture of proinflammatory mediators)

and antibodies to CD61 (anti-CD61 PerCP mouse anti-human

CD61, dilution 1:100, #336410, BioLegend) and CD62P (FITC

anti-human CD62P (P-Selectin), dilution 1:25, #304904,

BioLegend). Following incubation for 10 minutes in a light-

protected water bath at 37°C, 950 μl HBSS++ were added to the

sample followed by immediate flow cytometry analysis. Platelets

were identified by the properties of FSC, SSC, and CD61 expression.

The gating strategy for the analysis of thrombocytes is summarized

in Supplemental Figure 2.
2.5 Determination of
platelet-neutrophil complexes and
platelet-monocyte complexes

PNCs were analyzed by light microscopy and flow cytometry as

previously described (21, 33, 37). For analysis by light microscopy

(Axio Imager M1, Carl Zeiss Microscopy GmbH, Jena, Germany),

250 μl citrate anticoagulated whole blood was diluted with 250 μl

PBS++ adjusted to pH 7.3 and stimulated with either PBS++ as buffer

control or 1 μM PAF. Blood smears were stained with the

“Hemacolor Rapid staining of blood smear - staining set for

microscopy” (Merck, Darmstadt, Germany). For each sample, a

minimum of 50 neutrophils per specimen were analyzed by two

independent and blinded individuals. Each neutrophil with at least
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one thrombocyte in direct juxtaposition was counted as a PNC.

Representative PNCs identified by light microscopy are shown in

Supplemental Figure 8A. The analysis of PNCs and PMCs by flow

cytometry was conducted similarly to the staining protocol

described in 2.3 using antibodies against CD61 (PerCP Mouse

anti-human CD61, dilution 1:50, #336410, BioLegend) and

CD42b (APC-Cyanine7 anti-human CD42b, dilution 1:400,

#303920, BioLegend). An example of the resulting staining and

corresponding gating strategy is given in Supplemental Figure 8.
2.6 Analysis of neutrophil chemotaxis

Polymorphonuclear granulocytes mainly consisting of

neutrophils were isolated by Ficoll-Paque (GE Healthcare,

Uppsala, Sweden) density gradient centrifugation and subsequent

dextran sedimentation followed by hypotonic lysis of the remaining

erythrocytes, as previously described (21, 33, 34, 36). Neutrophil

chemotactic activity was analyzed using a Neuro Probe A96

chemotaxis chamber (Neuro Probe, Gaithersburg, USA). Isolated

neutrophils at a concentration of 1 × 106 cells/ml were suspended in

HBSS++ adjusted to pH 7.3. Neutrophils were stained with the

fluorescent dye BCECF (1.6 μl/ml, BCECF-AM, Abcam,

Cambridge, United Kingdom) for 30 minutes at 37°C,

subsequently centrifuged for 5 minutes (340 × g) and

resuspended in HBSS++ + 0.1% BSA. A total of 33 μl

chemoattractant PAF (final concentration 1 μM) or a mixture of

PAF, fMLF, and TNF (final concentrations 1 μM PAF, 10 μM fMLF,

and 2.3 μM TNF) was added to the wells of the lower plate.

Subsequently, a silicone gasket and a framed filter with 3 μm

pores (Neuro Probe) were placed on the lower wells. On top of

the filter and the gasket, the upper plate was attached and the

stained neutrophils were pipetted into the corresponding wells.

During incubation for 30 minutes at 37°C, neutrophils migrated

from the upper wells towards the lower wells containing the

inflammatory stimuli, but became adherent to the filter, resulting

in increased fluorescence. The fluorescence of the cells in the filter

was determined at a wavelength of 485/538 nm using a Fluoroskan

Ascent (Thermo Fisher Scientific) with Ascent Software

Version 6.0.2.
2.7 Data analysis and statistics

The flow cytometry data including of neutrophils, monocytes,

and platelets were further analyzed using the custom-written,

python-based flow cytometry analytics software “BFlow” (BFlow

Project, www.bflow.science, last accessed 28th February 2023). All

data is presented as medians with bars indicating the interquartile

range, for example, median (25th percentile|75th percentile).

Figure 1B was created with BioRender.com. Data analysis was

performed with licensed versions of Microsoft Excel 2019

(Microsoft, Redmond, USA) and GraphPad Prism 9 (GraphPad

Software Inc, San Diego, USA). For the statistical analysis

comparing HV with patients with CF before the initiation of ETI

treatment (T1), the data distribution was considered nonparametric
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and unpaired and analyzed using the Mann–Whitney U test. To

compare the results of T1 and T2 (after 6 months of ETI treatment),

the data distribution was considered nonparametric and analyzed

by the Wilcoxon test for paired comparison (thereby automatically

excluding patients who did not present at both T1 and T2).

Categorical variables for T1 vs. T2 were analyzed using the Fisher

exact test. A p-value < 0.05 was considered to be significant and

marked with *, **, ***, or ****, indicating < 0.05, < 0.01, < 0.001, and

<0.0001, respectively.
3 Results

3.1 Patient characteristics and
clinical features

Figure 1 and Supplemental Tables 1, 2 summarize the

characteristics of the patients with CF before (T1) compared to

the age- and sex- matched HV and after 6 months of ETI treatment

(T2). The study group consisted initially of 13 patients with CF (T1)

with a median age of 26 years and a male:female ratio of 6:7. Two

patients were lost during follow-up, resulting in 11 patients at T2. In

total, 11/13 patients (84.6%) were homozygous for p.Phe508del

mutation, while 2/13 (15.4%) were heterozygous for p.Phe508del,

with the second mutation determined to be rs1799022949 or

rs121908751 (38). Prior to ETI treatment, 7/13 (53.9%) patients

had already been treated with CFTR modulators (n = 6:

Lumacaftor–Ivacaftor, n = 1: Ivacaftor).
3.2 ETI treatment alters markers of
organ function, disease severity, and
humoral inflammation

The patients with CF had normal AST (T1: 23 U/l (19|16) vs. T2:

26 U/L (23|32), p = 0.82), ALT (T1: 23 U/L (15|27) vs. T2: 31 U/L (23|

43), p = 0.09), and creatinine values (T1: 63 U/L (54|74) vs. T2: 63 U/L

(49|78), p = 0.75). Supplemental Table 1 summarizes the complete

blood counts at T1 and T2. ETI treatment increased the BMI of the

patients, reduced the sweat chloride concentration, and improved lung

function (Figure 1A). Furthermore, HE4 was significantly increased in

T1 (despite normal renal function, data not shown) compared to HV

but also significantly reduced in T2 (Figure 2). As a first step tomonitor

possible changes in inflammation, humoral markers of inflammation

were analyzed. Here, patients with CF at T1 had slightly but

significantly elevated MMP9 and IL-6 levels compared to HV

(Figure 2). At T2, MMP9 was significantly and IL-6 was trendwise

reduced. IL-8 (Figure 2) did not show significant changes.
3.3 Neutrophils and monocytes in patients
with CF remain unaffected regardless of
ETI treatment

Innate immunity was monitored by analyzing neutrophil cell

physiology, phenotype, and function as well as monocyte
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phenotype. Neutrophil phenotype and cell physiology was largely

similar comparing patients with CF at T1 and HV (Figure 3;

Supplemental Figure 3). In accordance, ETI treatment did not

result in corresponding alterations in the neutrophil phenotype at

T2 (Figure 3; Supplemental Figure 3). A similar pattern was

observed in monocytes (Supplemental Figures 4, 5). Of note, the

cellular response to additional stimulation in vitro was slightly

increased at T2 for neutrophil CD62L expression as well as for

monocyte CD10, CD11b, and CD62L expression. Neutrophil

function and cell physiology was also comparable when analyzing

HV and T1 with respect to ROS generation, chemotactic activity,

and phagocytosis (Figure 4; Supplemental Figure 6). At T2, baseline

chemotactic activity and ROS generation remained stable. Anyhow,

upon additional stimulation, ROS generation and chemotactic

activity of neutrophil were unchanged. However, there was a

small but significant decrease in phagocytic activity. Likewise,

cellular physiology as indicated by changes in MP and pHi upon
Frontiers in Immunology 06
stimulation were similar comparing HV and patients with CF and

remained unaffected by ETI treatment (Supplemental Figure 7).

The activity of platelets as reported by CD62P under resting

conditions or after stimulation with PAF was similar when

analyzing HV, T1, and T2 (Supplemental Figure 8). Likewise, the

formation of PNCs and PMCs (activated platelets adhering to

neutrophils or monocytes) was comparable when analyzing HV,

T1, and T2 (Supplemental Figure 8). Of note, the response to LPS

regarding the formation of PNCs and PMCs was slightly increased

at T1 but not T2 in comparison to HV, however, with a small

effect size.
4 Discussion

This study investigated the function and the phenotype of

cellular innate immunity with a focus on neutrophils in patients
B

A

FIGURE 1

Summary of the prospective observatory study. (A) Patients with CF prior to treatment (T1) with Elexacaftor–Tezacaftor–Ivacaftor (ETI) were
compared to age- and sex-matched healthy volunteers (HV) as well as after 6 months of ETI treatment (T2). (B) Graphical synopsis of the parameters
analyzed. ALT , alanine aminotransferase; AST , aspartate aminotransferase; BMI , body mass index; FEV1 , forced expiratory volume in one second;
HE4 , human epididymis protein 4; IL-6 , interleukin 6; IL-8 , interleukin 8; MMP9 , matrix metallopeptidase 9; PNC , platelet-neutrophil complex;
PsA , positive for Pseudomonas aeruginosa within the previous 6 months; rFEV1 , relative forced expiratory volume in one second; ROS , radical
oxygen species; rsRtot , relative total specific airway resistance; rVC , relative vital capacity; sRtot , total specific airway resistance; VC , vital capacity. *,
**, ***, denote p < 0.05, 0.01, and 0.001, respectively.
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with CF before and after with ETI treatment in comparison to

healthy volunteers. In accordance with data from the original phase

III clinical trial (4) and postadmission studies (39), ETI treatment

improved lung function, decreased sweat chloride, and increased

the BMI, indicating a relevant clinical effect within the study

population. In accordance, HE4 as an inflammatory biomarker

(40, 41) decreased during the study period, which was also reflected

by a slight, yet significant decrease in MMP9.

In accordance with a recent study (20), neutrophils from

patients with stable CF had a similar phenotype in comparison to

those from HVs. Moreover, the present study showed that

neutrophils from patients with CF were able to change their

phenotype to additional stimulation in vitro similarly as

neutrophils from HVs. This is of interest because neutrophils

previously exposed to lipopolysaccharide displayed a diminished

response to additional stimulation in vitro (21, 22).

In contrast to the well-known causality between CFTR

dysfunction and defective epithelial chloride transport, it

remains a matter of debate whether CFTR directly affects

cellular innate immune function. The CFTR protein was

detected in the phagolysosome of human neutrophils (42).

Interestingly, neutrophils derived from patients with CF showed

impaired phagosomal chlorination and bacterial killing, indicating

an intrinsic phagocyte defect in neutrophils from patients with
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CF. CFTR mRNA and protein levels in neutrophils and other

phagocyting cells were reported to be very low (43). However, a

recent study found significantly reduced CFTR protein expression

levels in CF MDMs, which were restored by ETI treatment (44).

Therefore, it remains an ongoing debate as to whether the

reported antimicrobial impairment of neutrophils from patients

with CF is intrinsic or secondary to abnormalities in the

microenvironment of the apical surface liquid of the airways of

such patients or the result of continuous inflammation and

infection (5, 12). The present study did not find differences in

phagocytosis measured as uptake of microspheres between

neutrophils from patients with CF and HV. However, the

present study did not determine phagosomal chlorination or

bacterial killing with the used method.

The role of CFTR modulators in innate immune cell function

has been previously studied. IVA treatment improved bacterial

killing in neutrophils and monocyte-derived macrophages (45, 46).

Moreover, IVA treatment resulted in an altered activation profile

with a decrease in activated CD11b in peripheral blood

mononuclear cells from patients with the G551D mutation but

not in cells from patients with p.Phe508del (47). The corrector

Lumacaftor also improved phagocytosis and bacterial killing (48).

However, its combination with IVA failed to restore phagocytic

function, but did reduce the secretion of proinflammatory cytokines
B

C D

A

FIGURE 2

Humoral inflammatory markers in patients with CF before Elexacaftor–Tezacaftor–Ivacaftor (ETI) treatment (T1) compared to age- and sex- matched
healthy volunteers (HV) and after 6 months of ETI treatment (T2). (A) Human epididymis protein 4 (HE4), (B) matrix metallopeptidase 9 (MMP9), (C)
interleukin 6 (IL-6), and (D) interleukin 8 (IL-8). n = 11 – 13. Median with interquartile range. *, **, **** denote p < 0.05, 0.01, and 0.0001, respectively.
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(48, 49). Similar effects have been reported for the combination of

TEZ and IVA (50). Regarding the heterogeneous results, it is

unclear whether the reported effects are drug specific, mutation

specific, or depend on the degree of CFTR restoration, as reviewed

in (30). The impact of the latest CFTR modulator combination ETI

on cellular innate immunity is largely unknown. In monocytes,

reduced inflammasome activity (51) and increased phagocytic

activity (29) were reported after ETI treatment. Currently, the

present work is, to our knowledge, the first study that focuses on

neutrophil phenotype and function in resting or stimulated cells

after ETI treatment in patients with CF.
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The present article has several strengths and limitations.

Despite that there were some significant changes in cellular innate

immunity, the authors interpreted the reported changes as likely to

be without clinical consequences. The findings also indicated that

ETI treatment had no negative effect on cellular innate immunity.

Moreover, while the study population mimicked the typical

characteristics of CF in general and the ETI treatment in

particular, patients with CF were investigated during stable

periods of disease without exacerbation in a monocentric

prospective study. Therefore, we may have missed changes in

neutrophil and/or monocyte phenotype and/or function, which
A B

D

E F

G H

C

FIGURE 3

Neutrophil activation markers in patients with CF before Elexacaftor–Tezacaftor–Ivacaftor (ETI) treatment (T1) compared to age- and sex- matched
healthy volunteers (HV) and after 6 months of ETI treatment (T2). The left panel shows median fluorescence intensity (MFI) values. The right panel
shows normalization of the neutrophils stimulated with 1 µM PAF or a mixture of proinflammatory mediators (Cocktail: 1 µM PAF, 10 µM fMLF, 2.3
µM TNF) normalized to the respective cells exposed to a buffer control (Ctrl = 1). (A, B): CD10, (C, D): CD11b, (E, F): CD62L, and (G, H): CD66b. Data
of corresponding experiments with further stimuli are given in Supplemental Figure 3. n = 11 – 13, median with interquartile range. * and ** denote
p < 0.05 and 0.01, respectively.
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potentially only become apparent during acute exacerbation (20).

However, distinguishing these distinct alterations from the general

characteristics of acute inflammation (e.g., during sepsis in patients

without CF) was beyond the scope of the present study. To partially

account for this limitation, neutrophils were additionally stimulated

in vitro with clinically relevant proinflammatory mediators,

revealing the IVA-mediated changes in the neutrophil response.

Innate immunity was thoroughly analyzed by monitoring

neutrophil phenotype and function as well as by briefly

monitoring markers of characterizing activation and the

formation of platelet-neutrophil complexes as an indirect
Frontiers in Immunology 09
surrogate of platelet activation. However, the focus on innate

immunity only represents certain aspects of immunity.
5 Conclusion

Patients with CF are affected by multiple severe organ function

alterations, which in this study did not affect circulating innate

immunity and only marginally humoral markers of inflammation.

While this study confirmed previous beneficial effects of ETI on

clinical data and markers of humoral inflammation, no major
B

C

A

FIGURE 4

Markers of neutrophil function in patients with CF before Elexacaftor–Tezacaftor–Ivacaftor (ETI) treatment (T1) in comparison to age- and sex-
matched healthy volunteers (HV) and after 6 months of ETI treatment (T2). (A) Generation of radical oxygen species (ROS) after stimulation with PAF
or a mixture of proinflammatory mediators (Cocktail: 1 µM PAF, 10 µM fMLF, 2.3 µM TNF) normalized to the respective samples exposed to buffer
control, (B) chemotactic activity of neutrophils, and (C) phagocytic activity. Data of corresponding experiments with further stimuli are given in
Supplemental Figure 6. n = 11 – 13, median with interquartile range. * denotes p < 0.05.
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effects on innate immunity were detected, besides some alterations

after additional stimulation in vitro with inflammatory mediators.

Nevertheless, ETI treatment did not impair cellular innate

immunity. The present study population consisted of patients

with currently well-controlled CF. Further studies are needed to

evaluate potential benefits of ETI treatment during acute

exacerbation in patients with CF. In summary, in patients with

CF without acute exacerbation, circulating innate immunity did not

exhibit any alterations.
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SUPPLEMENTARY TABLE 1

Complete blood count in patients with CF before Elexacaftor–Tezacaftor–
Ivacaftor (ETI) treatment (T1) and after 6months of ETI treatment (T2), n = 11–

13, * = p < 0.05.

SUPPLEMENTARY TABLE 2

Results of the microbial monitoring in patients with CF before Elexacaftor–

Tezacaftor–Ivacaftor (ETI) treatment (T1) and after 6 months of ETI treatment

(T2), n = 11 – 13, * = p < 0.05.

SUPPLEMENTARY FIGURE 1

Representative gating strategy for neutrophils and monocytes. (A)
Identification of single cells by analyzing forward scatter (FSC) area versus
the height. (B) neutrophils and monocytes were identified based on their

forward and side scatter (SSC) area properties. (C) Example of changes in

neutrophil, CD11b expression in unstained cells (native, gray), after exposure
to the buffer control (dark yellow, Ctrl), or a mixture of proinflammatory

mediators consisting of 1 µM PAF, 10 µM fMLF, and 2.3 µM TNF (Cocktail, red).
(D) Exemplary analysis of the percentage of neutrophils with phagocytic

activity as measured by uptake of fluorescent beads.

SUPPLEMENTARY FIGURE 2

Representative gating strategy for thrombocytes. (A) Identification of small
particles including thrombocytes. (B) Identification of single particles by

analyzing forward scatter (FSC) area versus the height. (C) Identification of
platelets as CD61 positive entities. (D) Exemplary analysis of the percentage of

platelets positive for CD62P in samples stained with an antibody against CD61
and the isotype control for CD62P (Isotype, purple), after exposure to the

buffer control (dark yellow, Ctrl), or a mixture of proinflammatory mediators

consisting of 1 µM PAF, 10 µM fMLF, and 2.3 µM TNF (Cocktail, red).

SUPPLEMENTARY FIGURE 3

Neutrophil activation markers in patients with CF before Elexacaftor–

Tezacaftor–Ivacaftor (ETI) treatment (T1) compared to age- and sex-
matched healthy volunteers (HV) and after 6 months of ETI treatment (T2).

The left panel shows median fluorescence intensity (MFI) values. The right

panel shows normalization of the neutrophils stimulated with 1 µM fMLF, 100
ng/ml LPS from Escherichia coli (LPS EC), or 1 µg/mL LPS from Pseudomonas

aeruginosa (LPS PsA) normalized to the respective cells exposed to a buffer
control (Ctrl = 1). (A, B)CD10, (C, D)CD11b, (E, F)CD62L, and (G, H): CD66b. n
= 11 – 13, median with interquartile range. * denotes p < 0.05.
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SUPPLEMENTARY FIGURE 4

Monocyte activation markers in patients with CF before Elexacaftor–
Tezacaftor–Ivacaftor (ETI) treatment (T1) compared to age- and sex-

matched healthy volunteers (HV) and after 6 months of ETI treatment (T2).

The left panel showsmedian fluorescence intensity (MFI) values. The right panel
displays normalization of the neutrophils stimulated with 1 µM PAF or a mixture

of proinflammatory mediators (Cocktail: 1 µM PAF, 10 µM fMLF, 2.3 µM TNF)
normalized to the respective cells exposed to a buffer control (Ctrl = 1). (A, B)
CD10, (C, D) CD11b, and (E, F) CD62L. n = 11 – 13, median with interquartile
range. *, **, ***, ****, denote p < 0.05, 0.01, 0.001, and 0.0001, respectively.

SUPPLEMENTARY FIGURE 5

Monocyte activationmarkers in patientswith CF before Elexacaftor–Tezacaftor–

Ivacaftor (ETI) treatment (T1) compared to age- and sex- matched healthy
volunteers (HV) and after 6 months of ETI treatment (T2). The left panel shows

median fluorescence intensity (MFI) values. The right panel shows normalization
of the neutrophils stimulated with 1 µM fMLF, 100 ng/ml LPS from Escherichia

coli (LPS EC), or 1 µg/mL LPS from Pseudomonas aeruginosa (LPS PsA)

normalized to the respective cells exposed to a buffer control (Ctrl = 1). (A, B):
CD10, (C, D): CD11b, and (E, F): CD62L. n = 11 – 13, median with interquartile

range. *, **, *** denote p < 0.05, 0.01 and 0.001, respectively.

SUPPLEMENTARY FIGURE 6

Markers of neutrophil function in patientswithCFbefore Elexacaftor–Tezacaftor–

Ivacaftor (ETI) treatment (T1) in comparison to age- and sex- matched healthy

volunteers (HV) and after 6months of ETI treatment (T2). (A)Generation of radical
oxygen species (ROS) after stimulation with 1 µM fMLF, 100 ng/ml LPS from

Escherichia coli (LPS EC), or 1 µg/mL LPS fromPseudomonas aeruginosa (LPS PsA)
normalized to the respective samples exposed to buffer control, (B) chemotactic

activity of neutrophils, and (C) phagocytic activity. n = 11 – 13, median with
interquartile range. * denotes p < 0.05.
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SUPPLEMENTARY FIGURE 7

Markers of neutrophil cell physiology in patients with CF before
Elexacaftor–Tezacaftor–Ivacaftor (ETI) treatment (T1) in comparison to

age- and sex- matched healthy volunteers (HV) and after 6 months of ETI

treatment (T2). (A) Intracellular pH (decrease in PE/PerCP ratio =
alkalization) and (B) membrane potential (increase in DiBAC fluorescence

= depolarization) after stimulation with PAF or a mixture of proinflammatory
mediators (Cocktail: 1 µM PAF, 10 µM fMLF, 2.3 µM TNF). n = 11 – 13, median

with interquartile range.

SUPPLEMENTARY FIGURE 8

Formation of platelet-neutrophil complexes (PNCs) and platelet-monocyte
complexes (PMCs) in patients with CF before Elexacaftor–Tezacaftor–Ivacaftor

(ETI) treatment (T1) in comparison to age- and sex- matched healthy volunteers
(HV) and after 6 months of ETI treatment (T2). The formation of PNCs and PMCs

was analyzed in dilutedwhole blood after 15minutes of 13 timulationwith PBS as
buffer control or stimulated with 1 µM PAF. (A) Representative neutrophil and

PNC as detected by light microscopy. (B) Evaluation of PNCs by light

microscopy. (C) Representative histogram of the CD61 signal in neutrophils
showing the two populations (neutrophils with or without platelets) in

dependence of previous stimulation with PAF (orange), LPS EC (pink), LPS PsA
(purple), or buffer control (Ctrl, gray). Analysis of PNC formation by flow

cytometry using (D) CD61 (as shown in (C)) on neutrophils or (E) CD42b on
neutrophils as markers of PNCs. (F) Analysis of CD62P-expression on

thrombocytes as a marker of thrombocyte activation. (G) Representative

histogram of the CD61 signal in monocytes showing the two populations
(monocytes with or without platelets) in dependence of previous stimulation.

(H) Analysis of PMC formation by flow cytometry as shown in (G) using CD61 on
monocytes PAF = platelet-activating factor, LPS EC = lipopolysaccharide from

Escherichia coli, LPS PsA = lipopolysaccharide from Pseudomonas aeruginosa. n
= 11 – 13, median with interquartile range. * denotes p < 0.05.
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