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Background: Tourette syndrome (TS) is associated with immunological

dysfunction. The DA system is closely related to TS development, or behavioral

stereotypes. Previous evidence suggested that hyper-M1-polarized microglia

may exist in the brains of TS individuals. However, the role of microglia in TS and

their interaction with dopaminergic neurons is unclear. In this study, we applied

iminodipropionitrile (IDPN) to establish a TS model and focused on the

inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk.

Methods: Male Sprague–Dawley rats were intraperitoneally injected with IDPN

for seven consecutive days. Stereotypic behavior was observed to verify the TS

model. Striatal microglia activation was evaluated based on different markers and

expressions of inflammatory factors. The striatal dopaminergic neurons were

purified and co-cultured with different microglia groups, and dopamine-

associated markers were assessed.

Results: First, there was pathological damage to striatal dopaminergic neurons in

TS rats, as indicated by decreased expression of TH, DAT, and PITX3. Next, the TS

group showed a trend of increased Iba-1 positive cells and elevated levels of

inflammatory factors TNF-a and IL-6, as well as an enhanced M1-polarization

marker (iNOS) and an attenuated M2-polarization marker (Arg-1). Finally, in the

co-culture experiment, IL-4-treated microglia could upregulate the expression

of TH, DAT, and PITX3 in striatal dopaminergic neurons vs LPS-treated microglia.

Similarly, the TS group (microglia from TS rats) caused a decreased expression of

TH, DAT, and PITX3 compared with the Sham group (microglia from control rats)

in the dopaminergic neurons.

Conclusion: In the striatum of TS rats, microglia activation is M1 hyperpolarized,

which transmits inflammatory injury to striatal dopaminergic neurons and

disrupts normal dopamine signaling.
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1 Introduction

Tourette syndrome (TS) is a childhood-onset developmental

neurological disease characterized by motor and vocal behavioral

stereotypes (1). The estimated pooled prevalence rate of TS is

0.53%, with a male predominance (2–4). About 1% of school-age

children are affected by TS, and boys are approximately four times

more likely to develop TS than girls (5, 6). The main affected brain

regions include the basal ganglia and the related corticostriatal-

thalamocortical (CSTC) circuit (7) or the substantia nigra-striatum

network. In this circuit, it is widely accepted that dopamine (DA) is

the main excitatory neurotransmitter, and the DA system, including

the important factor dopamine transporter (DAT), can affect

locomotion behavior, and theoretically, it plays an important role

in the pathophysiology of TS (8). Besides DA, TS associated

abnormalities in neurotransmission include glutamate (Glu) and

gamma-aminobutyric acid (GABA) (9, 10).

Microglia-mediated immune overactivation is an important

cause of central nervous system injury. Normally, under the

condition of microglia, they can polarize into either the M1 (pro-

inflammatory type) or M2 (anti-inflammatory type) phenotype in

response to different micro-environmental disturbances (11). M1

polarization has a variety of biological functions but often damages

adjacent neurons through inflammatory cytokines and the

corresponding neurotoxicity (12–15). Previous evidence has

suggested that hyper-M1-polarized microglia may exist in the

brains of TS individuals (16–19). However, there is a lack of

direct evidence to reveal the role of microglia in TS, as well as its

downstream interaction with dopaminergic neurons (considering

the DA system is closely related to TS development or behavioral

stereotypes) (20–25).

Iminodipropionitrile (IDPN) is a synthetic organic nitrile, and it

is the most commonly used inducer of TS, which has a long-term

effect (19). We have used this model to observe changes in different

systems and tissues (26). Peripherally, IDPN triggers immune

dysfunction through impairment of mature Th cells, especially the

Treg subset. In this study, we probed the role of striatal microglia-

dopaminergic-neuron crosstalk in a rat model of TS induced by

IDPN. For the first time, we confirmed that neuroinflammation

triggered by M1 polarization of microglia can cause significant

injuries to dopaminergic neurons in the striatum of TS rats.
2 Materials and methods

2.1 TS model

Male Sprague–Dawley rats (6–8 weeks, weight 200 g) were used

for TS model establishment. The TS group was intraperitoneally

injected with iminodipropionitrile (IDPN, 300 mg/kg/day, Sigma-

Aldrich, USA) for seven consecutive days, and the control group

was intraperitoneally injected with saline (5 ml/kg/day) for 7 days.

The TS model was verified by stereotypical behaviors. If the rats had

a stereotypic score lower than 1, the sample was removed.

After behavioral observation, each rat was sacrificed, and the

striatal tissue was isolated. A part of the striatal tissues was fixed in
Frontiers in Immunology 02
4% paraformaldehyde, the remaining tissues were homogenized,

and protein was extracted for ELISA and Western blot assays.

Another batch of animals was used for the purification of microglia,

and these microglia were named the Sham group or TS group in the

cell experiment.

The above animal experiments were approved by the ethics

committee of Fujian Maternity and Child Health Hospital.
2.2 Co-culture of striatal dopaminergic
neurons and microglia

First, a primary culture of dopaminergic neurons was

performed. The ventral midbrain region containing the striatum

was dissected and washed three times with Hank’s balanced salt

solution containing 10 mM HEPES and 20 mM glucose. The tissue

was mechanically dissociated at room temperature and suspended

in Neurobasal medium (Gibco, Invitrogen, Carlsbad, CA, USA)

containing 2 mM glutamine and B27 supplement (Gibco,

Invitrogen). Cells were seeded on poly-D-lysine/laminin-coated

plates (105 cells/well) and cultured in Neurobasal medium (Gibco,

Invitrogen, Carlsbad, CA, USA) containing 2 mM glutamine and

2% B27 supplement (Gibco, Invitrogen) at 37°C in a humidified 5%

CO2 atmosphere. Half of the medium was changed every 2 days

until treatment. Co-culture was performed after 7 days of seeding.

For each well, an equal amount of microglia (105 cells) from

different groups was added; after 48 h, the microglia were washed

out slightly, and the adherent dopaminergic neurons were collected

for the assay. The added microglia were divided into the following

groups: For different types of stimulation, the LPS group (of

microglia) was added LPS (1 mg/ml), and the IL-4 group was

added IL-4 (20 mg/ml), and a 24-hour treatment was allowed

before microglia collection. Next, two groups of microglia were

added to the pool of dopaminergic neurons. In the other batch, an

equal amount of microglia from the TS or control rats (namely, the

TS group or Sham group) was added.
2.3 Immunohistochemical and
immunofluorescence staining

For IHC staining, the tissues were embedded in paraffin and cut

into 5 mm sections. Sections were mounted on slides. The sections

of striatum were subjected to antigen, followed by antibody

hybridization (the primary antibody was the rabbit anti-Iba-1

antibody, and the secondary antibody was the mouse anti-rabbit

antibody). Targets were visualized by 3,3-diaminobenzidine. For

immunofluorescence staining, tissues were fixed in 4%

paraformaldehyde overnight, dehydrated in 20% sucrose (0.1 M

PBS) for 24 h at 4°C, and further dehydrated in 30% sucrose (0.1 M

PBS) for 24 h at 4°C. The sections were cut into 15-mm sections on a

cryostat. The sections were rinsed in 0.01 M PBS and blocked for 2 h

with donkey serum (in 0.3% Tween-20 and 0.01 M PBS) and then

incubated with the primary antibodies at 4°C overnight (1:500).

Subsequently, sections were washed three times in 0.01 M PBS for 5

min and incubated with several conjugates with FITC (1:200) or
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1178113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1178113
CY3 (1:200). Next, sections were incubated with DAPI for nucleus

staining for 15 min and washed three times for 5 min each. Finally,

sections were cover-slipped, and images were captured under a

fluorescence microscope. For cellular immunofluorescence, cells

were fixed with 4% PFA for 30 min, washed with 0.01 M PBS,

permeabilized with 0.1% Triton X-100 for 5 min, and blocked with

goat serum for 1 h. Labeling was performed by incubating cells for

1 h with specific rabbit antibodies (including CD86, Arg-1, TH,

DAT, and PITX3). After three washes (using PBS), cells were

incubated with the specific secondary antibody (Alexa594-

conjugated goat anti-rabbit antibody, Life Technologies). Cells

were washed three times with PBS and incubated in DAPI for

5 min. Samples were observed under a fluorescence microscope.
2.4 ELISA assay

Rat striatal tissues were homogenized in a lysis buffer with

protein inhibitors and PMSF (1 mM). The lysates were centrifuged

at 1,000 rpm for 5 min, and the supernatant was stored at 2 to 8°C.

The above samples were used to detect the concentration of

inflammatory factors (TNF-a, IL-6, and IL-10), and microglia

polarization markers (iNOS or Arg-1), by ELISA. All ELISA

operations followed the official instructions. Briefly, 50 ml of the
sample was added to each well, and the standard curve was plotted

based on the corresponding OD values. The concentration of each

inflammatory factor was calculated according to the curve equation.
2.5 Western blotting

The tissues or cells were lysed using an ice-cold lysis buffer (50

mM Tris, pH 7.4, 150 mMNaCl, 1% SDS, 1 mM EDTA, 1% NP-40)

containing 1 mM protein inhibitor and 1 mM PMSF. The lysates

were centrifuged at 10,000×g at 4°C for 10 min, and the

supernatants were collected. Protein concentration was measured

using the BCA protein assay. Equal amounts of protein were

separated using 10% SDS-PAGE before being transferred to

PVDF membranes. Membranes were incubated with primary

mouse antibodies or anti-GAPDH antibodies (Santa Cruz

Biotechnology, Santa Cruz, CA, USA). The blotting was

developed using HRP-conjugated goat anti-mouse IgG (Santa

Cruz Biotechnology) and detected by an ECL kit (Amersham,

Piscataway, NJ, USA). The applied primary antibodies were as

follows: rabbit anti-TH (1:500), rabbit anti-DAT (1:500), rabbit

anti-PITX3 (1:250), rabbit anti-iNOS (1:500), and rabbit anti b-
actin (1:10,000).
2.6 Statistical analysis

Results were expressed as means ± standard error. For

comparison between two groups, Student’s t-test was used after

the normal distribution test; for groups with unequal variance,

Welch’s t-test was used for comparison. For more than two groups,

one-way ANOVA was used; nonparametric tests were used when
Frontiers in Immunology 03
data were not normally distributed. Additionally, Bonferroni

correction was used to control family-wise error rates. A P value

<0.05 was considered statistically significant.
3 Results

3.1 Pathological damage to striatal
dopaminergic neurons in TS rats

First, the TS model was validated with respect to stereotypical

behavior induced by IDPN. The IDPN-treated rats had significantly

more counts of biting, head twitching, shaking claws, and

continuous rotation, and the stereotypic behavior score was

significantly increased. The detailed behavioral changes have been

reported in our previous work (27). To assess the damage to striatal

dopaminergic neurons, three associated markers were used:

tyrosine hydroxylase (TH, the classic marker of striatal

dopaminergic neurons), dopamine transporter (DAT, an

important marker in the presynaptic membrane in dopaminergic

neurons), and PITX3 [involved in the production, maintenance,

and survival of dopaminergic neurons, as well as an important and

specific transcription factor in the development of midbrain

dopaminergic neurons (28)]. We found that the expression of

TH, DAT, and PITX3 were significantly decreased in the striatum

of TS rats (assessed by Western blotting, Figures 1A, B), which

suggests that IDPN injection can induce pathological damage to

striatal dopaminergic neurons.
3.2 M1 over-polarization of striatal
microglia is involved in TS

A possible mechanism of TS-related injuries in striatal

dopaminergic neurons may be the activation (especially

polarization) of striatal microglia. First, the TS group showed a

trend of increased Iba-1 positive cells with asymmetrical branches

and an amoeba-like appearance (Figure 2A). Meanwhile, ELISA

assays showed that the levels of inflammatory factors TNF-a and

IL-6 were significantly increased (P <0.01, Figure 2B), and

intriguingly, the anti-inflammatory factor IL-10 level was also

increased (P <0.01, Figure 2B) in the striatum of TS individuals. In

addition, iNOS (theM1-polarization marker) expression was elevated

(P <0.01; Figure 2B) and Arg-1 (the M2-polarization marker)

expression was decreased (P <0.01; Figure 2B) in the striatum.

Taken together, there is a M1 over-polarization of microglia in the

striatum of TS individuals, and the associated inflammatory signaling

may be involved in the central mechanism of TS development.
3.3 The possible microglia-neuron
crosstalk in TS

Based on the M1 over-polarization of microglia, it is reasonable

to assume that the inflammatory crosstalk between microglia and

neurons may be an important pathogenic mechanism for TS-related
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injuries. Therefore, we isolated microglia from two groups of

animals. After 4 days of purification culture, the morphology of

microglia (Figure 3A) in two groups was as follows: most of the cells

in Sham group had small, narrow, and long cytosol, few amoeboid
Frontiers in Immunology 04
like cells; while the morphology of microglia in TS group was

diverse, many cells had asymmetric branches, and most of them

were amoeboid like cells. Next, we stimulated normal microglia

using LPS (towards M1 phenotype) and IL-4 (towards M2

phenotype), and the striatal dopaminergic neurons were co-

cultured with different groups of microglia. As expected, LPS

treatment effectively induced a M1 polarization of microglia

(verified by the marker CD86 and increased iNOS expression,

Figures 3B, D), and IL-4 triggered a M2 polarization (verified by

the marker Arg-1 and increased CD206 expression, Figures 3C, D).

Subsequently, striatal dopaminergic neurons were cultured in vitro

(Figure 4A), and they were co-cultured with microglia of different

polarization status for 48 h. The expression of TH, DAT, and PITX3

was determined after co-culture. The IL-4 treated microglia induced

higher levels of TH, DAT, and PITX3 in neurons, as observed by

immunofluorescence staining (Figures 4B-D) and Western blotting

(Figure 4E). Similarly, striatal dopaminergic neurons were co-

cultured with microglia from different rats (the Sham group or TS

group), and the TS-group microglia (vs the Sham-group) induced a

decreased expression of TH, DAT, and PITX3 in the dopaminergic

neurons (Figures 4B-E). These findings, at least partially, indicate

that the decreased TH, DAT, and PITX3 may be caused by the

crosstalk with the M1-type microglia in the TS individual.
4 Discussion

In this study, we observed inflammatory injury to striatal

dopaminergic neurons in TS rats. We also observed an increased

M1 polarization and decreased M2 polarization of the striatal

microglia and the interaction between microglia and dopaminergic

neurons, which may transmit the inflammatory injury. Based on
A

B

FIGURE 2

Activation of striatal microglia is involved in TS. (A) The TS group has a trend toward increased Iba-1 positive cells, with asymmetrical branches and
an amoeba-like appearance. (B) The levels of inflammatory factors TNF-a, IL-6, IL-10, and iNOS are significantly increased in the striatum of TS
individuals, while the M2 marker Arg-1 is decreased. *P <0.05, **P <0.01, ***P <0.001.
A

B

FIGURE 1

The expression of tyrosine hydroxylase (TH), dopamine transporter
(DAT), and PITX3 is significantly decreased in the striatum of the
Tourette syndrome (TS) rats. (A) The blots of TH, DAT, and PITX3.
(B) The statistical analysis of the protein expression. **P <0.01.
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these findings, we tentatively propose a hypothesis for the

pathogenesis of TS (as shown in Figure 5): in the striatum of TS

rats, microglia are hyperactivated, with excessive M1 polarization and

overexpression of inflammatory factors that cause sustained

neurotoxicity to striatal dopaminergic neurons, which drive the

development of stereotypical behaviors.

Neuroinflammation plays a crucial role in the pathophysiology

of neural disorders. Microglia activation is a major event following

central nervous system inflammation. In particular, M1

polarization has been regarded as the biological basis for many

abnormal behaviors and neuropsychiatric disorders, especially

those associated with neuroinflammation (29–33). The

imbalanced M1/M2 polarization can cause neurological disorders

in all possibilities (34, 35), and many scholars were attempting to

answer why microglia kill neurons after neural disorders (36).

Increasing studies have reported that the neuroinflammation

caused by microglia in the striatum mediates various central

diseases, such as Parkinson’s disease (37), schizophrenia (38),

Alzheimer’s disease (39, 40), and other negative affective

conditions (41); and the potential molecular mechanisms include

IL-13 (42), IL-6 (41), TREM2 (39), BIN1 (39), and toll-like

receptors (36). As far as we know, only a few studies have shown

that the neuroimmune response mediated by microglia may be

involved in TS (16–19) and the associated molecular mechanism

include L-6, TNF-a, CD45, IFN-g, histamine, etc. (43–49). We here

highlight the role of microglia polarization in TS development and

confirm the increased M1 type and decreased M2 type, which have
Frontiers in Immunology 05
not been fully reported previously [instead, known studies have

mainly focused on T cells (50)].

Further, we here innovatively discover that striatal

dopaminergic neurons are the key cell targets of microglia in TS.

This is in line with previous conclusions. The striatal dopaminergic

neurons are vulnerable to neurotoxicity (including different

products of microglia) (51, 52), and their functions are involved

in Parkinson’s disease and Huntington’s chorea (53, 54). Robust

dopaminergic neuron function helps maintain a healthy

microenvironment in the brain. For example, the cerebral

dopamine neurotrophic factor possesses immune-modulatory

properties that benefit brain diseases (37). Furthermore, many

studies have indicated that stereotypic behavior is associated with

the dopaminergic system (55–58). Moreover, the striatum is indeed

one of the most important brain regions associated with the

pathogenesis of TS (59). DAT plays a role in many

neurodevelopmental diseases, e.g., altered DA availability

mediated through DAT may affect autistic traits in autism

spectrum disorders (60–62). The loss of DAT affects the reuptake

of DA and causes an accumulation of DA in the synaptic cleft,

which triggers an exorbitant DA signal and drives pathological

stereotypic behavior. The current study further discovers that

decreased DAT, as well as TH and PITX3, may be the result of

inflammatory injuries delivered by microglia. The deficiency in

tyrosine hydroxylase (TH) function is closely linked to

neurodevelopmental behavioral disorders (63). The decreased TH

expression (STX1A+/TH+ cells) in the striatum of TS individuals
D

A B

C

FIGURE 3

Different groups of microglia. (A) The morphology of microglia in two groups. (B–D) Normal microglia are treated using lipopolysaccharide (LPS)
(towards the M1 phenotype) or IL-4 (towards the M2 phenotype). (B) LPS treatment effectively induced a M1 polarization of microglia (verified by the
IF of the marker CD86). (C) IL-4 triggered a M2 polarization (verified by the IF of the marker Arg-1). (D) Western blot analysis of iNOS and CD206
expression in two treatment groups. *P <0.05, **P <0.01.
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has also been observed in our previous article (27), which is a clear

indicator of dopaminergic neuron injury. PITX3 is a

homeodomain-containing transcription factor belonging to the

pituitary homeodomain family. It is involved in the production,

maintenance, and survival of dopaminergic neurons. The PITX3

deficiency can lead to the loss of the substantia nigra striatum path,

the deprivation of dopaminergic neurons in the substantia nigra,

and the impairment of dopaminergic development, which may

drive the development of Parkinson’s disease (64). In a TH-Cre/

Pitx3-fl/fl (Pitx3cKO) mouse model, it was noticed that Pitx3

deficiency promotes age-dependent alterations in striatal medium

spiny neurons (65). Although many studies have shown the link

between PITX3 and Parkinson’s disease, the clear association with

TS is largely unknown. This work is the first to show a decreased
Frontiers in Immunology 06
striatal PITX3 expression in TS rats, which suggests a potential role

for PITX3 in the pathogenesis of TS.

Still, the present study has some limitations. First, some of the

findings of this study are inconsistent with previous studies, and the

exact reasons for these inconsistencies are unclear. For example, we

noticed that the IL-4 treatment is beneficial for dopaminergic

neurons in comparison with LPS. IL-4, a well-known anti-

inflammatory cytokine, is expressed in microglia in the brain. It

can regulate the polarization of the peripheral macrophage

phenotype and inhibit the production of inflammatory mediators,

such as interleukin-1b and TNF-a (66–69). However, it has been

reported that IL-4 expressed in LPS-activated microglia contributes

to striatal neurodegeneration, in which M1/M2 polarization is

implicated, and the neutralizing antibody for IL-4 can protect
D

A B

E

C

FIGURE 4

Striatal dopaminergic neurons were co-cultured with microglia of different polarization statuses. (A) Striatal dopaminergic neurons are cultured.
(B) Immunofluorescence staining of TH expression in different groups: co-cultured with LPS-treated microglia, IL-4 treated microglia, control-
animal-derived striatal microglia, and TS-rat-derived microglia. (C) Immunofluorescence staining of DAT expression in different groups.
(D) Immunofluorescence staining of PITX3 expression in different groups. (E) Western blot analysis of the expression of TH, DAT, and PITX3 in
different co-culture groups. *P <0.05, **P <0.01.
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striatal neurons against LPS-induced neurotoxicity in vivo (70).

Also, we noticed increased IL-10 expression in the striatum of

individual TS, despite its well-known anti-inflammatory factor. A

possible reason is that IL-10 can be produced by other neural cells

(e.g., Treg cells) to modulate microglia to the M2 phenotype (71,

72). However, the above speculations lack direct evidence.

In conclusion, microglia activation is M1 hyperpolarized, which

transmits inflammatory injury to striatal dopaminergic neurons and

disrupts normal dopamine signaling in the striatum of TS rats.
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Quintanilla H, Bueno-Nava A, López-Rubalcava C, et al. The systemic administration
of the histamine H(1) receptor Antagonist/Inverse agonist chlorpheniramine to
pregnant rats impairs the development of nigro-striatal dopaminergic neurons. Front
Neurosci (2019) 13:360. doi: 10.3389/fnins.2019.00360
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