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T follicular helper (Tfh) cells are heterogeneous and mainly characterized by

expressing surface markers CXCR5, ICOS, and PD-1; cytokine IL-21; and

transcription factor Bcl6. They are crucial for B-cell differentiation into long-

lived plasma cells and high-affinity antibody production. T follicular regulatory

(Tfr) cells were described to express markers of conventional T regulatory (Treg)

cells and Tfh cells and were able to suppress Tfh-cell and B-cell responses.

Evidence has revealed that the dysregulation of Tfh and Tfr cells is positively

associated with the pathogenic processes of autoimmune diseases. Herein, we

briefly introduce the phenotype, differentiation, and function of Tfh and Tfr cells,

and review their potential roles in autoimmune diseases. In addition, we discuss

perspectives to develop novel therapies targeting Tfh/Tfr balance.

KEYWORDS
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Introduction

Autoimmune diseases refer to a category of diseases with high prevalence (7%–9%) in

the general population, causing considerable mortality. Autoimmune diseases can be

initiated by immune responses mistakenly targeting an individual’s cellular components,

resulting in tissue damage and organ dysfunction. According to the tissues involved, they

can be categorized as organ-specific diseases, including type 1 diabetes (T1D) and multiple

sclerosis (MS), and multiple organs involving systemic diseases, including rheumatoid

arthritis (RA), systemic lupus erythematosus (SLE), Sjögren’s syndrome (SS), and

granulomatosis with polyangiitis (GPA) (1, 2). Many autoimmune diseases are

characterized by autoantibody production. Autoantibodies promote disease pathogenesis

by forming immune complexes, which mediate tissue inflammation and damage by

activating complement and effector cells (3). Helper T cells play crucial roles in the
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pathogenesis of autoimmune diseases by secreting immune

mediators and helping B cell-mediated long-lived humoral

immunity development (4).

T follicular helper (Tfh) cells are a CD4+ T-cell subset that

promotes germinal center (GC) formation, antibody affinity

maturation, and memory B-cell generation (5). Recent studies

have found a specialized subset of T regulatory (Treg) cells

named T follicular regulatory (Tfr) cells, which can negatively

regulate GC responses (6). Here, we review the established

phenotype and function of Tfh and Tfr cells and their roles in the

pathogenesis of autoimmune diseases, and highlight the potential

therapies targeting these cells.
Phenotypes of Tfh and Tfr cells

Tfh cells are a heterogeneous subset of CD4+ T cells (Figure 1).

Initial studies of experimental animal models revealed that Tfh cells

mainly reside in GCs of secondary lymphoid organs. These canonical

GC Tfh cells are characterized by expressing transcription factor B-

cell lymphoma 6 (Bcl6), CXC-chemokine receptor 5 (CXCR5),

inducible T-cell co-stimulator (ICOS), and programmed cell death

protein-1 (PD-1) (7, 8). The clinical studies mainly focus on Tfh cells

from the peripheral blood of patients. Circulating Tfh (cTfh) cells

share phenotypic surface markers CXCR5, ICOS, and PD-1 with GC

Tfh cells. Based on the expression of CXCR3 and CCR6, cTfh cells are

further divided into four major subsets: CXCR3+CCR6− cTfh1,

CXCR3−CCR6− cT fh2 , CXCR3−CCR6+ cT fh17 , and

CXCR3+CCR6+ cTfh17.1 cells. These cTfh cell subsets share

common precursors with their equivalent helper T cell (Th) 1, Th2,

Th17 or Th1, and Th17 cells, respectively (9–11).

Tfr cells, a subset of regulatory T cells, were described as

sharing phenotypic markers with conventional Treg cells

(CD4+CD25+Foxp3+) and Tfh cells (12, 13). Subsequent studies

reported that circulating Tfr (cTfr) cells should be defined as

CD4+CXCR5+Foxp3+ T cells and tissue-resident Tfr cells fully

expressing CXCR5, ICOS, and PD-1 (14, 15). In addition, Tfr

cells as a heterogeneous subset may express different phenotypic
Frontiers in Immunology 02
characteristics at different development stages in distinct

inflammatory milieus (10).
Differentiation of Tfh and Tfr cells

Transcription factors

Bcl6 is the essential transcription factor for Tfh cell

differentiation by controlling the expression of CXCR5,

interleukin-6 receptor (IL-6R), IL-21, and IL-21R in naïve CD4+

T cells. Bcl-6 can also inhibit the effects of the transcription factors

T-bet for Th1 cells, GATA3 for Th2 cells, and RORgt for Th17 cells
by downregulating the expression of B lymphocyte-induced

maturation protein 1 (Blimp-1) (4, 11, 16, 17). In particular,

CXCR5+ cTfh cells, with effector memory phenotype, do not

express Bcl6 owing to the lack of persistent antigen stimulation

(18). Upon antigen re-encounter, these pre-Tfh cells can rapidly

differentiate into mature GC Tfh cells (19, 20).

Unlike Tfh cells, Tfr cells can differentiate from thymic-derived

natural Treg cells and peripheral Treg cells (12, 13, 21). These

precursor cells differentiate into Tfr cells requiring transcription

factor Bcl6. Similar to Tfh cell differentiation, ICOS signaling

promotes the development of Tfr cells by upregulating Bcl6

expression (22). Compared with GC Tfr cells, cTfr cells expressed

a similar level of CXCR5, but a lower level of ICOS (15). Blimp-1 is

necessary for the Treg-like suppressive function and homing into

GCs of Tfr cells (13, 23).
Cytokines

Besides antigen stimulation to activate T-cell receptor (TCR)

signaling and costimulatory signals via CD28 and ICOS, the

expression and activity of Bcl6 are regulated by several specific

cytokine-initiated cell-intrinsic signaling cascades (Figure 2). The

IL-2–STAT5 pathway inhibits GC Tfh cell formation by inducing

Blimp-1 to suppress Bcl6 expression (24). The IFN-a/b-STAT1
FIGURE 1

Phenotype and transcription factors of Tfh effector cell subsets and Tfr cells. GC, germinal centers; Tfh, T follicular helper; cTfh, circulating
Tfh; Tph, T peripheral helper; Tfr, T follicular regulatory; cTfr, circulating Tfr; CXCR, chemokine receptor; ICOS, inducible T-cell co-stimulator;
PD-1, programmed cell death protein-1; Bcl6, B cell lymphoma 6; Foxp3, forkhead box P3; GATA3, GATA-binding protein 3; ROR, retinoid-related
orphan receptor; Blimp-1, B lymphocyte-induced maturation protein 1; TF, transcription factors.
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pathway contributes to CXCR5 and PD-1 expression in naive mice

CD4+ T cells by inducing Bcl6 (25). Co-stimulation of IFN-a and

IL-2 can convert CXCR5+PD-1+ cTfh cells to CXCR5−PD-1+ T

peripheral helper (Tph) cells through promoting the binding of

STAT5 to the Bcl6 locus at the expense of STAT1 (26). IL-12 is the

most efficient cytokine inducing human naive CD4+ T cells to

express IL-21. The IL-21–STAT3 pathway can promote GC Tfh cell

differentiation by inducing Bcl6 expression and antagonizing IL-2

signals (27, 28). IL-23, as the substitute for IL-12, can also induce

IL-21 expression and human cTfh cell differentiation in vitro (29).

The IL-6 is a potent inducer for IL-21 expression and GC Tfh cell

differentiation of naive murine CD4+ T cells by inducing STAT3

phosphorylation (27, 30). Of special interest is that IL-29 may

suppress cTfh differentiation through decreasing STAT3 activation-

induced Bcl6 expression (31). In addition, TGF-b and TGF-b
superfamily member Activin A seems to be important for human,

but not murine, Tfh cell differentiation (29, 32).

IL-2, as a positive factor for Treg cell differentiation and a

negative factor for Tfh cell differentiation (33), can facilitate cTfr

cell development by upregulating Foxp3 and Bcl6 expression (34,

35). IL-21 and IL-6 as the positive factor for Tfh cell differentiation

can inhibit Tfr cell development by suppressing Foxp3, TGF-b, or
CD25 expression via activating the STAT3 signaling pathway (36–

38), while STAT3 deficiency decreased both Tfr and Tfh cell

differentiation (39).
Functions of Tfh and Tfr cells

Tfh cells are a subset of effector T cells that can assist B-cell

maturation, high-affinity antibody production, and memory B-cell

development in GCs (Table 1). CXCR5, a receptor for chemokine

ligand CXCL13, can guide Tfh cells into GCs and interact with B

cells. It has been shown that a high level of CXCR5 combined with a

low level of CCR7 is required for T cells to migrate to the T–B

border (10). Within GCs, Tfh cells interact with B cells relying on
Frontiers in Immunology 03
ICOS-ICOSL, CD40L-CD40, and TCR-peptide-MHC II, which

induces IL-4, IL-21, and Bcl-6 expression in Tfh cells and

promotes B-cell activation (4, 40, 41). Furthermore, IL-21 binding

to IL-21R on Tfh and B cells can facilitate their proliferation and

differentiation to maintain GC responses (42, 43), while PD-1

signals can restrain GC Tfh cell proliferation by inhibiting ICOS

signaling, avoiding excessive B-cell proliferation and antibody

production (53).

Upon re-encountering antigen, extrafollicular cTfh cells

rapidly differentiate into mature GC Tfh cells and are guided by

CXCR5-CXCL13 to GCs in secondary lymphoid organs (19, 20).

cTfh1 cells express high levels of IFN-g; cTfh2 cells express high

levels of IL-4, IL-5, and IL-13; and cTfh17 cells express high levels

of IL-17 and IL-22. All these cytokines help class-switching of GC

B cells (10, 44). Studies reported that distinct cTfh cell subsets,

except cTfh1 cells, are prone to induce naive B cells to differentiate

into plasma cells secreting different classes of immunoglobulins

(8, 45).

CXCR5 can also guide Tfr cells to migrate to GCs (6). GC Tfr

cells show durable and persistent suppression of high-affinity

autoantibody production by inhibiting glucose metabolism in B

cells (49). GC Tfr cells may limit GC reactions by physically

interrupting Tfh–B cell recognition via cytotoxic T-lymphocyte

antigen 4 (CTLA-4) competitive binding with the co-stimulatory

molecules on GC B cells (49, 50). Moreover, similar to Treg cells,

Tfr cells control Tfh- and B cell-mediated immune responses by

secreting IL-10, TGF-b, and granzyme B (51). However, compared

to GC Tfr cells, the cTfr cells showed less suppressive function on B-

cell responses (52).
Involvement of Tfh and Tfr cells in
autoimmune diseases

The interactions between B and Tfh cells are crucial for

autoantibody production, which is the hallmark of autoimmune
FIGURE 2

Signaling modulation of Tfh and Tfr cell differentiation. IL, interleukin; TGF, transforming growth factor; IFN, interferon; STAT, signal transducers and
activators of transcription; Bcl6, B cell lymphoma 6; Foxp3, forkhead box P3; Blimp-1, B lymphocyte induced maturation protein 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1178792
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2023.1178792
diseases. Considerable evidence has revealed that the imbalance of

Tfh and Tfr cells is involved in the development of autoimmune

pathology (Table 2).
Rheumatoid arthritis

RA is a common systemic autoimmune disease mainly

characterized by chronic inflammation affecting the joints and

other organs (99). Studies indicated that CXCR5+ Tfh cells were

present in the B-cell area of lymphoid tissue from early RA patients,

and both CXCR5+ and CXCR5+PD-1+ cTfh cell proportions were

higher in untreated early RA patients than in healthy controls (HC)

(54–56). The increased circulating plasmablasts in RA patients

promoted CXCR5+ICOS+ cTfh cell differentiation via IL-6

production (100). Furthermore, in patients with low or high

active RA, the frequencies of cTfh1 cells were comparable with

those in HC. However, the frequencies of cTfh2 and cTfh17 cells

were higher than those in HC. Patients with high active RA had

more cTfh2 and cTfh17 cells than patients with low active RA (57).

OX40 expressed cTfh, especially cTfh17 cells, were increased, and

negatively correlated with autoantibody sialylation in RA

patients (101).

A novel CXCR5−PD-1hi Tfh cell population in the synovial

tissues and peripheral blood of seropositive RA patients was defined

as Tph cells. Tph cells were increased only in patients with high

active RA and might contribute to chronic autoimmune

phenomena at the inflammatory foci (48, 58). Adiponectin (AD)

promoted fibroblast-like synoviocytes producing IL-6 to enhance

CXCR5+PD-1+ cTfh cell responses in RA patients. Intra-articular

injection of AD aggravated synovial inflammation with increased

Tfh cells in the joint tissue of collagen-induced arthritis (CIA)

mice (100).
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Moreover, compared with HC, RA patients showed decreased

CXCR5+CD25+ CD127lo or CXCR5+Foxp3+ cTfr cells and Tfr/Tfh

ratio. The ratio of Tfr/Tfh was negatively correlated with C-reactive

protein (CRP), erythrocyte sedimentation rate (ESR), serum anti-

cyclic citrullinated peptide antibodies (ACPA), and disease activity

score-28 (DAS28) index of RA patients (59–61). Studies on

targeting Tfh and Tfr cells revealed that CTLA-4-Ig, iguratimod,

abatacept, low-dose IL-2, and alcohol consumption could

ameliorate RA by inhibiting Tfh cell responses and restoring the

Tfr/Tfh balance (102–107).
Systemic lupus erythematosus

SLE is a prototypic autoimmune disease with aberrant

activation of T and B cells. Multiple serum autoantibodies

against nuclear antigens lead to systemic tissue damage (108).

According to studies, the increased cTfh cells and serum IL-21

were associated with the pathogenesis of SLE patients (109).

Furthermore, in SLE patients, the percentages of cTfh1 and

cTfh2 cells were comparable with those in HC, and the

percentages of cTfh17 cells were higher than those in HC (110,

111). A population of Tfh cells with active NLRP3 inflammasome

was increased and essential for optimal humoral responses and

GC formation in SLE patients and mice (62). Circulating

CXCR5−PD-1+/hi Tph cells were increased significantly, which

stimulated B-cell responses via secreting IL-21 in SLE patients (26,

63, 64). CXCX5−PD-1hi CXCR3+ Tfh-like cells expanded in blood

and the tubulointerstitial areas of SLE patients, providing B-cell

help, independently of IL-21, by producing IL-10 and succinate

(65). IL-10-producing CCR6+IL7R+ Tfh-like cells lacking Bcl6

expression were elevated in peripheral blood and lymph nodes of

SLE patients, and these cells were associated with the presence of
TABLE 1 Functional factors and roles in B-cell activation of Tfh and Tfr cells.

Tfh cell subsets Functional factors Functions References

GC Tfh IL-21, IL-4, CD40L Help for B-cell maturation, high-affinity antibody production, antibody class switching,
and memory B-cell development.

(4, 8, 10, 40–43)

cTfh

cTfh1 IL-21, IFN-g, IL-10 Help for memory B-cell differentiation into plasma cells. (8, 10, 19, 20,
44–47)

cTfh2 IL-21, IL-4, IL-5, IL-13 Help for IgM, IgG, IgA, and IgE secretion.

cTfh17 IL-21, IL-17, IL-22 Help for IgM, IgG, and IgA secretion.

cTfh17.1 IL-21, IL-17, IL-22, IFN-
g

Help for IgM, IgG, and IgA secretion.

Tph IL-21, SLAMF5,
CXCL13

Help for B-cell function with a migratory program targeting inflamed tissues and
recruitment of Tfh and B cells to inflamed tissues.

(26, 48)

GC Tfr CTLA-4, IL-10, TGF-b,
granzyme B

Strong suppression on Tfh-cell and B-cell responses in GC. (13, 15, 23)

cTfr CTLA-4, IL-10, TGF-b,
granzyme B

Less suppression of Tfh-cell and B-cell responses in GC. (6, 49–52)
GC, germinal centers; Tfh, T follicular helper; cTfh, circulating Tfh; Tph, T peripheral helper; Tfr, T follicular regulatory; IFN, interferon; IL, interleukin; TGF, transforming growth factor;
SLAMF, signaling lymphocyte activation molecule family; Ig, immunoglobulin; CTLA-4, cytotoxic T-lymphocyte antigen 4.
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pathogenic anti-dsDNA antibodies in SLE patients and promoted

B-cell IgG production ex vivo (66).

Chronic type I IFN production plays a pathogenic role in SLE

patients (112). Studies found that type I IFN signals inhibited Tfh

cell expansion, but induced Tph cell generation and IL-21 and IFNg
production in Tfh cells by activating STAT4 in lupus mice (113,

114). Circulating immunogenic self-DNA in SLE patients could

induce IL-17+ Tfh cell expansion via RORgt supporting IgG anti-

dsDNA responses (115). OX40L (a TNF superfamily ligand) on
Frontiers in Immunology 05
myeloid antigen-presenting cells induced human naive and

memory CD4+ T cells to express Tfh-associated molecules

including CXCR5, CD40L, and IL-21 (116).

Xu et al. found that CXCR5+CD25+CD127lo cTfr cells and the

ratio of Tfr/Tfh were decreased significantly in SLE patients. Both

cTfr cell frequencies and Tfr/Tfh ratio were negatively correlated

with serum IL-21, anti-dsDNA antibody levels, and disease activity

of SLE patients (69). However, another study reported that

CXCR5+Foxp3+ cTfr cells and the ratio of Tfr/Tfh were increased
TABLE 2 Human autoimmune diseases associated with aberrant Tfh-cell function. .

Autoimmune
diseases

Tfh-cell subsets Correlated pathology

Rheumatoid
arthritis

Increased CXCR5+PD-1+ Tfh cells (54–56); cTfh2 and cTfh17 cells (57); CXCR5−PD-1hi Tph
cells (48, 58);
Decreased CXCR5+CD25+CD127lo cTfr cells (59–61);
Decreased Tfr/Tfh ratio (59–61).

Tph cells contribute to chronic autoimmune
phenomena at the inflammatory foci (48, 58);
Tfr/Tfh ratio is negatively correlated with CRP,
ESR, ACPA, and DAS28 index (59–61).

Systemic lupus
erythematosus

Increased NLRP3 active Tfh cells (62); CXCR5−PD-1hi Tph cells (26, 63, 64); CXCX5−PD-
1hiCXCR3+ Tfh-like cells in blood and the tubulointerstitial areas (65); CCR6+IL7R+IL-10+ Tfh-
like cells in peripheral blood and LN (66); CXCR5+FOXP3+ Tfr cells (67); expression of PD-1
on CXCR5+FOXP3+ Tfr cells (68);
Decreased CXCR5+CD25+CD127lo Tfr cells (69); expression of Foxp3, CTLA4, and IL-2
receptor on CXCR5+FOXP3+ Tfr cells;
Increased/Decreased Tfr/Tfh ratio (69).

Tfh cells with active NLRP3 inflammasome are
essential for optimal humoral responses and GC
formation (62);
Tph cells contribute to B-cell responses via IL-21
(26, 63, 64);
CXCX5−PD-1hiCXCR3+ Tfh-like cells provide B-
cell help, independently of IL-21, by producing
IL-10 and succinate (65).
IL-10-producing CCR6+IL7R+ Tfh-like cells are
associated with anti-dsDNA antibodies and
promoted B-cell IgG production (66).
Tfr cell frequency and Tfr/Tfh ratio are
negatively correlated with serum IL-21
concentration, anti-dsDNA antibody levels and
disease activity (69).

Sjögren’s
syndrome

Increased CXCR5+ICOS+PD-1+ Tfh cells (70, 71); CCR7loPD-1hi cTfh cells (72); Tfh1, Tfh2,
and Tfh17 cells in SG (71, 73); CCR9+ Tfh-like cells in peripheral blood and LSG (74);
CXCR5+PD1+ICOS+Foxp3− Tfh cells and CXCR5−PD1hiICOS+Foxp3− Tph cells in peripheral
blood and SG (75, 76); FoxP3+CXCR5+ Tfr cells (71, 77);
Decreased CXCR5+FoxP3+CD25+ Tfr cells (78);
Decreased Tfr/Tfh ratio (78).

IL-21+ or ICOS+ Tfh cells are positively
correlated with transitional B cells, plasmablasts,
and plasma cells (70, 79);
cTfh cells are positively correlated with disease
activity scores and plasma cell percentages (72).
CCR9+ Tfh-like cells promote IgG production
and display higher levels of IFN-g, IL-17, IL-4,
and IL-21 than CXCR5+ Tfh cells with antigen
or IL-7 stimulation (74).

Granulomatosis
with polyangiitis

Increased CXCR5+PD-1+ cTfh cells (80), CD4+IL-21+, CD4+IL-21+IL-17A+, and CD4+BCL6+ T
cells (81).

CD4+IL-21+ and CD4+BCL6+ T cells are elevated
only in ANCA-positive GPA patients (81).

Multiple sclerosis Increased cTfh1 and CXCR3+CCR6+ cTfh17.1 cells in CNS (46); CD4+IL-21+ T cells in the
lesions (82), CCR7+ICOS+ cTfh cells, cTfh17 cells and cTfh17.1 cells (83–87); CXCR5+PD-1+

Tfh cells in CSF (88);
Decreased cTfh1 cells and cTfh2 cells (83–87); CXCR5+CD25+PD-1+ FoxP3+/CD127− or
CXCR5+CD25hi/+ CD127dim/− Tfr cells in blood and CSF (85–87, 89);
Decreased Tfr/Tfh ratio (87, 90).

cTfh cells secrete high level of IL-21 (85);
CCR7+ICOS+ cTfh cells are positively correlated
with disease activity scores, the levels of IL-
21and IgG in plasma and CSF (86);
cTfr cells secrete low level of IL-10 (85); Tfr cells
exhibit reduced suppressive capacity in blood
and CSF (85–87, 89);
Tfr/Tfh ratio are negatively correlated with the
levels of IgG in serum and CSF (87, 90).

Type 1 diabetes Increased Tfh cells; Tph cells (91–95); Tfh1 cells in pancreas (96);
Decreased Tfr cells in the peripheral blood, spleen and pancreatic lymph nodes (97, 98);
Decreased Tfr/Tfh ratio (97, 98).

Tfh and Tph cells are associated with T1D
progression by producing IL-21 and recruiting
and activating B cells (91–95).
Tfh1 cells promote T1D development (96).
Tfr cells show attenuate suppressive ability (97,
98).
GC, germinal centers; Tfh, T follicular helper; cTfh, circulating Tfh; Tph, T peripheral helper; Tfr, T follicular regulatory; ICOS, inducible T cell co-stimulator; PD-1, programmed cell death
protein-1; Foxp3, forkhead box P3; Bcl6, B-cell lymphoma 6; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; ACPA, serum anti-cyclic citrullinated peptide antibodies; DAS28,
disease activity score-28; Ig, immunoglobulin; LN, lymph nodes; SG, salivary glands; LSG, labial salivary glands; ANCA, antineutrophilic cytoplasmic autoantibody; CNS, central nervous system;
CSF, cerebrospinal fluid; T1D, type 1 diabetes.
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in SLE patients. Although the suppressive capacity of cTfr cells was

not altered, the cTfr cell frequencies were positively correlated with

auto-antibodies and disease activity scores of SLE patients (67).

Kurata et al. found that the frequencies of CXCR5+Foxp3+ cTfr cells

were similar in HC and SLE patients, while the expression of PD-1

on cTfr cells was increased and positively correlated with anti-DNA

antibody levels and disease activity scores of SLE patients. These

cTfr cells had impaired suppressive function with decreased

expression of Foxp3, CTLA4, and IL-2 receptors (68).

Clinical studies showed that methylprednisolone pulse

treatment decreased the percentages and absolute number of cTfh

cells in SLE patients (117). Dexamethasone treatment reduced the

frequencies of cTfh2 cells but increased the percentages of cTfh17

cells in SLE patients (111). Ex vivo, IL-2 stimulation downregulated

the expression of PD-1 along with the increased expression of

Foxp3 and CTLA-4 on cTfr cells (68), and converted memory Tfh

cells to cTfr cells by promoting STAT3 and STAT5 phosphorylation

in SLE patients (34). In vivo, sustained low-dose IL-2 therapy

reduced cTfh cells significantly but had little effect on cTfr cells,

which resulted in recovered Tfr/Tfh ratio in lupus mice and patients

(118, 119). IL-2 therapy might inhibit GC Tfh early development

from primed CD4+ T cells by inhibiting Bcl6 expression (120).

Mesenchymal stem cells (MSCs) ameliorated lupus symptoms

in B6.lpr mice by producing iNOS to decrease CXCR5+PD-1hi Tfh

cell expansion (121). Baicalin and TLR7 agonist imiquimod

treatment could relieve lupus mice by inhibiting Tfh cell

differentiation and IL-21 production, and promoting Tfr cell

differentiation (122, 123). Cotreatment of soluble OX40L and

Jagged-1 (a Notch family ligand) alleviated lupus nephritis via

increasing Tfr/Tfh ratio, leading to decreased GC B cells and anti-

dsDNA antibody levels in NZBWF1/j mice (124). Research revealed

that ATP-gated ionotropic P2X7 receptor stimulation limited the

expansion of pathogenic Tfh cells by promoting caspase-mediated

pyroptosis in a lupus mouse model. Restoring P2X7 activity may

limit the progressive amplification of pathogenic autoantibodies in

SLE patients (125).
Sjögren’s syndrome

SS is a heterogeneous systemic autoimmune disease mainly

characterized by exocrine gland dysfunction. Anti-Ro/SSA and

anti-La/SSB antibodies are important diagnostic indicators of SS

(126). CXCR5+ICOS+PD-1+ cTfh cells were significantly increased

in SS patients, especially in anti-Ro/SSA antibody-positive patients

(70, 71). Compared with HC, SS patients with a high degree of focal

lymphocytic sialadenitis had more CCR7loPD-1hi cTfh cells, which

were positively correlated with disease activity scores and plasma

cell percentages of SS patients (72). IL-21+ or ICOS+ cTfh cells were

positively correlated with transitional B cells, plasmablasts, and

plasma cells in SS patients (70, 79). Although cTfh1, cTfh2, and

cTfh17 cells were comparable in the peripheral blood of HC and SS

patients, they were increased in minor salivary glands (SGs) of SS

patients (71, 73). CXCR5+PD1+ICOS+Foxp3− Tfh cells and

CXCR5−PD1hiICOS+Foxp3− Tph cells were enriched in both SS
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peripheral blood and salivary gland with GCs (75, 76).

Foxp3+CXCR5+ cTfr cells were increased in SS patients, especially

in autoantibody-positive SS patients (71, 77), while another study

reported that the percentages of CXCR5+Foxp3+CD25+ cTfr cells

and the ratio of Tfr/Tfh were decreased in SS patients (78).

The elevated enhancer of zeste homolog 2 (EZH2, an epigenetic

regulator) in CD4+ T cells facilitated CXCR5+PD-1+ cTfh cell

differentiation by enhancing STAT3 phosphorylation in SS

patients (127). Elevated CCL25 expression in labial salivary

glands could facilitate the attraction of circulating CCR9+ Th

cells, which expressed high levels of PD-1 and ICOS in pSS

patients. The CCR9+ Th cells promoted IgG production and

displayed higher levels of IFN-g, IL-17, IL-4, and IL-21 than

CXCR5+ Th cells with antigen or IL-7 stimulation (74). Blocking

ICOS reduced the levels of IL-21, IL-6, IL-8, and tumor necrosis

factor-a (TNF-a) in SG–organ cultures, which indicated that T-cell

costimulatory pathways were crucial for proinflammatory cytokine

production of Tfh cells (76).

MSCs inhibited naive CD4+ T cells of SS patients to differentiate

into cTfh cells via secreting indoleamine 2,3-dioxygenase (IDO)

with high enzymic activity, which could be partly reversed by the

IDO inhibitor 1-MT (128). Rituximab (RTX, B cell-depleting anti-

CD20 monoclonal antibodies) therapy reduced cTfh cells in SS

patients (129). Catalpol, sirolimus, and abatacept (CTLA-4-Ig

fusion protein) therapy could reduce cTfh cells and upregulate

cTfr cells and restore Tfh/Tfr ratio, which led to attenuate Tfh cell-

dependent B-cell hyperactivity of SS (78, 130, 131).
Granulomatosis with polyangiitis

GPA is a rare and severe systemic autoimmune disease with the

classic hallmark of antineutrophilic cytoplasmic autoantibody

(ANCA) specific for PR3 affecting systemic small vessels (132).

Studies reported that TCR-activated naive CD4+ T cells from GPA

patients expressed high levels of Bcl6, which was associated with

decreased IL-2R/STAT5 signaling (133). CXCR5+PD-1+ cTfh cells

(80) and CD4+IL-21+ IL-17A+ T cells were increased significantly in

GPA patients, and ANCA-positive GPA patients had more

CD4+IL-21+ and CD4+BCL6+ T cells in peripheral blood than HC

and ANCA-negative GPA patients (81). RTX treatment decreased

disease activity scores and cTfh cell percentages of active GPA

patients (80).
Multiple sclerosis

MS is a T cell-dominant chronic neuro-inflammatory disorder

characterized by demyelination and axonal damage. Autoreactive

CD4+ T cells from peripheral lymphoid organs or CD4+ T cells

activated by central nervous system (CNS) local antigen play a

crucial role in the pathogenesis of MS and its animal model,

experimental autoimmune encephalomyelitis (EAE) (134).

Genome-wide association studies (GWAS) showed that

polymorphisms in the Tfh signature genes IL-21 (135), CXCR5
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(136), and PD-1 (137) are either diagnostic or prognostic risk

factors for MS.

Intrathecal inflammatory environment promoted the

recruitment of cTfh cel ls (89) , especial ly cTfh1 and

CXCR3+CCR6+ cTfh17.1 cells into CNS (46), and CD4+IL-21+ T

cells were found in the lesions of MS patients (82). The frequencies

of CCR7+ICOS+ circulating memory Tfh cells, cTfh17 cells, and

cTfh17.1 cells were increased and cTfh1 cells (83) and cTfh2 cells

(84) were decreased significantly in MS patients (85–87).

CXCR5+PD-1+ Tfh cells were also increased in the cerebrospinal

fluid (CSF) of MS patients and EAE mice (88). Adoptive transfer of

myelin antigen-activated splenic CXCR5+ Tfh cells exacerbated

MS-like autoimmunity of EAE mice (138).

The frequencies of CXCR5+CD25+PD-1+Foxp3+/CD127− or

CXCR5+CD25hi/+ CD127dim/− Tfr cells were decreased

significantly and exhibited reduced suppressive capacity in blood

and CSF of MS patients (85–87, 89). Blimp-1 deficiency impaired

the suppressive activity and promoted the expression of pro-

inflammatory cytokine IL17A in Tfr cells and their homing into

the GC, which led to severe CNS autoimmunity in EAE mice (23,

139). The Tfr/Tfh ratio was decreased and negatively correlated

with IgG production in serum and CSF of MS patients (87, 90).

Clinical studies showed that laquinimod treatment inhibited the

expansion of PD-1+CXCR5+BCL6+ Tfh and IL-21-producing

activated CD4+CD44+ T cells in the lymph nodes of EAE mice

(140). Methylprednisolone pulse, abatacept, and RTX decreased

cTfh cells and serum IL-21 in MS patients (141–143). Dimethyl

fumarate treatment decreased the frequencies of cTfh1, cTfh17, and

cTfh17.1 cells and increased cTfh2 cells in MS patients (84, 144).

Fingolimod (sphingosine 1-phosphate receptor agonist) reduced

frequencies of cTfh17, cTfh17.1, and CXCR5+CD25hi cTfr cells, but

increased cTfh1 cells in MS patients (145).
Type 1 diabetes

T1D is a T cell-mediated organ-specific autoimmune disease.

The pancreatic infiltrated islet-autoreactive T cells elicit

hyperglycemia by destroying insulin-producing b cells (146).

Unlike systemic autoimmune disease, Tfh cells are programmed

differently in T1D. Although T–B cell interactions are essential to

driving high-affinity islet autoantibody production predicting T1D

development, the b-cell destruction can arise independently of

autoantibody (91, 96, 147). Both Tfh and Tph cells were

increased and associated with T1D progression in human and

mouse models by producing IL-21 and recruiting and activating B

cells in the pancreas (91–95). Furthermore, pathogenic Tfh1 cells

were observed in the pancreas and promoted T1D development in

nonobese diabetic (NOD) mice (96). Tfr cells were decreased and

had attenuated suppressive ability in the peripheral blood, spleen,

and pancreatic lymph nodes of T1D patients. The adoptive transfer

of Tfr cells prevented T1D development in NODmice (97, 98). RTX

administration decreased the percentages of cTfh and CXCR5+PD-

1+ cTfr cells but increased CXCR5+ICOS+ cTfr cells in T1D patients
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(148). Thus, Tfh cell analysis may be a biomarker and stratification

tool to predict diabetes progression and clinical response for

therapies in T1D patients (149, 150).
Conclusions

Despite the fact that Tfh cells have been detected in many

studies, their phenotypic surface markers vary in different studies.

The expression of surface molecules and cytokines in Tfh cells

changes over time to help B-cell responses more efficiently (10). In

summary, Tfh cells are increased in multiple autoimmune diseases

and promote the development of systemic autoimmune diseases by

assisting B cell-mediated long-lasting humoral immunity (8). Islet

autoantibodies are not thought to be the pathogenic effector

molecules for T1D processes, but B cells, as antigen-presenting

cells, can present islet autoantigen to active Tfh cells, which are

necessary to cause b-cell destruction (96). Thus, the number of Tfh

cells can be a novel predicting biomarker for clinical diagnosis and

treatment of autoimmune diseases.

Tfr cells show different responses to distinct antigens or diverse

disease contexts. The changes in Tfr cell percentages are not

consistent in different studies on autoimmunity (10). Based on

the discoveries to date, Tfr cells may also be induced and expanded

by self-antigens, but their suppressive capacity is impaired in

autoimmune diseases. The broken balance between Tfr and Tfh

cells is responsible for the aggravated autoimmune responses.

Targeting Tfr/Tfh balance may be a promising therapy for

autoimmune diseases.

Theoretically, as a key transcription factor governing Tfh/Tfr

differentiation, BCL6 degraders may be a potential therapeutic

option by targeting Tfh cells in the treatment of autoimmune

diseases. BCL6 is also an oncogenic driver for B-cell lymphoma

and follicular lymphoma (151, 152). BCL6 targeting degraders have

been well studied for lymphoma therapy (153, 154).

Mechanistically, BCL6 contributes to lymphomagenesis by

promoting the survival and proliferation of GC B cells and

preventing premature terminal differentiation into memory or

plasma cells, which can be beneficial for autoimmune diseases

(151, 155). Hence, BCL6 degrader treatment may be a double-

edged sword in autoimmune diseases and needs further basic and

clinical research.

According to present clinical studies, methylprednisolone pulse,

fingolimod, RTX, and other medication and biologics treatment

decreased the expansion of pathogenic cTfh and/or increased cTfr

cells in patients with autoimmune diseases (84, 117, 129, 141–145).

However, some clinical studies showed unexpected results that the

number of cTfh cells was not altered in RA patients treated with

anti-TNFa agents (156) and the percentages of cTfh17 cells were

increased in SLE patients treated with dexamethasone (111). Thus,

further studies are required to better understand the delicate role of

Tfh cell subsets in stratifying patients, which may help design

personal ized treatment schemes for individuals with

autoimmune diseases.
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