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NLRP3 inflammasome as a
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nanoplastics immunotoxicity
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Micro- and nanoplastics (MNPs) are emerging pollutants with scarcely

investigated effects on human innate immunity. If they follow a similar course

of action as other, more thoroughly investigated particulates, MNPs may

penetrate epithelial barriers, potentially triggering a cascade of signaling events

leading to cell damage and inflammation. Inflammasomes are intracellular

multiprotein complexes and stimulus-induced sensors critical for mounting

inflammatory responses upon recognition of pathogen- or damage-associated

molecular patterns. Among these, the NLRP3 inflammasome is the most studied

in terms of activation via particulates. However, studies delineating the ability of

MNPs to affect NLRP3 inflammasome activation are still rare. In this review, we

address the issue of MNPs source and fate, highlight the main concepts of

inflammasome activation via particulates, and explore recent advances in using

inflammasome activation for assessment of MNP immunotoxicity. We also

discuss the impact of co-exposure and MNP complex chemistry in potential

inflammasome activation. Development of robust biological sensors is crucial in

order to maximize global efforts to effectively address and mitigate risks that

MNPs pose for human health.
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Introduction

Microplastics and nanoplastics (MNPs) are solid plastic particles at the micro- and

nanoscale composed of mixtures of polymers (1). MNPs are a highly diverse class of

contaminants, differing in shape (e.g., spherical, fibrous), size, and polymer type; exhibiting

a heterogeneity that is typically absent from engineered nanomaterials (2, 3). MNPs found

in the environment may additionally contain polymer chemical additives (e.g., plasticizers,

stabilizers, colorants, biocidal chemicals), monomers entrapped in the polymer matrix, or

adsorbed environmental contaminants (e.g., persistent organic pollutants, heavy metals)

(Figure 1, left panel) (4–10). As such, MNPs exhibit high environmental mobility,
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persistence, and low degradation rate. Sources of MNPs are

numerous, and they can be unintentionally formed due to e.g.,

laundering synthetic textiles, abrasion of tires in traffic, degradation

of larger plastic objects, etc. Moreover, certain products contain

deliberately added MNPs, such as exfoliating beads in facial or body

scrubs, fertilizers, plant protection products, detergents, and paints

(11–13). A recent body of evidence suggests that humans constantly

ingest, inhale, or swallow MNPs after mucociliary clearance

(Figure 1, middle panel), and the plastics can even be found in

the blood, indicating potential of some MNPs to pass the

respiratory and intestinal epithelia (14–16). However, if and how

MNPs influence human and environmental health is far from

being understood.

If MNPs follow a similar course of action as other particulates

(e.g., particulate air pollution), they are capable of crossing membranes

of epithelia and triggering a cascade of signaling events in the cells,

leading to oxidative stress, secretion of cytokines, cellular damage, and

inflammation as central common denominators for systemic effects,

with subsequent risk at developing cardiovascular and respiratory

diseases, allergies, and cancer (1, 17). Several studies have recently

described the presence of MNPs in blood, liver, kidney, and even in

placenta and brain (18–20). Although the direct biological effect of

MNPs in these compartments have not been investigated, it is well

known that MNPs are associated with a plethora of chemicals acting

as endocrine disruptors and/or genotoxicants. MNPs may also act as

vectors carrying opportunistic bacterial pathogens interacting with gut

microbiota, thus further impacting host immunity (21–24). The scarce
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data available on MNP uptake, both in vivo and in vitro, indicate that

only a limited fraction of MNPs is capable of crossing lung and

intestinal epithelia. The results show that absorbed fraction via

intestinal tracts in rodents is low at 0.04–0.3% (25). Moreover, the

oral bioavailability level of nano-sized polystyrene is ten to one

hundred times greater than the level of micron-sized particles (26,

27). Importantly, MNPs uptake is strongly affected by the formation of

biomolecular corona upon entrance in different biological (micro)

environments (28). Even if studies indicate low levels of MNP uptake,

ubiquitous presence and life-long exposure may lead to accumulation

and health-related effects.

Once MNPs arrive at the bio-interface (contact with the cell

membranes) or after being internalized, they will encounter the

organism’s innate immunity mechanisms, developed for

counteracting invading pathogens and for eliminating threatening

agents (dust, allergens, dead cells, etc.). Therefore, in order to

understand the possible health effects of MNPs, it is important to

explore the interaction of MNPs with the innate immune system

with an approach capable of evaluating the inflammatory capacity

of the interaction (29, 30). One such mechanism is activation of

inflammasomes – intracellular multiprotein complexes and

stimulus-induced sensors critical for mounting potent pro-

inflammatory responses (31). Activation of inflammasome

complexes can occur in response to pathogen- or damage-

associated molecular patterns (PAMPs or DAMPs), which are

signals that inform the host innate immune sensors of a possibly

harmful deviation from homeostasis (32).
FIGURE 1

Interplay between micro- and nanoplastics (MNPs) and NLRP3 inflammasome canonical activation pathway. Left panel – major sources and
properties of MNPs. MNPs may be unintentionally released or deliberately added to different products. MNPs significantly vary in terms of
physicochemical properties, including size, shape, and chemical composition. Importantly, MNPs may act as a vector of various environmental
contaminants, such as persistent organic pollutants (POPs), heavy metals, or pathogenic bacteria. PAHs – polycyclic aromatic hydrocarbons; PFAS –

Per- and polyfluoroalkyl substances. Middle panel – the main MNP exposure routes in humans include inhalation and ingestion leading to MNP
interaction with alveolar and intestinal epithelia. Right panel – Putative mechanisms of MNP-mediated activation of NLRP3 inflammasome in the
immunocompetent cells, including Toll-like receptor (TLR)-priming via NF-kB resulting in production of NLRP3 inflammasome components, and
NLRP3 inflammasome activation leading to the recruitment of the caspase-1 that cleaves its effector substrates, pro-Interleukin-1b (pro-IL-1b), pro-
IL-18, and gasdermin-D (GSDMD). The main outcomes of the NLRP3 inflammasome activation include maturation and release of IL-1b and IL-18,
and pro-inflammatory cell death (pyroptosis). Figure was created by AA using BioRender.com.
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Four key inflammasomes, namely NLRP1, NLRP3, NLRC4, and

AIM2 are described. NLRP1 is extensively expressed in

keratinocytes and airway epithelia and recognizes and responds to

specific bacteria and diverse pathogen-encoded effectors, including

double stranded RNA as well as double stranded DNA (33–35).

NLRC4 is mainly associated with innate immune cells and intestinal

epithelia and sense several bacterial pathogens and specifically

bacterial type III secretion system, and flagellin has been

described as potent activators (36). AIM2 responds to pathogen-

associated double stranded DNA and is mainly expressed in

hematopoietic cells (37, 38). In contrast to the clear pathogen

detecting features of these, the nucleotide-binding oligomerization

domain (NOD)-like receptor containing pyrin domain 3 (NLRP3)

inflammasome (also known as CIAS1, Cryopyrin, NALP3, and

Pypaf1) functions rather as a sensor capable of becoming

activated following endogenous and exogenous, sterile, and

infectious stimuli, as well as environmental pollutants, such as

asbestos, silica, or ambient particles (39–41). NLRP3 can be

expressed by most cells, and the NLRP3 inflammasome is also

activated by a range of nano- and micron-sized particles, e.g., nano-

TiO2 and nano-SiO2 (41–45). Although studies delineating the

ability of MNPs to trigger NLRP3 inflammasome activation are

rare, given the efficacy of NLRP3 in sensing particulates,

inflammasome activation may provide a useful tool for

investigations of MNP immunotoxicity. In this review, we discuss

the main concepts of inflammasome activation via particulates and

explore recent advances in using NLRP3 inflammasome activation

as an endpoint for the assessment of MNP immunotoxicity.
NLRP3 inflammasome

The NLRP3 inflammasome is proposed to act as an integrator of

different signals arising from the homeostasis-altering molecular

processes (HAMPS) (46). Therefore, it emerged as a fundamental

sensing platform for various PAMPs and DAMPs. Data suggest that

NLRP3 inflammasomes can be activated via three different

pathways 1) canonical NLRP3 inflammasome activation, 2) non-

canonical NLRP3 inflammasome activation, and 3) alternative

NLRP3 inflammasome activation pathway. Different activation

pathways highlight the disparities in NLRP3 activation

mechanisms in different cell types and between species.

The canonical activation of the NLRP3 inflammasome is the

description of an organized process involving two core steps –

priming and activation (Figure 1, right panel). Priming is

stimulated by exogenous or endogenous molecules (PAMPs or

DAMPs) by TLR-mediated signaling cascade leading to NF-kB
activation that provides the key components for the later assembly

of the NLRP3 inflammasome. (47, 48). The activation step is

triggered by ATP, pore-forming toxins, viral RNA, crystals, or

particulates leading to the induction of various intracellular events,

such as potassium (K+) efflux, ROS burst, mitochondrial damage,

or (phago)lysosomal rupture that releases the protease cathepsin B

(49–55). Upon activation, the NLRP3 inflammasome is assembled

by the oligomerization of NLRP3. Afterwards, the pyrin domain of

NLRP3 interacts with the apoptosis-associated speck-like protein
Frontiers in Immunology 03
(ASC) triggering polymerization of ASC to form prion-like

filaments, which recruits monomers of the caspase-1 to the

NLRP3-ASC oligomer eliciting self-cleavage and activation (56,

57). Subsequently, active caspase-1 proteolytically cleaves and

thereby activates pro-IL-1b, pro-IL-18, and gasdermin-D

(GSDMD) – providing the plasma membrane pore through

which the activated cytokines can be released as well as

inducing pyroptosis; the pro-inflammatory form of cell death

(58–60).

The non-canonical NLRP3 inflammasome activation, initially

described in murine cells, involves caspase-11-mediated signaling,

resulting in TLR-independent maturation and release of IL-1b and

IL-18, and pyroptotic cell death (61). In humans, the equivalent

mechanism is dependent on caspase-4 and caspase-5 (62). These

caspases have been described to act as direct receptor molecules

for LPS. In addition, upstream involvement of NLRP1 and/or

NLRC4 have been proposed, as they can activate caspase-4 and

caspase-5 (63, 64). Following this activation mediated by

intracellular LPS, these events subsequently lead to K+ efflux,

which is a central trigger for NLRP3 inflammasome activation

and IL-1b release (65, 66). Thus, the NLRP3 inflammasome does

become activated but the K+ efflux is mediated by involvement of

other cellular mechanisms not described in the canonical pathway

of inflammasome activation.

The alternative pathway of NLPR3 inflammasome activation is

the description of a one-step activation of caspase-1, resulting in IL-

1b maturation and secretion (48, 67). In human monocytes, LPS

sensing induces a TLR4-TRIF-RIPK1-FADD-CASP8 signaling axis,

leading to the cleavage of a yet unidentified caspase-8 substrate that

in turn mediates activation of NLRP3 inflammasome (68). Unlike

canonical and non-canonical NLRP3 inflammasome activation, the

alternative pathway does not require K+ efflux and does not induce

ASC-speck or pyroptosome formation. The functional biological

output is however similar since caspase-1 cleaves and bioactivates

pro-IL-1b, which is then released, but the release is however not

GSDMD-dependent (69).

In addition to the presence in immunocompetent innate

immune cells, an increasing number of studies demonstrate

localization and involvement of the NLRP3 inflammasome in

cells at important exposure sites, including alveolar, intestinal,

and skin epithelia (70–72).
NLRP3 inflammasome activation
by particulates

Particulates found to activate the NLRP3 inflammasome

include endogenous particles, such as monosodium urate crystals

(MSU) (41), cholesterol crystals (73), fibrillar amyloid-b (74), and

fibrillar a-synuclein (75) as well as a large variety of exogenous

particles, such as crystalline silica (41), metallic particles (76), fibers,

including asbestos (40) and carbon nanotubes (77). Regarding the

mechanism of inflammasome activation by particles, several studies

have found that particles need to be phagocytosed/endocytosed in

order to activate the NLRP3 inflammasome. An exception is

crystalline silica particles, where studies have demonstrated both
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1178434
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alijagic et al. 10.3389/fimmu.2023.1178434
phagocytosis-dependent (41) and -independent (78) NLRP3

inflammasome activation. These contrasting results may be due to

differences in the properties of the silica particles, including size,

shape, surface properties, or formation of a protein corona coating

the particles (79). Following the formation of the phagolysosome,

particles may interact with the (phago)lysosomal membrane leading

to lysosomal membrane permeabilization (LMP) or rupture with

subsequent release of lysosomal content into the cytosol that in turn

will activate the NLRP3 inflammasome.

Importantly, release of cathepsin B or NADPH oxidase-

generated reactive oxygen species (ROS) are indicated as key

mediators of the NLRP3 inflammasome activation, as inhibition

of these generally blocks or suppress caspase-1 cleavage and IL-1b
release (80, 81). Although a majority of studies demonstrate the

role of cathepsin B in inflammasome activation by particles, there

are also studies showing the opposite, as summarized by Campden

and Zhang (82). It is still not clear how cathepsin B contributes to

NLRP3 inflammasome activation, which could depend on actions

both related and unrelated of protease activity. Protease unrelated

actions in the cytoplasm are suggested by the low enzymatic

activity of cathepsins at the neutral cytosolic pH. Cathepsin B has

also been found to directly bind the Leucine-Rich Repeat (LRR)

domain of NLRP3, and to transiently colocalize with NLRP3 at

the endoplasmic reticulum, following treatment with, for example,

MSU particles (80). In addition, ROS has been indicated to play a

key role in NLRP3 inflammasome activation by particulates in a

number of studies (42, 83–86). ROS can be generated by

mitochondria but also in phagosomes by the NADPH oxidase

NOX2, which is activated, for example, by LPS. ROS-mediated

NLRP3 inflammasome activation by asbestos was inhibited when

disrupting NOX2, but not when mitochondria-derived ROS was

inhibited (40), indicating an important role of NADPH oxidase

(NOX)-dependent ROS production in asbestos-induced NLRP3

inflammasome activation. Moreover, Bauernfeind et al. (87)

showed that ROS inhibitors interfere with the priming step that

is required to induce NLRP3 expression, whereas ROS inhibition

does not affect direct NLRP3 activation when NLRP3 is

constitutively expressed.

Of note, K+ efflux seems to be a common mechanism of

NLRP3 inflammasome activation for all known triggers of

the inflammasome, including particles (74, 78, 88), but the link

between cathepsin B release, ROS, and K+ efflux is so far obscure.
NLRP3 inflammasome activation by
micro- and nanoplastics

If MNPs follow a similar course of action as other particulates,

they may penetrate epithelial barriers, interact with various cell

types, and trigger a number of signaling pathways, including

NLRP3 activation. However, studies focusing on the ability of

MNPs to activate the NLRP3 inflammasome are still limited. An

overview of those, both in vitro and in vivo studies, is given in

Table 1. The idea of studying NLRP3 inflammasome activation by

MNPs is rather recent as most papers on the topic were published

over the last two years.
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In vitro studies

Polystyrene is to date the most studied type of MNPs in terms

of NLRP3 activation. A rare study on human primary

macrophages, focusing on MNPs and inflammasome signaling,

revealed that amino-modified polystyrene particles (115 ± 9 nm)

induced ROS accumulation and NLRP3 inflammasome activation

(89). Moreover, the same study disclosed that scavenging of ROS

abolished the NLRP3 inflammasome activation. In vitro studies on

both human monocytic (THP-1) and mouse lung (MLE-12) cell

lines outlined the ability of amino-modified polystyrene particles

(50-100 nm) to induce activation of the NLRP3/caspase-1

signaling pathway leading to maturation of IL-1b and cleavage

of GSDMD (90, 93). Similarly, Chi et al. (94) demonstrated that

even non-functionalized polystyrene particles (~100 nm) induced

ROS and increased gene and protein expression of NLRP3 and

caspase-1 in mouse hepatocytes (AML12 cell line). Interestingly,

they found that inhibition of NLRP3 could alleviate the

production of ROS induced by exposure to polystyrene particles.

In addition, micron-sized polystyrene particles have been found to

decrease NLRP3 protein levels in human embryonic kidney cells

(HEK293) (92). Taken together, these findings suggest that size

and/or functionalization of polystyrene MNPs as well as the cell

model utilized, play a major role for the interpretation and

involvement of NLRP3 signaling.
In vivo studies

In vivo studies disclosing the interplay between MNPs and

NLRP3 inflammasome signaling have been conducted on mice (7),

rats (2), birds (2), and fish (1), as summarized in Table 1. Most

studies have examined exposure through the gastrointestinal

system, i.e., via drinking water, oral or intragastric administration.

In addition, some studies have performed intraperitoneal or

intratracheal administration, or studied gill-mediated uptake in

fish. The studies conducted on rats, exposed to micron-sized

polystyrene particles, disclosed activation of the NLRP3/caspase-1

signaling pathway leading to pyroptosis (95, 96). Several studies

performed on murine models also revealed activation of the

NLRP3/caspase-1 signaling pathway, promoting inflammatory

responses, and in several cases MNP exposure led to pyroptosis

(93, 94, 97–99, 102). However, NLRP3 activation and pyroptosis

were mainly assumed based on the gene or protein expression,

lacking more detailed mechanistic description and confirmation

e.g., by using NLRP3 knockout models.

Even if the studies conducted on rats and mice analyzed a

number of different cell/tissue samples, it is hard to draw

conclusions on similarity/differences in responses due to the

variable routes of exposure as well as different size and exposure

concentrations of MNPs. Still, ROS/oxidative stress seems to act as

the common event upstream of the NLRP3 inflammasome

machinery governing its activation by MNPs (95, 96, 98, 103).

That is not surprising, since ROS constitute one of the most

conserved danger signals that are generated after particle

phagocytosis (40).
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TABLE 1 Overview of the studies, identified and included in the present review, describing impact of micro- and nanoplastics (MNPs) on the NLRP3
inflammasome activation both in vitro and in vivo.

Experimental
model Type and size of MNPs Dose of

MNPs
Exposure
route Note on impact Reference

Monocyte-derived
human
macrophages
(in vitro)

Amino- (115 ± 9 nm), carboxyl- (119 ± 7 nm), and non-
functionalized (119 ± 5 nm) polystyrene particles

100 mg/mL Direct
deposition on
cells

Only amino-functionalized
polystyrene induced
lysosomal rupture, ROS
accumulation, and activated
NLRP3 inflammasome

89

Human
monocytic cells -
THP-1
(in vitro)

Amino-functionalized polystyrene (50 nm), polystyrene
(50 nm), polyvinyl chloride (235 nm), polyethylene (0.61
µm), polyethylene terephthalate (16 nm and 5.7 µm),
polyester fibers (18.5 µm x 10 µm), polyamide 6 fibers
(27.5 µm x 10 µm)

50 µg/cm2 Direct
deposition on
cells

Only amino-functionalized
polystyrene acted as a direct
NLRP3 activator, as seen by
increase in IL-1b levels

90

Human gingival
fibroblasts (hGFs)
(in vitro)

MNPs from the Adriatic Sea; 100 nm particles (1 m
depth), 0.6 µm particles (24 m depth), (100 nm particles
(78 m depth)

Unspecified
concentration

Direct
deposition on
cells

Increased levels of
inflammatory markers NF-
kB, MyD88 and NLRP3 in
terms of proteins and gene
expression

91

Human
embryonic kidney
cells - HEK293
(in vitro)

Polystyrene particles (3.39 ± 0.30 µm) 3 - 300 ng/mL Direct
deposition on
cells

Exposure reduced NLRP3
protein level

92

Mouse lung
epithelial cells -
MLE-12
(in vitro)

Amino-functionalized polystyrene particles (100 nm) 12.5 mg/mL Direct
deposition on
cells

Induced NLRP3/caspase-1
signaling pathway and
GSDMD cleavage

93

Mouse hepatocyte
cells alpha mouse
liver 12 - AML12
(in vitro)

Polystyrene particles (~100 nm) 100 mg/mL Direct
deposition on
cells

Increased gene and protein
expression of NLRP3 and
caspase-1

94

Rat
(in vivo)

Polystyrene particles (0.5 µm) 0.015 - 1.5 mg/
kg/day

Drinking water Pyroptosis and apoptosis of
ovarian granulosa cells via
NLRP3/caspase-1 signaling
pathway

95

Rat
(in vivo)

Polystyrene particles (0.51 µm) 0.5 - 50 mg/L Drinking water Activation of NLRP3/
caspase-1 signaling pathway
and pyroptosis in
cardiomyocytes

96

Mouse
(in vivo)

Polystyrene particles (0.5 mm) 10 - 100 mg/mL Oral
administration

Increased NLRP3, ASC, and
cleaved caspase-1 protein
levels in the mid colon

97

Mouse
(in vivo)

Polystyrene particles (5 µm) 0.1-1 mg/mL Intragastrical
instillation

Activation of NLRP3 leading
to pyroptosis and ferroptosis
in liver cells

98

Mouse
(in vivo)

Polystyrene particles (~100 nm) 5 mg/g·body
weight

Intraperitoneal
injection

Increased expression of
NLRP3 and maturation of
IL-1b in liver tissue

94

Mouse
(in vivo)

Polystyrene, polypropylene, and polyvinyl chloride
particles (size unspecified)

5 mg/mL Intratracheal
instillation

Polystyrene and
polypropylene particles
increased the protein levels of
the NLRP3 components in
the lung tissue

99

Mouse
(in vivo)

Polystyrene particles (0.5 µm), and mixture of polystyrene
and arsenic (As)

0.5 ppm
polystyrene, and
mixture of 0.5
ppm polystyrene
+ 5 ppm As

Drinking water Co-exposure to polystyrene
and As induced liver
pyroptosis by activating the
NLRP3/caspase-1 signaling
pathway

100

Mouse
(in vivo)

Polystyrene particles (100 nm), and mixture of
polystyrene and LPS

5 mg/g
polystyrene, and

Intraperitoneal
injection

Polystyrene deteriorate LPS-
modulated duodenal

101

(Continued)
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Co-exposure and leaching studies

Organisms in a polluted environment are generally exposed to

mixtures of MNPs, chemical contaminants, and/or pathogens,

making it hard to extrapolate what component(s) drive(s) toxicity.

However, co-exposure studies focusing on NLRP3 inflammasome

activation by exposure of cells or organisms to the mixtures of

MNPs, or MNPs plus other contaminants, are still in their infancy.

In a recent study, Nikolic et al. (102) demonstrated that a mixture of

micron and nano-sized carboxylate-modified polystyrene particles

induced increased NLRP3 gene expression in hippocampal samples

of female mice. Interestingly, the results were the opposite when

conducted inmale mice; data outlining that biological sexmay play a

major role in the NLRP3-mediated response to MNPs. Moreover, a

study by Zhong et al. (100) demonstrated that polystyrene exposure

with arsenic (As) activated NLRP3/caspase-1 signaling and liver

pyroptosis in mice. He et al. (101) showed that polystyrene particles

deteriorate LPS-modulated duodenal permeability and trigger

inflammation via ROS and the NF-kB/NLRP3 pathway. Even if

rare, these studies disclose that different contaminants or pathogens

modulate MNP-mediated NLRP3 activation.

For the scope of this article, we were unable to identify studies

dealing with NLRP3 inflammasome activation via leaching of

residual monomers or chemical additives present in MNPs.

However, our preliminary data, investigating plastics from

electronic waste, disclosed that plastics-associated chemicals may

lead to inflammatory responses involving NLRP3 inflammasome, as

we observed increased secretion of IL-1b from exposed THP-1 cells

(unpublished data). However, our observation and the aspects of

inflammasome activation due to leaching of chemicals from MNPs

require further mechanistic research.
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Limitations of the existing studies

All together, several limitations of the existing studies should be

highlighted and taken as a guide when designing and harmonizing

future research on MNPs and NLRP3 inflammasome interplay,

similarly to the previous and ongoing nanosafety research (106).

Major limitations include unclear experimental design, unspecified

size of particles, unspecified concentrations, nonuniform

concentration reporting, or undefined characterization

approaches. All this makes it difficult to compare effects of similar

and/or different types of MNPs on NLRP3 inflammasome

activation across different studies. Moreover, the most common

exposure route was via drinking water, however, by that approach it

is impossible to precisely determine the amount of ingested MNPs

as numerous factors affect water intake during the exposure period.

In addition, the majority of the studies were conducted by using

polystyrene MNPs, while other MNPs such as polypropylene,

polyethylene, and polyethylene terephthalate are the main

polymeric materials found in the environment (107). Therefore, it

is of critical importance that future research, focusing on NLRP3

inflammasome activation, also considers the great diversity of

MNPs found in the environment. It is also important to

emphasize the need, in experimental studies, to “coat” MNPs

with the relevant biomolecular corona (MNPs never interact with

cells as pristine particles), to use realistic MNP concentrations, and

to perform longitudinal studies (to assess whether inflammasome

activation becomes persistent or not). In addition, novel approaches

in the nanosafety field, such as high-content screening combined

with multi-omics (108), may be helpful tools in dissecting the

cellular and molecular phenotypes upon inflammasome activation

by MNPs.
TABLE 1 Continued

Experimental
model Type and size of MNPs Dose of

MNPs
Exposure
route Note on impact Reference

5 mg/g
polystyrene + 20
mg/g LPS

permeability and
inflammation via ROS
driven-NF-kB/NLRP3
pathway

Mouse
(in vivo)

Carboxylate-functionalized polystyrene particles (mixture
of 40 nm and 0.2 µm)

0.01 - 0.1 mg/
day

Oral
administration

Increase of NLRP3 gene
expression in hippocampal
samples of female mice;
opposite effect in males.

102

Mouse
(in vivo)

Amino-functionalized polystyrene particles (100 nm) 5 mg/kg Intratracheal
instillation

Activated NLRP3 signaling
pathway to drive cleavage of
GSDMD and pyroptosis in
lung tissue

93

Chicken
(in vivo)

Polystyrene particles (5 µm) 1-10 mg/L Drinking water Cardiac pyroptosis and
inflammation by the NF-kB-
NLRP3-GSDMD axis

103

Chicken
(in vivo)

Polystyrene particles (5 mm) 1 -100 mg/L Drinking water Activated the ASC-NLRP3-
GSDMD signaling pathway
and the release of IL-18 and
IL-1b in the brain tissue

104

Carp
(in vivo)

Polyethylene particles (8 mm) 1 µg/L Gills-mediated
uptake

Apoptosis in gills due to the
activation of NF-kB/NLRP3
pathway

105
f
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1178434
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alijagic et al. 10.3389/fimmu.2023.1178434
Conclusions

In the context of the ubiquitous presence and potentially life-

long human exposure to MNPs, development of robust biological

sensors is crucial in order to maximize global efforts to effectively

quantify and mitigate risks that MNPs pose for the human and

environmental health. NLRP3 activation and regulation are critical

for the host defense. On the quest for new sensors of MNP

immunotoxicity, looking towards NLRP3 inflammasome could

provide new perspectives, however the field is still in its infancy.

As recently highlighted by Yang et al. (109), MNPs may affect

immune system in a number of ways, including activation of the

inflammasome. However, it is important to emphasize that

inflammasome activation does not mean toxicity per se, it means

activation of a defensive response, which only in a few cases (e.g.,

anomalous or chronic inflammation) may become damaging to the

organism. Cell death is part of such defensive response and, at the

level of the whole organism, the death of some immune cells during

a defensive response is inconsequential (29). In this review, we have

explored recent advances in using NLRP3 inflammasome activation

as a potentially important and sensitive readout for the assessment

of MNP immunotoxicity, discussed major limitations of the existing

studies, and emphasized the need to develop harmonized

experimental designs that will ensure comparison of MNP-

mediated effects on NLRP3 activation across studies. Upcoming

research will further illuminate the potential of the NLRP3

inflammasome to act as a sensor of MNP immunotoxicity.
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Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by
bacterial toxins and particulate matter. Immunity (2013) 38(6):1142–53. doi: 10.1016/
j.immuni.2013.05.016

55. Chen J, Chen ZJ. PtdIns4P on dispersed trans-golgi network mediates NLRP3
inflammasome activation. Nature (2018) 564(7734):71–6. doi: 10.1038/s41586-018-
0761-3

56. Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of
ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem
(2012) 287(50):41732–43. doi: 10.1074/jbc.M112.381228
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