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Emerging roles of a
chemoattractant receptor GPR15
and ligands in pathophysiology

Yukari Okamoto and Sojin Shikano*

Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago,
Chicago, IL, United States
Chemokine receptors play a central role in the maintenance of immune

homeostasis and development of inflammation by directing leukocyte

migration to tissues. GPR15 is a G protein-coupled receptor (GPCR) that was

initially known as a co-receptor for human immunodeficiency virus (HIV) and

simian immunodeficiency virus (SIV), with structural similarity to other members

of the chemoattractant receptor family. Since the discovery of its novel function

as a colon-homing receptor of T cells in mice a decade ago, GPR15 has been

rapidly gaining attention for its involvement in a variety of inflammatory and

immune disorders. The recent identification of its natural ligand C10orf99, a

chemokine-like polypeptide strongly expressed in gastrointestinal tissues, has

established that GPR15-C10orf99 is a novel signaling axis that controls intestinal

homeostasis and inflammation through the migration of immune cells. In

addition, it has been demonstrated that C10orf99-independent functions of

GPR15 and GPR15-independent activities of C10orf99 also play significant roles

in the pathophysiology. Therefore, GPR15 and its ligands are potential

therapeutic targets. To provide a basis for the future development of GPR15-

or GPR15 ligand-targeted therapeutics, we have summarized the latest advances

in the role of GPR15 and its ligands in human diseases as well as the molecular

mechanisms that regulate GPR15 expression and functions.
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Introduction

The major task of the intestinal immune system is to tolerate innocuous food antigens

and commensal microbes while fighting ingested pathogens. Failure to balance tolerogenic

and inflammatory reactions can result in diseases, such as inflammatory bowel disease and

gastrointestinal infections. Multiple immune mechanisms, including the balanced activities

of regulatory T (Treg) cells and effector T (Teff) cells, contribute to the maintenance of

intestinal immune homeostasis. Trafficking of these immune cells to the intestines is tightly

controlled by a wide array of chemokines, chemokine receptors, and adhesion molecules

expressed by leukocytes, the vascular endothelium, and the epithelium (1). For instance, the
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expression of CCR5, CCR6, CCR9, and CCR10 together with a4b7
integrin has been shown to target lymphocytes in the small intestine

and colon (2–5). One of the recent advances in this field is the

identification of G-protein coupled receptor 15 (GPR15) as a new

chemoattractant receptor that mediates the homing of T cells to the

colon in response to the natural ligand C10orf99 produced in the

colon (6–8). A growing number of studies have suggested important

roles of GPR15 in immune homeostasis and pathology of

gastrointestinal (GI) tissues (6, 9–11). Similarly important is the

discovery of GPR15-independent activity of C10orf99, as well as

additional GPR15 ligands, that appear to be involved in the

pathology of a broader range of tissues. Collectively, these

findings indicate that GPR15 and its ligands are promising new

targets for intervention. However, currently there is no approved

drug that can specifically modulate GPR15 or GPR15 ligand

activities. This review aimed to provide a basis for the

development of GPR15- or GPR15 ligand-targeted interventions

by summarizing recent research advances in the roles of GPR15 and

its ligands in human pathophysiology, as well as the regulatory

mechanisms of GPR15 expression and functions.
GPR15

GPR15 is a member of the Class A GPCR family that was cloned

in 1996 (12) and identified in 1997 as a co-receptor for SIV,

macrophage-tropic, non-syncytium-inducing HIV type 1 (M-

tropic HIV-1), and HIV-2 (13, 14). Although this receptor was

found to mediate T cell trafficking to the colon (6) and later

“deorphanized” when a chemokine-like protein C10orf99 was

identified as a functional endogenous ligand (7, 8), GPR15 is an

“orphan” in terms of relatively low sequence similarity to its

paralogues; it resembles a probable orphan receptor GPR25 with

highest similarity of 36%, which is marginally higher than that to

angiotensin II receptors, apelin receptor, and other chemokine

receptor members (https://www.ensembl.org). GPR15 is also

unique in that it lacks cysteines in the NH2-terminal region and

the third extracellular loop, which are thought to form a disulfide

bond and are required for optimal ligand binding and/or receptor

activation in many GPCRs (15). Nevertheless, the NH2-terminal

region of GPR15 carries several Tyr and acidic residues, a feature

shared by multiple chemokine receptors (16). Sulfation of Tyr

residues is known to promote the receptor binding of HIV/SIV

(16, 17) as well as chemokine ligands (18–20), and the sulfated Tyr

residues in the GPR15 NH2 terminus were recently shown to be

required for optimal binding to C10orf99 (21). In humans, Gpr15

mRNA is highly expressed in the colon and lymphoid tissues,

including peripheral blood lymphocytes and the spleen (13),

while different studies have reported GPR15 protein expression in

the colonic and small bowel mucosa, lymphoid cells, testis, liver,

prostate, vascular endothelium, and skin (7, 22, 23). In peripheral

blood, GPR15 is expressed in T cells (primarily CD4+) and at lower

levels in B cells, monocytes, and neutrophils (11, 24, 25). It is of note

that GPR15 expression was not induced by retinoic acid (6), that is

known to regulate lymphocyte migration to the small intestine by

enhancing the expression of CCR9 and integrin a4b7 (26, 27). This
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may contribute to the colon-specificity of GPR15+ cell homing,

combined with the abundant expression of C10orf99 in the colon

compared with the small intestine (7, 8).
Role of GPR15 in disease pathology

GPR15 expression in mouse T cell subsets
and colitis

A novel function of GPR15 as a colon-homing receptor was

discovered in 2013 by Kim et al. using Gpr15-deficient mice (6).

Knock-in mice with Gpr15 gene replaced with the GFP sequence

showed preferential expression of GFP in Foxp3+ Tregs in the large

intestine lamina propria (LILP); approximately 60–70% of LILP

CD4+Foxp3+ cells expressed GPR15, compared to 7–20% of

CD4+Foxp3− cells. The results of a cell transfer assay confirmed

the efficient homing of GPR15+ cells to LILP in an a4b7-dependent
manner. The Gpr15 gene knockout (KO) reduced Treg numbers in

LILP and exacerbated colitis induced by Citrobacter rodentium

infection. In addition, in a non-infectious colitis model in Rag2-/-

mice, where CD40 stimulation induced innate immune cell-

mediated colitis (28–30), adoptive transfer of Tregs from wild-

type mice reduced colitis severity and tissue damage, but Tregs from

Gpr15 KO mice failed to do so (6). These observations suggest that

GPR15 is required to dampen the immune response in the large

intestine by directing homing of Tregs in mice.

However, a subsequent study by Nguyen et al. using Gpr15 KO

mice demonstrated that GPR15 is also important for the colon

migration of pathogenic Teff cells that cause inflammation (11). In a

T cell-mediated colitis model in which adoptive transfer of

CD45RBhi T cells (naïve CD4 T cells depleted of Tregs) to

immunodeficient recipient mice resulted in the generation and

intestinal trafficking of Teff cells to cause colitis (31–33), Rag2−/−

mice that received naïve Gpr15-KO T cells were protected from

developing colitis. In addition, GPR15 was found to be induced in in

vitro–generated mouse Th17 effector cells under conventional

polarizing conditions (11). Moreover, a more recent study by

Xiong et al. clearly showed substantial GPR15 expression in all

Th1, Th2, and Th17 subsets isolated from mouse LILP, although at

a lower frequency compared with that of Treg cells (34). Hence,

GPR15 is capable of directing the colon homing of both Treg and

Teff CD4+ T cells in mice, and the impact of this receptor in colitis

pathology will depend on the experimental settings regarding the

relative requirement of Treg and Teff subsets for the development

of colitis.
GPR15 expression in human T cell subsets
and colitis

How are these mouse studies translatable to humans? The

original study by Kim et al., who discovered the colon homing

function of GPR15 in mouse Tregs, observed an increased amount

of Gpr15 mRNA in the human CD25−CD4+ T cell population than

in Treg-enriched CD25+CD4+ T cells from colon tissues of patients
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with colorectal cancer (6), implying a difference between mice and

humans. The following study by Nguyen et al. found that in human

colon tissues, GPR15 expression was highly enriched in the IL-5+ or

IL-13+ Th2 subset, particularly in patients with ulcerative colitis

(UC), and there was little or no GPR15 expression in Treg cells (11).

In vitro polarization of human peripheral blood mononuclear cells

(PBMCs) and mouse spleen cells by cytokines also revealed

disparate GPR15 expression patterns in T cell subsets between the

two species; GPR15 was expressed primarily in Th2 cells in humans,

whereas GPR15 was expressed in Treg and Th17 subsets in mice

(11). Further analyses of Gpr15 gene and master T cell transcription

factors for Th2 (GATA3) and Treg cells (Foxp3) led to the

conclusion that the following mechanism underlies preferential

expression of GPR15 in Th2 cells in humans: (i) GATA3

promotes Gpr15 gene expression in human Th2 cells by binding

to the 3′ enhancer of Gpr15, while (ii) Foxp3 binding to the

enhancer suppresses Gpr15 expression in human Treg cells, and

(iii) this GATA3 binding does not occur in mouse Th2 cells and

Foxp3 binding is much weaker in mouse Treg cells because of the

sequence difference in the Gpr15 enhancer. These authors

concluded that GPR15 is preferentially expressed in Teff cells

rather than in Tregs in humans and this is reflected in the

inflamed colon of patients with UC.

In another study, Fischer et al. utilized a humanized mouse

model to comparatively determine the role of GPR15 and a4b7
integrin, in which human peripheral blood T cells from patients

with UC were transferred into mice and examined for migration to

the colon in dextran sulfate sodium (DSS)-induced colitis (35).

Expression of both GPR15 and a4b7 integrin was elevated in Tregs

but not in Teff cells in the colon of patients with UC compared with

those in healthy controls and patients with CD. Pre-treatment of

these cells with siRNA for GPR15 only affected Teff cell homing but

did not affect Treg homing, whereas treatment with an a4b7
antibody (vedolizumab) suppressed both Teff and Treg homing,

suggesting that GPR15 is important for Teff homing but not Treg

homing in humans (35).

Despite all these findings suggesting species differences, a

simplified interpretation such as “GPR15 is expressed by Teff cells

in humans, while it is expressed by Treg cells in mice,” requires

caution. Indeed, multiple studies from different groups, including

later studies from the same group of Nguyen et al., have shown that

GPR15 is expressed by human Tregs in the peripheral blood at

similar or even higher levels than that in Teff cells (6, 7, 35–37),

which is not consistent with the generalized model that GPR15

expression is promoted in Th2 cells and suppressed in Tregs in

humans. Furthermore, Adamczyk et al. reported that GPR15 was

expressed at an even lower frequency in Teff cells than in Treg cells

in colon tissues of either healthy controls or patients with UC (36).

Interestingly, they observed significantly increased expression of

GPR15 in both Treg and Teff cells from the uninflamed region, but

not from the inflamed region, in patients with UC compared with

that in tissues from healthy controls. This is also consistent with a

more recent study by Xiong et al. that observed substantial

expression of GPR15 (nearly 40% on average) in Tregs from
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uninflamed regions of UC patient colons and a positive

correlation between GPR15 and Foxp3 expression in human

colonic Tregs (34). These findings are in contrast to the

predominant GPR15 expression by Th2 cells observed in UC

colon by Nguyen et al. (11). The reason for this discrepancy is

not clear, and further human studies are necessary; however, the

differential expression of GPR15 in Tregs in the inflamed and

uninflamed regions of the UC colon could provide some insights.

The fact that GPR15 expression was not increased in Tregs from the

inflamed region of the UC colon implies that GPR15 is not an

exclusive master regulator for the migration of Tregs into the

inflamed colon. On the other hand, the increased GPR15

expression on Tregs in the non-inflamed region also raises the

possibility that GPR15 drives Tregs to the colon of patients with

UC, but its expression is downregulated in the inflamed

environment. For instance, increased local production of the

GPR15 ligand might enhance receptor internalization and

subsequent degradation. In addition, since dysbiosis in UC is

characterized by reduced levels of bacterial metabolites, including

short chain fatty acids (SCFAs) (38) and GPR15 expression was

found to be upregulated by SCFAs (36, 39, 40), the diminished local

production of SCFAs could result in the reduced expression of

GPR15 on Tregs in the inflamed colons of patients with UC.

Interestingly, the aforementioned study by Adamczyk et al. (36)

found that the majority of Teffs and Tregs in the peripheral blood

did not co-express GPR15 and a4b7 integrin, and this lack of co-

expression was also detectable in colonic biopsies of healthy

individuals and patients with UC. This indicates the phenotypic

heterogeneity of T cells, especially Tregs (41, 42) and highlights the

need for careful analysis of the expression of multiple molecular

factors potentially involved in the colonic migration of T cells.
Colorectal cancer

In addition to colitis, GPR15 has also been implicated in the

pathogenesis of CRC. Tregs infiltrating the tumor sites create an

immunosuppressive tumor microenvironment that prevents the

development of effective anti-tumor immune responses (42, 43).

Adamczyk et al. compared gene expression in Treg cells from

tumors and healthy colonic tissues of colitis-associated CRC mice

induced by azoxymethane (AOM)/DSS treatment (10). They

identified a specific set of genes that are preferentially expressed in

tumor-associated Tregs, including GPR15. Similar to mice, the

frequency of GPR15+ Tregs, but not that of GPR15+ Teffs, in the

tumor sites of patients with CRC was significantly higher than that in

non-tumor sites, suggesting a distinct role for GPR15 in Treg delivery

to CRC sites in humans (10). Importantly, genetic deletion of Gpr15

in mice significantly decreased the infiltration of tumor-associated

Tregs, reduced the Treg/CD8+ T cell ratio, and diminished tumor

development (10), suggesting that GPR15 is responsible for directing

the colon migration of Treg cells that support the growth of CRC.

Thus, GPR15 represents a promising novel target for modifying T

cell-mediated anti-tumor immunity in CRC.
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Eosinophilic esophagitis

EoE is an allergic disease characterized by chronic esophageal

inflammation with prominent recruitment of eosinophils (44).

Inflammation in EoE critically involves Th2 cells that produce

cytokines such as IL-5 and IL-13, which promote eosinophil

recruitment and activation and exacerbate epithelial barrier

dysfunction, respectively (44, 45). In a recent study, Morgan et al.

(9) conducted single-cell RNA analysis of T cells in tissues from

patients with EoE. They found that Gpr15 expression was increased

in highly polarized pathogenic effector Th2 (peTh2) clonotypes

detected in both esophageal tissue and peripheral blood of patients

with EoE, and Gpr15 was the most significantly upregulated

transcript in these cells in the esophagus compared with

peripheral blood. While the genes encoding integrin a4b7 were

broadly expressed by T cells in both the esophagus and duodenum,

GPR15 was only expressed in esophageal T cells, and CCR9, a

chemokine receptor known for gut homing (46), was only expressed

in duodenal T cells. In addition, the authors detected the expression

of C10orf99 and CCR9 ligand CCL25 only in the esophageal

epithelium and duodenal epithelium, respectively (9). This is

consistent with the fact that the esophagus is one of the tissues

that most strongly expresses C10orf99 (https://gtexportal.org).

These findings collectively support the model that GPR15

expression promotes esophageal homing of peTh2 cells and

exacerbates inflammation during EoE, and in addition, GPR15

may serve as a marker for esophagus-migrating peTh2 cells in the

peripheral blood of patients.
Rheumatoid arthritis

An earlier study on RA reported that GPR15 is expressed by

macrophages in synovial tissue and monocytes and neutrophils in

peripheral blood, and its expression is upregulated in patients with

RA compared to non-RA controls (24). A more recent study

examined GPR15 expression on T cells from patients with RA

and found that the frequency of CD4+/CD8+ GPR15+ T

lymphocytes was higher in patients with RA than in healthy

subjects (47). In addition, the frequency of CD4+/CD8+ GPR15+

T lymphocytes was higher in the synovial fluid of patients with RA

than in that of patients with osteoarthritis. Immunostaining results

of synovial tissue sections demonstrated that GPR15 and GPR15L

are present in the synovial tissues of patients with RA (47). These

findings implicate the GPR15-GPR15L axis in RA pathogenesis,

which involves both innate and adaptive immune cells.
Skin inflammation

The mouse skin epithelium contains a specialized population of

gd T cell receptor (TCR)+ cells called dendritic epidermal T cells

(DETCs), which exclusively express the monoclonal Vg3Vd1 TCR

and are implicated in protection of skin homeostasis, host defense,

and wound healing (48). DETCs mature in the fetal thymus and
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maintained through self-renewal. An earlier study by Lahl et al.

found that GPR15 is highly expressed on fetal thymic DETC

precursors and that Gpr15 KO substantially reduces the frequency

of epidermal DETCs in neonatal (Day 1) mice compared with

Gpr15 -/+ heterozygote neonates (23). This suggested that GPR15 is

essential for migration of embryonic DETC to the skin, which is

also consistent with the high expression of C10orf99 in

keratinocytes of embryonic (day 16) and neonatal skin (7). In a

more recent study, Sezin et al. conducted a profiling of T cell

populations in the skin of adult (8-16 weeks) Gpr15 KO mice and

found that the DETCs were reduced by approximately 60%

compared to wild-type littermates (49). In addition, the niche of

DETCs in the epidermis was populated by ab TCR+ cells;

approximately 40% of all CD3+ cells in Gpr15 KO mice were ab
TCR+ compared to only 10% in wild-type mice (49). Furthermore,

these changes were also associated with shifts in the composition of

skin microbiome in Gpr15 KO mice (49). These studies collectively

highlighted a pivotal role of GPR15 in the skin homing of DETCs in

mice, which appears to impact the composition of T cell

populations and microbiome even in the adulthood.

On the other hand, the role of GPR15 in the skin disease settings

remain somewhat elusive. Deficiency in Gpr15 did not alter the

course of disease neither in the imiquimod-induced psoriasiform

dermatitis nor in the IL-23-induced dermatitis model, despite the

increased expression of C10orf99 in the inflamed skin (50).

However, in the antibody transfer mouse model of bullous

pemphigoid-like epidermolysis bullosa acquisita (BP-like EBA),

an autoimmune subepithelial and mucocutaneous blistering

disease, the Gpr15 KO was found to markedly aggravate the skin

pathology (51). Importantly, this was associated with an increased

accumulation of gd TCR+ cells in the dermis (51), suggesting a

possibility that GPR15 may counteract antibody-mediated skin

inflammation through direct and/or indirect mechanisms that

limit the recruitment of gd TCR+ cells into the dermis.
GPR15 ligands and their roles
in pathophysiology

C10orf99 in GPR15 signaling

C10orf99 was reported as a natural GPR15 agonist in 2017 (7,

8). Mature human C10orf99 is a short, 57-amino acid basic protein

(pI = 11.28) with two pairs of Cys residues that form intramolecular

disulfide bridges, implying that this protein is related to a CC

chemokine. The tissues expressing C10orf99 include the digestive

tract (particularly the colon and esophagus), skin, tonsils, cervix,

and bladder. In the mouse colon, C10orf99 expression did not

appear to be regulated by colonic inflammation or the presence of

commensal bacteria (7). C10orf99 has several unique features that

differ from those of the canonical chemokines. Secondary structures

typically found in chemokine family proteins, such as loops, b-
strands, and helices, were not identified in C10orf99 by structure

prediction programs (8). In contrast to most chemokines that
frontiersin.org
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require their N-termini for receptor binding and activation (52), N-

terminal deletion of C10orf99 by up to 10 amino acids showed no

marked change in GPR15-dependent calcium signaling (8). Instead,

the hydrophobic C-terminal region of C10orf99, which is highly

conserved among species, is critically required for receptor binding

and signaling (8, 21, 53). In addition, unlike canonical chemokines

and chemokine receptors, C10orf99 and GPR15 show highly

specific interactions; C10orf99 does not cross-activate any of the

known 22 chemokine receptors, and GPR15 does not respond to

any of the 27 known chemokines (8). Functionally, C10orf99

interaction with GPR15 leads to inhibition of cAMP production,

which can be reversed by pertussis toxin, indicating that GPR15 is a

Gai/o-coupled receptor, similar to most chemokine receptors.

C10orf99 activates extracellular signal-regulated kinase (ERK)1/2,

induces calcium release, promotes b-arrestin recruitment and

receptor endocytosis, and induces chemotaxis in GPR15-

expressing immune cells (7, 8, 21, 53, 54) (Figure 1A).
C10orf99 in psoriasis

C10orf99 was implicated in immune regulation prior to the

discovery of its GPR15 agonistic activity. Its first implication in

human diseases came from global analyses of psoriasis-associated

genes in 2009 which reported significant upregulation of C10orf99

in psoriatic skin (55, 56). A large-scale gene knockout study in 2010

showed that disruption of C10orf99 gene leads to an increased ratio

of CD4+/CD8+ cells and a decreased serum IgM level in mice (57).

Multiple studies have demonstrated the regulated expression of

C10orf99 in the epidermis of the skin and its association with

psoriasis. Consistent with the epidermal migration of fetal thymic

DETCs that express GPR15 (23), C10orf99 mRNA is highly

expressed in the fetal and neonatal epidermis of mice, but is low

or nearly absent in the uninflamed adult epidermis both in mouse

and human (7, 51). However, C10orf99 expression was highly

upregulated in wounded skin (7), antibody-mediated model of

BP-like EBA (51), and imiquimod-induced models of psoriasis in

mice (8, 51, 58), and in patients with psoriasis (8, 58–60) or atopic

dermatitis (59, 61). C10orf99 has also been indicated as a reliable

marker gene for the classification of psoriasis (60).

A major question is whether C10orf99 plays a determining role

in disease progression or whether it merely indicates loss of

epithelial integrity. It appears that C10orf99 has GPR15-

independent functions. Yang et al. reported that C10orf99 acts as

an antimicrobial peptide that exhibits broad-spectrum

antimicrobial activity (62) (Figure 1A), as has been reported for

some chemokines (63). In addition, local sustained delivery of

nanoparticle-encapsulated C10orf99 peptide promoted

granulation tissue formation and wound healing in a full-

thickness dermal defect rat model (64). Similarly, overexpression

of C10orf99 gene in transgenic mouse was reported to reduce skin

inflammation and remodeling after an imiquimod challenge in a

published patent application (65). These findings implicate a

protective role for C10orf99 in the inflammatory skin.

However, a later study using human keratinocyte HaCaT cells

under inflammatory conditions showed that C10orf99 knockdown
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decreased cell proliferation, whereas overexpression of C10orf99

promoted their proliferation (58) (Figure 1A). A more recent study

also showed that C10orf99 transfection into normal human

epidermal keratinocytes induced the expression of inflammatory

mediators and reduced the expression of barrier-related genes such

as filaggrin and loricrin (59). The addition of synthetic C10orf99

peptide reduced the expression levels of barrier-related genes in

human keratinocyte 3D cultures, suggesting that C10orf99 binding

induces specific signaling in keratinocytes (59). Furthermore, local

depletion of C10orf99 by lentiviral shRNA vectors or systemic

knockout of C10orf99 in mice effectively ameliorated imiquimod-

induced psoriatic dermatitis, supporting the proinflammatory role

of C10orf99 (58, 59). Collectively, these results indicate that

C10orf99 is a primary inducible regulator that reduces barrier

formation and induces the inflammatory response of

keratinocytes under psoriatic conditions (Figure 1A). As already

mentioned, deficiency in the Gpr15 gene did not alter the course of

disease in imiquimod-induced psoriasiform dermatitis or the IL-23-

induced dermatitis model, suggesting that C10orf99 modulates

psoriasiform dermatitis via GPR15-independent pathways (50).

The notion of GPR15-independent activity of C10orf99 is

further supported by a recent study by Tseng and Hoon (61) who

discovered that C10orf99 can act as an endogenous pruritogen

during inflammation that activates Mas-related G protein-coupled

receptors (MRGPRs). These authors found that C10orf99 selectively

stimulates mouse dorsal root ganglion neurons that express

Mrgpra3 and evokes intense itch responses and vasodilation.

C10orf99 also caused mast cell degranulation through the

stimulation of MRGPRX2 and Mrgprb2, and genetic disruption

of C10orf99 expression attenuated scratch responses in an

imiquimod-induced psoriasis model (61). Together, these studies

suggest that elevated expression of C10orf99 during psoriasis can

aggravate the disease by promoting the proliferation and

inflammatory response of keratinocytes, reducing barrier

formation, and inducing itch responses and vasodilation by acting

on neurons and mast cells (Figure 1A).
C10orf99 in cancer cell growth

The above-mentioned studies indicate that C10orf99 has

multiple receptors and cellular substrates that are involved in

physiologically different reactions. An earlier study by Pang et al.

reported another function of C10orf99: the growth inhibition of

cancer cells (66). C10orf99 was found to interact with the

transmembrane protein Sushi Domain Containing 2 (SUSD2),

hence termed a colon-derived SUSD2 binding factor (CSBF) (66).

The authors showed that the C-terminally IgG-Fc-tagged

recombinant C10orf99/CSFB protein binds to SUSD2 expressed

in CRC cell lines and inhibits cell growth through G1 cell cycle

arrest (66) (Figure 1A). However, this model requires further

investigation because the inhibitory effect of C10orf99 on CRC

cells could not be reproduced in a follow-up study by a different

group (62) who used the untagged C10orf99 protein and observed

its cytotoxic effect only on a specific B-cell lymphoma line.
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Thrombomodulin as a ligand to GPR15 in
vascular endothelial cells

A novel function of GPR15 in ECs, mediated by a ligand that is

completely distinct from C10orf99 in structure, was demonstrated

in 2017 (67) (see more comprehensive review (68)). Pan et al. found

that the recombinant soluble protein TME5, which encodes the fifth
Frontiers in Immunology 06
region of the epidermal growth factor (EGF)-like domain of TM,

binds to the GPR15 expressed by human vascular ECs in vitro

(Figure 1B). TM is a type I transmembrane protein constitutively

expressed by ECs and acts as an anticoagulant by binding to

thrombin and activated protein C (69). The blood level of soluble

TM is known to be elevated under various pathological conditions

involving endothelial damage, such as sepsis, COVID-19 infection,
B C

A

FIGURE 1

GPR15 ligands and their functions. (A) A natural GPR15 ligand C10orf99 activates the Gai-mediated signaling pathways that induce chemotaxis of
GPR15+ T cells and other immune cells toward this ligand. C10orf99 also functions independently of GPR15 to exert antimicrobial activities. In the
psoriatic skin, C10orf99 evokes itch response by activation of MRGPRs on sensory neurons and mast cells, and promote proliferation and production
of inflammatory mediators of keratinocytes through unknown receptor/mechanism. C10orf99 also induces growth arrest of cancer cells by
activating SUSD2 receptor (although controversial). (B) Recombinant thrombomodulin acts on GPR15 expressed by vascular endothelial cells via its
fifth region of EGF-like domain to confer cytoprotection from apoptosis signal and promote angiogenesis. (C) HIV protein gp120 induces loss of
microtubule and apoptosis in the intestinal epithelial cells. The C-terminal fragment of cystatin C (CysC95-146) competes for GPR15 and inhibits the
entry of HIV and SIV. MRGPRs, Mas-related G protein-coupled receptors; SUSD2, Sushi Domain Containing 2 receptor; HIV, human
immunodeficiency virus; SIV, simian immunodeficiency virus.
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progressive systemic sclerosis, and diabetes (70–73). Recombinant

human soluble TM (rTM, ART-123), consisting of the extracellular

domain of TM, has been used to treat disseminated intravascular

coagulation (DIC) (74, 75). Pan et al. demonstrated that

recombinant TME5 rescued growth inhibition and apoptosis

caused by the calcineurin inhibitor FK506 in vascular ECs

isolated from wild-type but not from FK506-treated Gpr15 KO

mice (67). This cytoprotective effect was mediated by the activation

of ERK1/2 and increased level of anti-apoptotic proteins (67). In

addition, TME5 enhanced the migratory activity of ECs and

increased their production of nitrogen oxide. Moreover, in vivo

Matrigel plug angiogenesis assay revealed that TME5 stimulates

angiogenesis in wild-type mice but not in Gpr15 KO mice (67)

(Figure 1B). TME5 also ameliorates inflammation in a murine

sepsis model in a GPR15-dependent manner through suppression

of NF-kB activity and release of pro-inflammatory cytokines in

macrophages (76). GPR15 in T cells also appears to mediate TME5-

induced anti-inflammatory effects in a murine model of acute graft-

versus-host disease (GVHD) caused by allogeneic hematopoietic

stem cell transplantation (77).

Interestingly, in a more recent study testing the potential anti-

tumor effect of rTM, it was suggested that GPR15 mediates rTM-

induced growth inhibition of pancreatic ductal adenocarcinoma

(PDAC) (78). The anti-tumor effect of rTM was only observed in

PDACs with high GPR15 expression, and rTM suppressed NF-kB

and ERK1/2 activation in a GPR15-dependent manner. This

inhibition of ERK1/2 activity by rTM is not consistent with its

cytoprotective effect in ECs that involves activation of ERK1/2 (67),

suggesting that the consequence of rTM-GPR15 interaction is

dependent on the cell context. Further investigations in different

cell types are necessary to delineate TM-induced GPR15

signaling pathways.
HIV gp120 in enteropathy

Chemokine receptors are expressed in numerous non-

hematopoietic cells and play important roles beyond chemotaxis

of leukocytes, such as development, angiogenesis, and apoptosis

(79–81). GPR15 is abundantly expressed on the basolateral surface

of the intestinal epithelium, unlike CXCR4 and CCR5, which are

present mainly at or near the luminal surface (22). It was previously

reported that HIV-1 surface protein gp120 induces calcium

signaling, microtubule loss, and physiological changes, including

increased paracellular permeability in the intestinal cell line; these

changes resemble HIV enteropathy (82, 83). Fantini et al. found that

these gp120-induced effects were inhibited by anti-GPR15

neutralizing antibody or selective G protein inhibitor pertussis

toxin (22, 84). They also found that GPR15 mediates viral strain-

specific gp120-induced calcium signaling at low, physiologically

reasonable gp120 concentrations, which are up to 10,000-fold lower

gp120 concentrations than those of the principal HIV co-receptors.

These findings suggest that gp120 is involved in HIV enteropathy

via its interaction with the GPR15. GPR15 has also been implicated

in the apoptosis of intestinal epithelial cells in an SIV infection

model (85) (Figure 1C).
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Regulation of GPR15 expression

The molecular mechanisms that have been reported to regulate

Gpr15 gene expression are depicted in Figure 2.
Regulation of GPR15 expression by aryl
hydrocarbon receptor

The AhR is a ligand-activated transcription factor that has been

studied for many decades as a sensor for environmental

contaminants, such as dioxins. Research in the past 15 years has

led to the emergence of AhR as a key physiological regulator of

immune responses, affecting both innate and adaptive systems by

sensing a variety of endogenous, dietary, microbial (e.g., tryptophan

metabolites), and environmental ligands (86). AhR is known to

regulate the differentiation, homing, and immunosuppressive

functions of Tregs (87, 88) and numerous studies have shown

that AhR ligand activation can reduce inflammation and ameliorate

disease (89–92). AhR is also downregulated in the intestinal tissue

of patients with IBD (93). Using genetic mouse models, Zhou et al.

found in 2017 that GPR15 expression is significantly reduced in

AhR-deficient colonic Treg cells (94). A more recent study by the

same group (34) demonstrated that the AhR-dependency of GPR15

expression was not confined to Tregs, but was observed for all

murine CD4+ T cell subsets in the colon. In addition, when wild-

type mice were fed with an AhR-ligand-deficient diet, the addition

of the dietary AhR ligand indole-3-carbinol (I3C) (95) significantly

enhanced GPR15 expression in intestinal CD4+ T cell subsets, while

this effect was abrogated in Tregs (but not in other CD4+ subsets) in

engineered mice in which Ahr was specifically ablated in Tregs (34).

Moreover, in a short-term homing assay, in which in vitro

differentiated Tregs (iTregs) were transferred to Rag1-/- mice, the

number of Ahr-/- Tregs migrating to the colon was approximately 3-

fold lower than that of Ahr+/+ Tregs. Importantly, forced expression

of GPR15 in Ahr-/- Tregs significantly enhanced their homing to the

colon but not to other organs, suggesting that AhR promotes colon-

specific homing of Tregs by enhancing GPR15 expression in mice

(34). Notably, GPR15 expression in iTregs generated from human

PBMCs was enhanced or reduced by the AhR agonist or antagonist,

respectively, indicating that AhR regulates GPR15 in humans as

well (34). This is supported by another study by McAleer et al. (96)

who found regulation of GPR15 expression by an AhR agonist and

antagonist in human CD4+ T cells. In a separate recent study,

Swaminathan et al. reported the regulation of GPR15 expression by

AhR in activated human PBMCs, sorted effector/memory CD4+ T

cells, and in vitro polarized human Th2 and Treg cells (37).

Collectively, these studies have uncovered a novel role of AhR in

controlling colon homing of CD4+ T cells by positively regulating

GPR15 expression in mice and humans. It is interesting to note that,

retrospectively, there was already an indication of AhR regulation of

GPR15 in 2007 when Gpr15 was identified as a novel dioxin-

inducible gene (97).

A recent study demonstrated that the AhR intrinsically

promotes differentiation and function of resident memory CD8+
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T cells, including those in the intestinal epithelium (98).

Nevertheless, genetic deletion or activation of AhR did not affect

GPR15 expression in CD8+ T cells (34), suggesting an AhR-

independent mechanism for GPR15 expression in CD8+ T cells.

The crucial role of AhR in regulating GPR15 expression in CD4+

but not in CD8+ T cells suggests a potential therapeutic target in

intestinal disorders, e.g., colorectal cancer where disruption of

Gpr15 gene reduced infiltration of CD4+ Tregs but not CD8+ T

cells into tumor sites and inhibited tumor growth (10).
Direct activation of Gpr15 expression
by AhR and regulation by other
transcription factors

How does AhR regulate GPR15 expression? Chromatin

immunoprecipitation sequencing (ChIP-seq) of AhR using iTregs
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and Th17 cells identified Gpr15 as one of the top genome-wide

targets of AhR in both cell types (34). In addition, mutations in the

DNA-binding region abolished the ability of AhR to promote Gpr15

expression in iTregs, suggesting that AhR regulates transcription by

directly binding to the Gpr15 locus. Consistent with this notion,

both aforementioned studies (34, 37) identified AhR binding sites/

xenobiotic response elements (XREs, 5′-GCGTG-3′) within the

Gpr15 3′ enhancer sequence that are conserved across

mammalian species. As expected, the Gpr15 promoter-driven

luciferase reporters attached to these XRE-containing enhancer

regions exhibited AhR agonist-dependent activity that was

inhibited by an AhR antagonist (34, 37). Further analyses by

Xiong et al. (34) revealed that Foxp3 cooperates with AhR,

potentially via interactions with AhR at the Gpr15 locus, to

enhance GPR15 expression in Tregs. In contrast, RORgt, which is

frequently expressed in gut Tregs and Th17 cells, negatively

regulates GPR15 expression, at least in part, by competing with
FIGURE 2

Regulation of Gpr15 gene expression. Molecular factors that have been reported to upregulate Gpr15 expression are depicted. Dietary and
microbiome ligands such as tryptophan metabolites activate AhR that directly acts on Gpr15 gene. Foxp3 cooperates with AhR (although
contradictory data exist) while RORgt competes with AhR, and GATA3 enhances Gpr15 expression independently of AhR. Foxp3 and GATA3 are
reported to differentially bind Gpr15 enhancer and regulate Gpr15 expression in the T cells of human and mouse (not depicted in this figure). SCFAs
from microbiota such as butyrate upregulate Gpr15 expression by inhibition of HDAC but might also by activation of AhR. Smoking habit is strongly
associated with DNA hypomethylation of Gpr15 and increased mRNA expression of Gpr15 in blood leukocytes, but the evidence for the direct effect
of cigarette smoke extract on Gpr15 DNA methylation is lacking. Instead, the increased frequency of peripheral CD3+GPR15+ T cell population
appears to account for the apparent hypomethylation of Gpr15 DNA in blood samples from smokers. Infarction-related ischemia in mice and
ischemic condition in cell culture induces Gpr15 expression in cardiomyocytes. EBV infection in B cells enhances Gpr15 expression by an
unidentified mechanism. TGF-b induces GPR15 expression in vivo. AhR, aryl hydrocarbon receptor; SCFAs, short chain fatty acids; HDAC, histone
deacetylase; EBV, Epstein-Barr virus.
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AhR for binding to the Gpr15 locus (34). In addition, Swaminathan

et al. showed that GATA3 and AhR independently and

synergistically promoted GPR15 expression (37). Intriguingly,

however, these authors also found a significant decrease in

GPR15 expression by Foxp3 in the presence of either AhR or

GATA3 in the luciferase assay, contrary to the findings of Xiong

et al. (34). Although further investigation is necessary to elucidate

the crosstalk between AhR and other regulatory factors, the

discovery of AhR-mediated regulation of GPR15 expression and

colon homing of T cells has significantly advanced our

understanding of the roles of GPR15 in the intricate mechanisms

of T cell migration to target tissues.

GPR15 expression in T cells can be induced by SCFAs such as

butyrate, propionate, and acetate (36, 39, 40), which are the main

metabolites produced by the microbiota in colon. These SCFAs

synergistically enhance basal and ligand-induced expression of

AhR-responsive genes in a gene- and cell context-dependent

manner, likely through the inhibition of histone deacetylase

(HDAC) (99). Interestingly, a recent study by Marinelli et al.

provided evidence suggesting that butyrate acts as an AhR ligand

to enhance transcription of AhR ligand-dependent genes,

independent of its HDAC inhibitor activity, in intestinal epithelial

cell (IEC)-AhR reporter cell lines (100). Although this observation

needs to be confirmed in other cell types, the study raises an

interesting possibility that SCFA butyrate can upregulate GPR15

expression through activation of AhR in colon-migrating T cells

and possibly also in colon epithelial cells.
Regulation of GPR15 expression by
pathophysiological factors

Smoking and DNA methylation
A number of genomic analyses of blood cells, mostly

methylation analysis, have been performed to identify the

molecu la r ta rge t s r e spons ib l e for smoking- induced

reprogramming. Blood T cells and B cells expressing GPR15 have

approximately 50% methylation at cg19859270, a CpG site within

the single exon of Gpr15, while non-GPR15-expressing cells are

nearly 100% methylated at this site (101). Many studies have shown

that smoking is associated with decreased methylation of

cg19859270 (102–108) (also see review (109)) and increased

Gpr15 mRNA expression (105, 107, 108, 110, 111) in blood

leukocytes. Smoking was also shown to increase the frequency of

peripheral GPR15+CD3+ T cells (107, 112). The effect of smoking is

slowly reversible after cessation (102, 110, 113). These data suggest a

potential mechanism by which smoking decreases Gpr15 DNA

methylation, which leads to an increase in Gpr15 mRNA

expression, resulting in increased GPR15-positive T cells in the

blood. However, although it is conceivable that hypomethylation of

Gpr15 DNA per se contributes to the increased expression of Gpr15

mRNA, the direct causal effect of smoking on Gpr15 DNA

methylation is questionable. By analyzing GPR15 protein

expression in leukocyte subtypes, Bauer et al. (107) found that the

increased proportion of CD3+GPR15+ T cells in the blood of

smokers was responsible for the apparent smoking-induced
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hypomethylation of the GPR15 gene, since cg19859270

hypomethylation was specifically found in GPR15-expressing

cells. In addition, treatment of PBMC cultures with aqueous

cigarette smoke extract (CSE) did not induce a higher proportion

of this T cell subtype, suggesting that DNA hypomethylation at the

cg19859270 site observed in smokers did not arise from the direct

effect of tobacco smoking compounds on DNA methylation but

rather from the enrichment of a smoking-induced GPR15+ T cell

population in the peripheral blood (107). This study also indicates

that the frequency of GPR15+ T cells in the blood can be effectively

used as a highly reliable biomarker for tobacco smoking. It remains

to be elucidated how smoking leads to an increased population of

GPR15+ T cells independent of CSE, and whether or how the

increased GPR15+ T cells in the blood impact immune homeostasis

and smoke-related disease pathology.

Ischemia
In a recent study by Haase et al. (114), transcriptome analysis

showed upregulated Gpr15 mRNA expression and downregulated

Gpr15 DNA methylation in PBMCs from early onset myocardial

infarction (MI) individuals compared to controls. The MI risk

prediction analysis indicated that the effect of smoking on MI was

fully mediated by Gpr15 mRNA expression; however, the

associations between Gpr15 mRNA expression and Gpr15 DNA

methylation with MI were found to be independent of smoking

status. In addition, cardiac Gpr15 expression was significantly

upregulated in a mouse model of infarction-related ischemia (>6-

fold increase at five days after MI) as well as in an ischemic

cardiomyocyte culture model (4-fold after 24 h induction of

ischemic stress) (114). These data imply that GPR15 might play a

role, independent of smoking, in the pathogenesis of acute MI and

conditions of ischemia, such as artery narrowing by plaques.

Interestingly, Gpr15 KO mice had reduced survival compared to

wild-type mice after MI induction (114), which raises the possibility

that MI-induced cardiac GPR15 expression represents a protective

response to oxidative stress. Further investigation is warranted to

elucidate the pathophysiological role of GPR15 in MI. It will be

particularly interesting to determine whether and how GPR15 in

cardiomyocytes is activated by known or novel ligands to

induce signaling.
Epstein–Barr virus
The RNAseq data in the GTEx portal (www.gtexportal.org)

showed the strongest expression of Gpr15 in EBV-transformed

lymphocytes (median transcripts per million (TPM) was 252.9,

while median TPM of whole blood was 1.0) among diverse human

tissues. The mechanism of EBV-induced GPR15 expression is yet to

be understood. EBV infects the oropharynx but frequently induces

B-cell proliferation, which causes tumors in the gut of

immunosuppressed individuals, such as transplant recipients

treated with immunosuppressive drugs, namely post-

transplantation lymphoproliferative disorders (PTLDs) (115, 116).

Delecluse et al. found that EBV infection induces integrin a4b7
expression in tonsillar B cells (117). Since a4b7 is the key for

homing of B cells to the gastrointestinal tract (118), this study
frontiersin.org

http://www.gtexportal.org
https://doi.org/10.3389/fimmu.2023.1179456
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Okamoto and Shikano 10.3389/fimmu.2023.1179456
suggests that the induction of a4b7 is one of the mechanisms

through which EBV-infected cells enter the gastrointestinal

mucosa-associated lymphoid tissue. It will be interesting to

determine whether elevated GPR15 expression in EBV-

transformed B cells may contribute to their specific homing to

the colon by synergizing with a4b7 to enhance the pathogenesis

of PTLDs.

Cytokines
GPR15 expression can be induced in vitro by a combination of

TGF-b1 and either IL-6 or IL-21 preferentially in mouse Tregs (6).

However, Il21r−/−Il6−/− mice crossed with Gpr15gfp/+ mice had a

similar level of GFP expression as that of control mice, suggesting

that TGF-b1 is a key regulator of GPR15 expression in vivo (6). An

earlier study has shown that both TGF-b1 and TGF-b2 can induce

de novo Foxp3 expression in CD4+CD25– cells (119). This raises a

possibility that the effect of TGF-b on GPR15 expression may

involve the increase of Foxp3 expression that would promote

Gpr15 transcription through enhancement of the AhR activity (34).
Regulation of GPR15 by
posttranslational modifications

Regulation of cell surface expression of
GPR15 by phosphorylation

Cell surface expression levels and ligand responsiveness of

chemokine receptors are tightly regulated by various post-

translational modifications (PTMs). The trafficking of de novo

synthesized GPR15 to the plasma membrane is dependent on the

phosphorylation of the penultimate Ser359 residue in the

cytoplasmic C-terminal tail (120). Phosphorylation of Ser359,

which can be mediated by AKT (121), induces binding of 14-3-3

proteins to the receptor (120). The 14-3-3 binding sterically masks

the upstream di-Arg (RxR) motif composed of Arg352 and Arg354,

which is the binding motif of COPI, a coatomer protein complex

that mediates the retrieval of cargo protein-loaded membrane

vesicles from the Golgi to the endoplasmic reticulum (ER) (122).

Thus, Ser359 phosphorylation promotes the expression of GPR15 at

the cell surface (Figure 3A).

In addition to receptor insertion into the plasma membrane, the

cell surface expression of GPR15 is also controlled by endocytosis.

GPR15 is constitutively internalized in the absence of exogenous

ligand (C10orf99) stimulation (123). This constitutive endocytosis

requires the phosphorylation of Ser357, which can be mediated by

protein kinase A (PKA) or PKC, but does not require the upstream

Ser/Thr cluster in the C-terminal tail, which is commonly

phosphorylated by G protein-coupled receptor kinases (GRKs)

and is critical for recruiting b-arrestin (124) (Figure 3B).

Constitutively endocytosed receptors have been successfully

utilized for the delivery of therapeutic agents to target cells; for

example, drugs conjugated with specific antibodies to receptors

(125, 126). Therefore, ligand-independent endocytosis of GPR15

provides a basis for developing interventions targeting this receptor
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in human inflammatory/immune diseases, where GPR15-

expressing cells may play pathogenic roles (9–11, 47).
Regulation of GPR15-C10orf99 interaction
by Tyr sulfation and O-glycosylation

PTMs of GPR15 also regulate receptor-ligand interactions.

Sulfation of Tyr residues in the extracellular N-terminus of

chemokine receptors positively regulates the binding of

chemokine ligands through electrostatic interactions (127, 128).

GPR15 has also been recently found to be sulfated on Tyr residue(s),

which enhances the binding of the endogenous ligand C10orf99

(21). It is interesting to note that latent membrane protein 1

(LMP1), which is encoded by EBV, induces tyrosine sulfation of

CXCR4 through upregulation of tyrosylprotein sulfotransferase-1

(TPST-1) and promotes metastasis of cancer cells (129), a

mechanism that could also be applied to GPR15.

GPR15-C10orf99 interaction is also regulated by O-linked

glycosylation at the receptor N-terminus (21, 120). In contrast to

Tyr sulfation, the O-glycans on the N-terminal Ser/Thr cluster

negatively regulate ligand binding, which is at least in part due to

the a2,3-linked sialic acid that caps O-glycans. This is similar to

CCR7, in which sialylated O-glycans add steric hindrance to the

receptor N-terminus to limit ligand binding (130). Consistent with

their effects on ligand binding, Tyr sulfation and O-glycosylation of

GPR15 differentially regulate the magnitude of receptor signaling

(21). Thus, GPR15 represents a unique chemoattractant receptor in

which two different PTMs on the N-terminus, Tyr sulfation and O-

glycosylation, play contrasting roles in ligand binding and

consequent signaling (Figure 3C), which is distinct from the

reportedly cooperative roles of these two PTMs in the case of

CCR5 (18) and CCR8 (20). The highly regulated glycosylation and

sialylation during the differentiation and activation of T cells (131,

132) underpins the notion that the strength of the GPR15–GPR15L

interaction is dynamically regulated by PTMs in both physiological

and pathological conditions.
Inhibitors of GPR15

There is currently no publication reporting small-molecule

compounds that inhibit C10orf99-induced GPR15 signaling.

Wang et al. (133) predicted the 3D structure of human GPR15

and applied structure-based virtual screening approaches to

discover potential antagonists that could bind to the predicted

active sites. By screening a chemical database consisting of 62,500

small molecules, they isolated a set of compounds that satisfied the

threshold of a high docking score. However, their antagonistic

effects on GPR15 signaling have not yet been demonstrated. Hayn

et al. screened peptide libraries generated from human hemofiltrate,

which essentially represents the entire blood peptidome, to identify

novel endogenous ligands of GPR15 (134). Using primate

lentiviruses, these authors discovered a C-terminal fragment of

cystatin C (CysC95-146) that specifically inhibits GPR15-

dependent entry of HIV-1, HIV-2, and SIV, but does not inhibit
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C10orf99-induced signaling. This indicates that CysC95-146 is an

endogenous inhibitor of GPR15-mediated HIV and SIV infections

that does not interfere with the physiological function of this GPCR.

In another study by Guo et al. (135), Gpr15 was found to be

upregulated in CRC tissues, and silencing of Gpr15 by siRNA

inhibited the growth, migration, and invasion of CRC cells. These
Frontiers in Immunology 11
authors found that the expression of GPR15 is post-

transcriptionally regulated by microRNA-1225 (miR-1225), the

expression of which is significantly downregulated in CRC cells.

Overexpression of miR-1225 caused suppression of GPR15 and

inhibited the proliferation of CRC cells, suggesting its therapeutic

potential (135).
B
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FIGURE 3

Posttranslational modifications that regulate cell surface expression and ligand binding of GPR15. (A) Phosphorylation of C-terminal penultimate
Ser359 of the nascent GPR15 protein, which can be mediated by AKT, recruits dimeric 14-3-3 proteins to the C-terminus, which in turn blocks the
binding of COPI to the adjacent di-Arg (RxR) motif. This prevents GPR15-loaded membrane vesicles from being retrieved back from the Golgi to the
ER and allows GPR15 trafficking to the plasma membrane. (B) The cell surface level of GPR15 is also regulated by the constitutive (ligand-
independent) endocytosis that requires phosphorylation of Ser357, which is the target of PKA and PKC. The more upstream Ser/Thr cluster that is
commonly phosphorylated by GRKs and responsible for recruiting b-arrestin to many GPCRs is not required for the constitutive endocytosis of
GPR15, while most likely required for the C10orf99-induced endocytosis. (C) The Tyr residues in the N-terminal extracellular region of GPR15 are
sulfated (OSO3−) while the Ser and/or Thr residues are O-glycosylated and capped with a2,3-sialic acids. Sulfated Tyr residues promote, while
sialylated O-glycans inhibit, the binding of C10orf99 to the receptor. ER, endoplasmic reticulum; PKA, protein kinase A; PKC, protein kinase C; AKT,
protein kinase B; GRKs, GPCR kinases; COPI, coatomer protein complex I.
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Conclusion and open questions

Over the past decade, a growing number of studies have

indicated the involvement of GPR15 and its ligands in a variety

of human immune disorders, making them promising therapeutic

targets. In the past two decades, 45 drugs targeting chemokine

receptors have been tested in clinical trials and only three have been

approved by the Food and Drug Administration (FDA) (136). One

of the major reasons for the poor success of chemokine receptor

inhibitors may be the redundancy of chemokine-chemokine

receptor interactions in vivo. In this regard, the unusual lack of

cross-reactivity of GPR15 and C10orf99 with known chemokines

and chemokine receptors, respectively, may offer an advantage for

developing specific and clinically effective inhibitors. GPR15 is

expressed in multiple cell types and plays pro-inflammatory or

regulatory roles in both humans and mice. Further investigations to

determine the relative contribution of specific cellular subsets in

individual disease settings are necessary to enable the

implementation of GPR15-targeted therapy. In this regard,

development of conditional GPR15 KO mice likely facilitates

elucidation of cell-intrinsic roles of GPR15. In addition, further

discovery and characterization of new GPR15 ligands and

regulatory mechanisms of GPR15 expression will expand our

understanding of GPR15 biology in broader pathophysiology.

The questions that remain open include:

(1) GPR15 is strongly expressed by colon epithelial cells;

however, the implication of epithelial GPR15 in disease is limited

to HIV enteropathy and the growth of CRC cells. Studies in cell

culture systems have demonstrated that chemokine/chemokine

receptor signaling, such as CXCL8/CXCR1 and CXCL12/CXCR4,

contributes to the maintenance of the epithelial barrier by

stimulating the migratory repair process, termed restitution, of

wounded epithelium (137, 138). It remains to be determined

whether autocrine activation of GPR15 by C10orf99 in colon

epithelial cells plays a role in barrier integrity through restitution.

Also interesting will be whether GPR15 expression in colon

epithelium is regulated by AhR stimulation by dietary and/or

commensal metabolites.

(2) It is interesting that C10orf99 functions as an inducible

“inflammatory” chemoattractant in psoriatic skin while this protein

appears be a “homeostatic” chemoattractant in the colon where its

expression was not altered by inflammation or the presence of

commensal bacteria (7). It is still unclear what causes the increase in

C10orf99 expression at the onset and/or during psoriasis. This is

important since such regulatory mechanisms could also be applied

to other C10orf99-expressing tissues including colonic and

esophageal epithelia. Additionally, it is unknown whether the
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direct effects of C10orf99 on keratinocyte proliferation and

inflammatory response are mediated by MRGPRs or

other receptors.

(3) It remains open whether/how the different ligands such as

C10orf99 and TME5 activate different signaling pathways (e.g., G-

proteins) through GPR15. This may be cell context-dependent. It

would also be interesting to investigate whether GPR15 undergoes

different PTMs when expressed in different types of cells (e.g.,

lymphocytes, epithelial cells, and endothelial cells), which could

potentially enable preferential interaction with particular ligands.

(4) Many studies indicate a correlation between smoking habit,

hypomethylation of GPR15 DNA, and the increase of peripheral

blood GPR15+ T cells; however, it is not clear how the smoking

leads to the increase of GPR15 expression and whether the increase

is specific to any T cell subsets (e.g., Tregs or Teffs). Those questions

will be relevant for understanding the potential role of GPR15 in the

smoking-related diseases.
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