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Perioperative neurocognitive disorders (PND) is a common surgical anesthesia

complication characterized by impairment of memory, attention, language

understanding and social ability, which can lead to a decline in the quality of life

of patients, prolong the hospitalization period and increase the mortality rate. PND

has a high incidence rate, which has a great impact on postoperative recovery and

quality of life of patients, and has caused a heavy economic burden to society and

families. In recent years, PND has become an important public health problem. The

high risk population of PND is more prone to gut microbiota imbalance, and gut

microbiota may also affect the inflammatory response of the central nervous

system through the microbiota-gut-brain axis. Meanwhile, Neuroinflammation

and immune activation are important mechanisms of PND. Regulating gut

microbiota through probiotics or fecal bacteria transplantation can significantly

reduce neuroinflammation, reduce the abnormal activation of immune system and

prevent the occurrence of PND. This review summarizes the research progress of

gut microbiota and PND, providing basis for the prevention and treatment of PND.
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Introduction

Perioperative neurocognitive disorders (PND) is common and significant complication of

surgery, affecting a significant proportion of patients, occurred in up to 50% of elderly patients

undergoing major or high-risk operations (1, 2). PND is characterized by changes in cognitive

function, including memory impairment, attention deficits, and reduced executive function,

which can persist for months or years after surgery (3). Despite the growing awareness of PND

and its impact on patients, its underlying mechanisms are still not fully understood. Studies

demonstrated that PND was mainly associated with neuroinflammation, oxidative stress, the

abnormal accumulation of b-amyloid protein, and the damage of neural synaptic function (4,

5). The latest research shows that gut microbiota can regulate the central nervous function
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through the microbiota-gut-brain axis (6, 7). Therefore, this article

reviews the mechanism of gut microbiota disorder in PND, in order to

help explore reasonable early treatment strategies.
Dysbiosis of gut microbiota in patients
with PND

The human gut is home of a complex and dynamic community of

microorganisms, collectively known as the gut microbiome. This

community plays a crucial role in human health, influencing various

physiological processes, including immunity, metabolism, and brain

function (8–10). Recent studies have suggested that the gutmicrobiome

may play a role in the development of PND by disrupting the gut-brain

axis, which is the communication pathway between the gut and the

central nervous system (11, 12). The gut microbiome is known to be

sensitive to changes in the environment, such as surgery and the

administration of antibiotics, which can alter the composition and

function of the gut microbiome (13, 14). This alteration in the gut

microbiome has been associated with cognitive impairment and the

development of PND (15). In animal models, gut microbiome

alterations have been shown to result in neuroinflammation,

oxidative stress, and changes in neurotransmitter levels, which are all

factors known to contribute to cognitive impairment (16). In recent

years, several studies have investigated the relationship between the gut

microbiota and PND. A recent study found that the gut microbiota

composition was altered in patients with PND (17). Another study

found that preoperative use of antibiotics, which can alter the gut

microbiome, was associated with an increased risk of PND (18).
Role of the gut microbiota in the
pathogenesis of PND

Under normal circumstances, the gut microbiota forms an

ecological balance in the human body, maintaining the health of

the human intestinal micro-ecology (19). In recent years, the research

on the gut microbiota-gut-brain axis has made people realize that gut

microbiota affects the brain not only through the neuroanatomical

pathway, but also through the endocrine system, immune system and

metabolic system (20, 21). The imbalance of gut microbiota will

destroy the intestinal barrier, promote inflammatory factors and toxic

metabolites to enter the blood circulation, and destroy the blood-

brain barrier (22). It aggravates the inflammatory reaction and

immune imbalance of the central nervous system, thus promoting

the occurrence of PND (23). At the same time, surgery and anesthesia

will stimulate gut microbiota disorder, and psychological diseases

such as anxiety and depression will also induce gut microbiota

disorder, which may be a risk factor for PND (24).

Gut microbiota and central nervous
inflammatory response

Inflammation of the central nervous system is the main

pathological process of PND (25). The surface of human
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intestinal mucosa is closely arranged by a layer of monolayer cells

to form a barrier, preventing harmful substances from entering the

blood circulation and protecting the health of the host. In the same

way, for the brain, the blood-brain barrier also protects the normal

operation of the brain by maintaining its own integrity (26). A

systematic review study showed that the gut microbiota of patients

had significant changes after surgery, regardless of whether

digestive system surgery was performed or not, and the

proportion of Gram-negative bacteria increased (27). LPS in the

cell wall of Gram-negative bacteria can lead to an increase in

intestinal permeability (28). The damaged intestinal barrier can

promote the entry of intestinal bacteria and intestinal toxic

metabolites into the blood circulation, leading to a significant

increase in pro-inflammatory factor production (29). These

inflammatory mediators can activate the corresponding

inflammatory signal pathway, and pass through the blood-brain

barrier through the specific receptors and transporters on the

endothelial cell surface of the blood-brain barrier to induce the

activation of microglia and neuroinflammation in the brain (30).

Meanwhile, these inflammatory mediators can reduce the

expression of tight junction proteins such as occulin and claudin-

5, destroy the integrity of blood-brain barrier, and enter the brain to

activate adaptive immune cells, leading to brain immune instability

(31). In animal experiments, injecting LPS into the abdominal

cavity of mice can lead to learning and memory impairment by

increasing the permeability of the blood-brain barrier, and the

permeability of the blood-brain barrier will recover after

rebuilding the balance of gut microbiota (32). It has been

reported that after oral supplementation of intestinal prebiotics,

the number of probiotics such as lactobacillus and bifidobacterium

in the intestine of PND mice increased, the level of inflammatory

factors in the hippocampus decreased, and the cognitive function

improved (33).
Gut microbiota and neurotransmitter

Since the discovery of the enteric nervous system in the 19th

century, more and more studies have been carried out on the

interaction between the gut and the brain. With the deepening of

the research, the concept of the gut microbiota-gut-brain axis has

been summarized (34). The brain communicates with the intestine

through multiple parallel pathways, including two branches of the

autonomic nerve, the hypothalamus-pituitary-adrenal axis and the

sympathetic-adrenal axis, and the descending monoaminergic

pathway (35). A previous study has shown that trimethylamine

oxide, a metabolic derivative of gut microbiota, can mediate

neuroinflammation and increase the production of reactive

oxygen species in the hippocampus through microglia, thus

increasing the susceptibility to oxidative stress induced by surgery

and aggravating PND (36). Acetylcholine, 5-HT, dopamine, GABA

and other neurotransmitters affect the function of the central

nervous system through the central cholinergic and dopaminergic

nerves (37). The decline of learning and memory ability is often

accompanied by changes in the level of neurotransmitters in the

relevant brain areas (38). Intestinal microorganisms can produce
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tryptophan, the precursor of 5-hydroxytryptamine, which can pass

through the blood-brain barrier to produce 5-HT and affect many

functions of the nervous system (39). Surgical anesthesia disturbs

gut microbiota, destroys the synthesis and metabolic homeostasis of

5-HT involved in intestinal endocrine cells and intestinal flora,

which can lead to an increase in the production of 5-HT in the body,

thus affecting mood, behavior and postoperative gastrointestinal

peristalsis (40). In addition, lactobacillus, bifidobacterium,

streptococcus and other bacteria in the intestine participate in the

process of glutamic acid metabolism and GABA synthesis (41).

GABA synthesized by gut microbiota directly stimulates the

secretion of 5-HT by intestinal chromaffin cells, and affects the

level of brain-derived nutrients, dopamine, etc (42).
Gut microbiota and Ab protein

Age is an independent risk factor for PND (43). Neuron

degeneration may exist in elderly patients before operation, which

is manifested by accumulation of Ab protein in the brain and t
protein hyperphosphorylation (44). Ab protein from gut microbiota

(produced by Escherichia coli, Bacillus subtilis, Salmonella, etc.) can

enter the circulation through the damaged intestinal wall (45).

Although the primary structure of enterogenous Ab protein is

different from that of brain Ab protein, its tertiary structure is

very similar. Therefore, enterogenous Ab protein may trigger cross-

immune response and trigger over-activation of pro-inflammatory

signal pathway in brain. After surgical anesthesia, the increase in the

proportion of E. coli in the intestine can promote the deposition of

Ab protein in and out of nerve cells, and can promote neuronal

synaptic dysfunction and even lead to cell death by activating the

reactive changes of glial cells around nerve cells. In addition, the

deposition of Ab protein interferes with the expression of NMDA

receptor in hippocampal neurons and cortex, reduces synaptic

plasticity, and leads to cognitive impairment. The increase of Ab
protein caused by gut microbiota disorder can be improved by fecal

microbiota transplantation (FMT).
Target gut microbiota for the
treatment of PND

Fecal microbiota transplantation

PND is accompanied by the occurrence of neuroinflammation

and the disorder of gut microbiota during operation. Dysbiosis of gut

microbiota will promote the progress of neuroinflammation, so

regulation of gut microbiota will have a certain effect on the

treatment of PND. Prebiotics, probiotics and fecal bacteria

transplantation can affect gut microbiota and thus affect cognitive

function (46). Fecal microbiota transplantation (FMT) is a new

method to treat gut microbiota disorder in recent years. It is a

proposed therapeutic strategy that aims to address the dysregulation

of the gut microbiota. It is implemented by transplanting the

microbiota of ideal donors to supplement or replace the gut

microbiota of target recipients. FMT has been used for the
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treatment of many diseases, such as IBD, cancer, liver diseases,

rheumatoid arthritis, etc (47, 48). Current research has proved that

FMT can improve the cognitive function of patients with Parkinson’s

disease and AD (49). A previous study found that probiotics and fecal

bacteria transplantation could attenuate intestinal inflammation and

hippocampal inflammation in PND model rats, suggesting that fecal

bacteria transplantation and probiotics were effective in improving

PND (50). In addition, some recent studies have evaluated the efficacy

of fecal microbiota transplantation (FMT) in the treatment of

cognitive impairment in patients with AD. Sun et al. showed that

after FMT treatment of APPswe/PS1dE9 transgenic mice, their spatial

learning ability was improved, and the aggregation of Ab protein in

their brain was reduced, suggesting that FMT could improve the

cognitive function of AD patients (51).
Probiotics and prebiotics

Probiotics can promote the growth and reproduction of beneficial

microbiota, improve the balance of host intestinal microbiota, and play

a positive role in the recovery of brain function through various

physiological channels (52). It is found that the activity of specific

functional areas in the brain of healthy adults who take probiotics for a

long time is higher. Researchers from institutions such as Islamic Assad

University have found for the first time that probiotics can improve the

cognitive function of human brain (53), and some studies have also

proved that probiotics can reduce the cognitive function damage of

mice after surgery (54). Furthermore, probiotics can regulate gut

microbiota, reduce neuroinflammation, and alleviate cognitive

dysfunction related to neuroinflammation during cardiac surgery

(55). Yang et al. showed that continuous use of prebiotics for 3

weeks before operation can effectively reduce the incidence of

cognitive dysfunction after abdominal surgery in rats, and effectively

inhibit the release of IL-6 and activation of microglia in the

hippocampus (33).
Dietary regulation

The composition and diversity of gut microbiota will change

according to the dietary structure, and the production of

corresponding metabolites will also be affected. Gut microbiota

can synthesize a variety of essential vitamins, amino acids and fatty

acids, participate in glucose and protein metabolism, and also

regulate BDNF, synaptophysin, postsynaptic density protein and

other nutritional factors that affect the development and plasticity

of the nervous system. A high-fat or high-energy diet will increase

the displacement of LPS, promote the development of inflammation

and insulin resistance. The dietary fiber diet is conducive to the

maintenance of gut microbiota diversity and the inhibition of

inflammation. Furthermore, SCFA is the major metabolic product

obtained from the decomposition and fermentation of dietary fiber

in the gastrointestinal tract by intestinal microorganisms. The

current research shows that SCFA may participate in the changes

of people’s cognitive and neurological functions from aspects of

immunity, neuroendocrine, and blood-brain barrier (56). Some
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research showed that butyrate, one of SCFA, can activate the

secretion of BDNF and reduce neuroinflammation. Butyrate can

also trigger the expression of glutathionease, thus alleviating the

oxidative stress reaction (57). Therefore, supplementing dietary

fiber to obtain more SCFA may be an effective measure to treat

cognitive impairment.
Conclusions

In conclusion, there have been many studies proving the correlation

between gut microbiota and PND. Stress reaction during surgical

anesthesia, gastrointestinal motility abnormalities caused by anesthetic

drugs or muscle relaxants, and the use of antibiotics during perioperative

period could increase the risk of gut microbiota disorder. However, the

research on the direct relationship between gut microbiota and PND is

relatively small, and more are phenomenological research and

exploration, which is not deep enough. Future research can explore its

mechanism by combining current genomics and other methods. Deeper

exploration of whether there are specific flora and specific signal

pathways, screening of relevant specific microorganisms, or finding out

microorganisms that can improve cognitive dysfunction, may become

the treatment target of PND.
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