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Identification of novel
gene signature for lung
adenocarcinoma by
machine learning to predict
immunotherapy and prognosis

Jianfeng Shu1,2, Jinni Jiang1,2 and Guofang Zhao1*

1Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, China, 2Ningbo Institute of Life and
Health Industry, University of Chinese Academy of Sciences, Ningbo, China
Background: Lung adenocarcinoma (LUAD) as a frequent type of lung cancer

has a 5-year overall survival rate of lower than 20% among patients with

advanced lung cancer. This study aims to construct a risk model to guide

immunotherapy in LUAD patients effectively.

Materials and methods: LUAD Bulk RNA-seq data for the construction of a

model, single-cell RNA sequencing (scRNA-seq) data (GSE203360) for cell

cluster analysis, and microarray data (GSE31210) for validation were collected

from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

database. We used the Seurat R package to filter and process scRNA-seq data.

Sample clustering was performed in the ConsensusClusterPlus R package.

Differentially expressed genes (DEGs) between two groups were mined by the

Limma R package. MCP-counter, CIBERSORT, ssGSEA, and ESTIMATE were

employed to evaluate immune characteristics. Stepwise multivariate analysis,

Univariate Cox analysis, and Lasso regression analysis were conducted to identify

key prognostic genes and were used to construct the risk model. Key prognostic

gene expressions were explored by RT-qPCR and Western blot assay.

Results: A total of 27 immune cell marker genes associated with prognosis were

identified for subtyping LUAD samples into clusters C3, C2, and C1. C1 had the

longest overall survival and highest immune infiltration among them, followed by

C2 and C3. Oncogenic pathways such as VEGF, EFGR, and MAPK were more

activated in C3 compared to the other two clusters. Based on the DEGs among

clusters, we confirmed seven key prognostic genes including CPA3, S100P,

PTTG1, LOXL2, MELTF, PKP2, and TMPRSS11E. Two risk groups defined by the

seven-gene risk model presented distinct responses to immunotherapy and

chemotherapy, immune infiltration, and prognosis. The mRNA and protein level

of CPA3 was decreased, while the remaining six gene levels were increased in

clinical tumor tissues.
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Conclusion: Immune cell markers are effective in clustering LUAD samples into

different subtypes, and they play important roles in regulating the immune

microenvironment and cancer development. In addition, the seven-gene risk

model may serve as a guide for assisting in personalized treatment in

LUAD patients.
KEYWORDS

lung adenocarcinoma, single-cell analysis, immune cells, molecular subtyping, risk
model, immunotherapy
Introduction

Lung cancer has the largest proportion among all cancer types (1).

Lung adenocarcinoma (LUAD) accounts for over half of all lung cancer

patients. The development of diagnosis and treatment improves the

overall survival time and survival quality of LUAD patients. However,

the 5-year survival of metastatic LUAD patients is lower than 20% (2).

Worse still, the incidence and mortality of lung cancer are rising (3).

Therefore, in order to identify new therapeutic targets and improve

patient survival, there is an urgent need to further develop specific

prognostic prediction methods for LUAD patients.

For these metastatic cancer patients, targeted therapy such as

EGFR and ALK inhibitors have been developed, but they only show

favorable efficiency to specific patients with EGFR and ALK

mutations (4, 5). A monumental breakthrough in cancer

treatment and immunotherapy has revolutionized the field of

oncology by harnessing the body’s natural defenses to eliminate

malignant cells (6). For example, immunotherapy with immune

checkpoint inhibitors such as programmed cell death ligand 1 (PD-

L1) and programmed cell death protein 1 (PD-1) inhibitors has

shown satisfying outcomes in multiple cancer types including lung

cancer (7). Nevertheless, the response to anti-PD-1/PD-L1 therapy

in metastatic cancer patients is unfavorable. Compared to

chemotherapy and radiotherapy, immunotherapy has more

benefits in treating cancer patients at the late stages, such as low

side effects, low toxicity, and low resistance. Therefore, it is critical

to improve the efficiency of immunotherapy.

Previous studies have shown that the response to

immunotherapy is greatly affected by immune microenvironment
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and tumor heterogeneity (8, 9). In this study, we deciphered

scRNA-seq data and the immune landscape of LUAD patients. In

combination with bulk RNA-seq data, three molecular subtypes

showing disparate prognosis, immune characteristics, and genomic

features were categorized. In addition, a seven-gene risk model

capable of dividing high-risk and low-risk LUAD patients was

established. Two risk groups (high risk and low risk) manifested

differential responses to immunotherapy and chemotherapy,

prognosis, and immune microenvironment.
Materials and methods

Data collection of LUAD samples

From the Gene Expression Omnibus (GEO) database, scRNA-

seq data (GSE203360) and microarray expression profiles

(GSE31210) of LUAD samples were accessed (10–12). From the

Cancer Genome Atlas (TCGA) database, Bulk RNA-seq data

(transcripts per million, TPM) of LUAD samples were obtained

on the Sangerbox platform (13, 14).
Preprocessing microarray and bulk
RNA-seq data

For microarray data, we annotated probes into gene symbols

according to the GPL570 platform. We excluded the probes that

matched multiple genes. When one gene had multiple probes, the

average expression was used. Totally, 246 LUAD samples in the

GSE31210 dataset were included. For bulk RNA-seq data (named as

TCGA dataset), the LUAD samples with a survival time > 0 and

survival information were retained. Ensembl ID was transferred to

the gene symbol. Protein-coding genes were included. Totally, 500

LUAD and 59 normal samples in the TCGA dataset were included.
Processing of scRNA-seq data

GSE203360 dataset includes scRNA-seq data of six LUAD

samples. Quality control procedure was conducted to filter single

cells: 1) Each gene expressed more than 200 genes and was
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expressed in more than three cells; 2) The quantity of expressed

genes in cells was between 100 and 5000; 3) The percentage of

mitochondrial genes in one cell was less than 30%; 4) The number

of unique molecular identifiers (UMI) was more than 100. Finally, a

total of 18694 cells were included under the above filtering.

SEURAT R package (15) was utilized to process the scRNA-seq

data. First, scRNA-seq data was log-normalized, and the

“FindVariableFeatures” function was performed to discriminate

highly variable genes. To eliminate the batch effects of six

samples, “FindIntegrationAnchors” and “IntegrateData” functions

were used. Then, we scaled the scRNA-seq data using the

“ScaleData” function and implemented PCA to decrease

dimensionality. Subsequently, “FindClusters” functions and

“FindNeighbors” were conducted to cluster single cells into

different subgroups under conditions of dim = 40 and resolution

= 0.2. Finally, single cells were visualized by t-SNE plot through the

“RunTSNE” function.

Next, we obtained cell markers of different cell types from

CellMarker2.0 (16) and annotated single cells based on these

markers. The “FindAllMarkers” function was used to filter DEGs

of different cell types under the criteria of logFC = 0.5 and

Minpct=0.5. DEGs with P < 0.05 were determined as marker

genes of cell types. Only immune cells were remaining for further

analysis. The WebGestaltR package (17) was employed to assess

KEGG pathways and GO terms of marker genes.
Identification of molecular subtypes

First, DEGs were screened with the limma R package by

comparing LUAD samples to normal samples in the TCGA dataset

(18). DEGs with false discovery rates (FDR) < 0.05 and |log2FC| > 1

were retained. Univariate Cox regression analysis was performed on

marker genes of immune cells screened from single-cell analysis. The

marker genes with P < 0.01 were included for further analysis. Then,

the intersection of DEGs and marker genes was selected as a basis for

molecular subtyping.

Based on the expression profiles of intersected genes, the

ConsensusClusterPlus R package (19) carried out unsupervised

consensus clustering. A total of 500 bootstraps were conducted using

the “hc” algorithm and “Pearson” distance. Each bootstrap contained

80% of TCGA samples. Cluster number k from two to 10 was set, and

the optimal k could be determined based on the cumulative

distribution function (CDF) and ConsensusClusterPlus method. The

same procedure was performed in the GSE31210 dataset.
Immune characteristics and
pathway analysis

We used multiple methodologies to estimate immune

characteristics. CIBERSORT algorithm calculated the enrichment

score for 22 kinds of immune cells (20). Stromal infiltration and

immune infiltration were evaluated by ESTIMATE (21).We obtained

gene signatures of 28 immune cells from previous studies and

analyzed their enrichment scores using ssGSEA (22, 23). Moreover,
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Microenvironment Cell Populations-counter (MCP-counter) was

employed to assess stromal and immune cell infiltration (24). The

enrichment of tumor-related pathways was assessed by the

PROGENy (Pathway RespOnsive GENes) algorithm (25).

Establishment of a risk model

First of all, DEGs were distinguished from different clusters [FDR

< 0.05 and |log2FC| > log2(1.5)]. We selected the intersected DEGs of

different clusters for univariate Cox regression analysis, and the DEGs

with P < 0.05 were screened. Then, Lasso regression compressed gene

numbers in the glmnet R package (26). With the increase in the

lambda value, the coefficients of genes were close to zero. A model

was built by 10-fold cross-validation, and the optimal one was chosen

according to the lambda value. Stepwise multivariate analysis

(stepAIC) was further performed in the Mass R package to reduce

the gene number (27). To reach the optimal model, the variables were

deleted accordingly to reduce the AIC value. A sufficient fitting degree

with fewer variables was ensured by StepAIC. The risk model was

finally determined as risk score = S(exp i* beta i), where beta

represents multivariate coefficients, exp represents expression levels,

and i represents genes.
Evaluation of the risk model

According to the formula of the risk model, we calculated the

risk score for each sample and divided them into groups of high and

low risks using the median risk score. Kaplan-Meier survival

analysis showed the prognosis difference between the two risk

groups. Receiver operation characteristic (ROC) curve analysis

evaluated the survival prediction efficiency (1-year, 3-year, and 5-

year) of the risk model. A nomogram was developed combining the

model with clinical features.

The risk model to predict chemotherapy
and immunotherapy response

Tumor Immune Dysfunction and Exclusion (TIDE) (http://

tide.dfci.harvard.edu/) predicted the response to immune

checkpoint blockade (ICB) therapy. The estimated IC50 for

assessing the response to eight chemotherapeutic drugs (Erlotinib,

Rapamycin, PHA-665752, Roscovitine, Cisplatin, Paclitaxel, BI-

2536, and Pyrimethamine) was calculated by pRRophetic R

package. IMvigor210 dataset (28) containing the expression data

of urothelial carcinoma patients treated by anti-programmed death-

ligand 1 (PD-L1) therapy was used to further validate the

performance of the risk model. IMvigor210 dataset contains 348

patients divided into complete response (CR), progressive disease

(PD), partial response (PR), and stable disease (SD) groups.
Clinical samples

In this research, we collected five pairs of LUAD and adjacent

normal lung tissues from Ningbo No.2 Hospital. Informed consent
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was obtained from all participants. The study was approved by the

Ethics Committee of Ningbo No.2 Hospital.
RNA preparation and real-time quantitative
PCR (RT-qPCR) analysis

TRIzol reagent (Invitrogen, CA, USA) was applied to extract

RNA from tissues. PrimeScript™ RT Master Mix (Takara, Dalian,

China) was used to synthesize cDNAs to explore genes’ mRNA

expression detection according to the manufacturer’s instructions.

The RT-qPCR was conducted using a TB Green Premix Ex Taq™ II

kit (Takara, Dalian, China) with a 7500 Real-Time PCR System

(Applied Biosystems, Foster City, CA) according to construction

sequence. The relative expression of genes was performed using a 2-

DDct method using an internal reference gene, GAPDH. The primers

of genes are shown in Table 1.
Western blot assay

Proteins were extracted in RIPA lysis buffer (P0013B, Beyotime)

and the concentration was determined using a BCA Protein assay

kit (P0010S, Beyotime). Proteins were separated on sodium dodecyl

sulfate-polyacrylamide gels (SDS-PAGE) and then transferred to

polyvinylidene fluoride (PVDF) membranes. The membranes were

blocked with 5% non-fat dry milk and then incubated overnight

with primary antibodies, including anti-CAP3 (1:1000, ARG58412,

and Arigo Biolaboratories Corp.), anti-S100P (1:1000, 7677S, and

CST), anti-PTTG1 (1:1000, 13445, and CST), anti-LOXL2 (1:1000,

ab96233, and Abcam), anti-MELTF (1:1000, 10428-1-AP, and

Proteintech), anti-PKP2 (1:1000, ab189323, and Abcam), anti-

TMPRSS11E (1:1000, PA5-48775, and Invitrogen Antibodies),

and anti-b-actin (1:10000, A5441, and Sigma). Horseradish

peroxidase (HRP)-conjugated goat anti-mouse/rabbit IgG

secondary antibody was used to incubate membranes at room

temperature. The blots were detected by chemiluminescence and

imaged on an AlphaView analysis system (ProteinSimle, USA). The

quantification of individual protein bands was assessed by

densitometry using ImageJ software.
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Statistical analysis

All statistical analysis was done with the R program (v4.2.0).

The Wilcoxon test evaluated the two-group difference. Differences

among the three groups were analyzed by the Kruskal-Wallis test.

Cox analysis and survival analysis both used the log-rank test.

Results

Annotating cell types in single-cell data of
LUAD patients

Single cells were filtered using the Seurat R package and 18694

cells were remaining (Figures S1A, B and Figure 1A, see the filtering

details in Materials and Methods). Then, the expression profiles of

single cells were log-normalized and the batch effects of six samples

were eliminated (Figures S1C, D). Gene expression levels were

scaled and single cells were divided into 26 clusters (Figure 1B).

Further, we annotated these clusters into eight cell types according

to the markers from CellMarker2.0 (16) where monocytes/

macrophages and AT cells (AT1 (alveolar type I cells) and AT2

(alveolar type II cells)) account for the majority of cells (Figures 1C–

E; Table 2). By assessing the difference in expression profiles among

different cell types, we identified DEGs in each cell type and the top

five DEGs were visualized (Figure 1F). Only the DEGs of five

immune cells (dendritic cells, B cells, monocytes/macrophages,

mast cells, and T cells) were retained for the subsequent analysis

(Table S1). These DEGs were defined as the markers offive immune

cells. Functional analysis showed that these markers were

apparently enriched in immune-related pathways including

phagosome and antigen processing and presentation (Figure 2A).

Moreover, GO analysis revealed that immune-related biological

pathways were significantly accumulated such as myeloid leukocyte,

myeloid leukocyte activation, and involved myeloid leukocyte-

mediated immunity in immune response (Figure 2B).

Molecular subtyping based on the markers
of immune cells

We performed univariate Cox regression analysis to ascertain

the markers that were significantly associated with LUAD prognosis
TABLE 1 The primers of genes.

Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’)

CPA3 ATTCACGCACGAGAATGGGT CCACATGCGGTTCTTTGTCC

S100P GAGACAGCCATGGGCATGAT CGTCCAGGTCCTTGAGCAAT

PTTG1 CCAAGGGACCCCTCAAACAA GGCATCATCTGAGGCAGGAA

LOXL2 CCAGTGTGGTCTGCAGAGAG CCTGTGCACTGGATCTCGTT

MELTF GGCACACAACCGTCTTTGAC GGGGCACAGCAGTTCATAGT

PKP2 GAGATGACTCTGGAGCGAGC AAGCTTGAGGATGCCACGAA

TMPRSS11E CCTGATTGTCCTGGCAGTGT CCTCTCTGCCAAACTCAGCA

GAPDH AGGGCATCCTGGGCTACAC GCCAAATTCGTTGTCATACCAG
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in the TCGA dataset. A total of 77 marker genes were identified

with P < 0.01 (Table S2). We further screened dysregulated genes of

LUAD by comparing LUAD samples with normal samples in the

TCGA dataset. To ensure which markers had a remarkable
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contribution to LUAD, we selected the intersection between

prognostic marker genes and dysregulated genes. Venn plot

showed that a total of 27 marker genes were intersected and these

genes were used as a basis for the following analysis (Figures 3A, B).
TABLE 2 Twenty-six clusters annotated by marker genes of eight cell types.

Cell type marker gene seurat_clusters

Monocytes/macrophages FCGR3A, CD14, FCGR1A 0,1,3,4,7,8,9,11,14,15,18,20,22

T_cells CD3D, CD3G, TRAC 17

Dendritic_cells CD1A, CD1C, CCL22 13,23

B_cells IGHG1, IGHG3 12

Mast_cells CPA3, MS4A2 21

Ciliated_cells CAPS 19

AT cell CAV1, SFTPA1 2,5,6,10,16,24

CAFs COL1A1 25
B

C D

E F

A

FIGURE 1

Analysis of scRNA-seq data. (A) Cell counts before and after data filtering. (B) T-SNE plot of clustering cells. (C) The proportion of eight cell types in
six samples. (D) The distribution of eight cell types is shown in the T-SNE plot. (E) The expression of marker genes of eight cell types. (F) The top five
DEGs (marker genes) of eight cell types. CAF, cancer-associated fibroblasts; AT, alveolar type.
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Next, we conducted consensus clustering based on gene expression

profiles of 27 marker genes. According to CDF curves and the area

under CDF curves, we confirmed cluster number k = 3 and

classified LUAD samples into three clusters (Figure S2). Kaplan-

Meier survival analysis uncovered that three clusters (C1, C2, and

C3) had distinct overall survival in both TCGA (P < 0.0001) and

GSE31210 (P = 0.00033) datasets (Figures 3C, D). C1 had the

longest survival while C3 had the worst survival. The distribution of

clinical characteristics in three clusters showed corresponding

results with their prognosis. The proportion of patients with late

stages was obviously higher than those with early stages in C3

(Figure 3E). For example, C3 consisted of higher percentages of

stages II to IV than C1 and C2. Not surprisingly, the proportion of

dead patients was also significantly higher in C3 compared with that

in C1. The results suggested that the subtyping based on the 27

marker genes was reliable.
Analysis of immune characteristics and
biological pathways

The tumor microenvironment can indicate an immune

response to cancer cells, and a high infiltration of cytotoxic

lymphocytes commonly suggests a high activation of anti-cancer

response and a relatively favorable outcome. We used several

strategies to evaluate the immune infiltration of three clusters in

the TCGA dataset. CIBERSORT analysis showed that most immune

cells, such as activated memory CD4 T cells, resting memory CD4 T

cells, macrophages, and CD8 T cells, were differently enriched in

three clusters (Figures 4A, B). Compared with C2 and C3, C1 had

higher immune infiltration and stromal infiltration (Figure 4C).

Interferon-g (IFN-g) is an essential factor in anti-cancer response

and immune regulation. We found that C1 had the highest

expression of IFN-g followed by C3 (Figure 4D), indicating that

the immune response was relatively active in C1. Moreover, both

MCP-counter and ssGSEA revealed the consistent result that most
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immune cells were more enriched in C1 compared with the other

two clusters (Figures 4E, F). To figure out the possible molecular

mechanisms of different prognoses in three clusters, we evaluated

11 tumor-related pathways using the PROGENy algorithm (25). As

a result, most pathways such as PI3K, VEGF, hypoxia, and EGFR

were more activated in C3 compared with C1 and C2 (Figure 4G).

Notably, the pro-apoptotic signaling, Trail, was the most enriched

in C1, which may lead to its favorable prognosis.
Variation characteristics of three clusters

Genomic characteristics have been reported to be linked with

cancer development, prognosis, and response to immunotherapy.

We obtained several genomic features from previous studies (29,

30). C3 showed the highest tumor mutation burden (TMB) while

C1 had the lowest tumor purity (Figures 5A, B). In addition, C1 also

had the lowest scores of aneuploidy, homologous recombination

defect, fraction altered, and number of segments (Figure 5C).

Furthermore, we assessed the frequencies of gene mutation and

screened the significantly mutated genes in three clusters. The top

15 mutated genes of three clusters were listed (Figures 5D–F). The

mutation frequencies of the top 15 genes varied largely among three

clusters. Especially, TP53 had the highest mutation rate in C3 with a

mutation frequency of 66%, while the frequencies were 36% and

35% in C1 and C2, respectively. Notably, KRAS presented an

extremely higher mutation rate in C2 (41%) compared with C1

(18%) and C3 (25%). To figure out the influence of mutations in

oncogenic pathways, we employed maftools (31) to calculate the

mutation frequencies of genes of 10 oncogenic pathways. Six of 10

pathways were evidently affected in LUAD samples, including RTK-

RAS, WNT, NOTCH, Hippo, PI3K, and TP53 (Figures 5G–I). C3

had the largest proportion of affected pathways compared to the

other two clusters, indicating that the biological functions of these

oncogenic pathways may be largely interfered with.
BA

FIGURE 2

KEGG (A) and GO (B) function analysis of DEGs of immune cells (monocytes/macrophages, mast cells, T cells, dendritic cells, and B cells) in the
TCGA dataset. FDR, false discovery rate.
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Construction of a risk model based on the
DEGs in three clusters

Given that the three clusters had different prognoses, immune

microenvironments, mutation characteristics, and enrichment of

biological pathways, we next attempted to dig out potential key

genes contributable to their outcomes. Therefore, we used the limma

R package to excavate the DEGs in C1 vs. other, C2 vs. other, and C3

vs. other [FDR < 0.05 and |log2FC| > log2(1.5)]. As a result, we

identified 1587 DEGs in C1, 900 DEGs in C2, and 1437 DEGs in C3

(Figures S3A–C). Venn plot showed that the DEGs of three groups

shared 133 overlapped ones (Figure S3D). KEGG analysis showed

that the DEGs of C3 were significantly enriched in the cell cycle, p53

signaling pathway, and microRNAs in cancer (Figure S3E). The 133

common DEGs were also enriched in the cell cycle (Figure S3F),

suggesting that these DEGs may have an influence on different

prognoses by regulating the cell cycle pathway.

To further explore the potential key DEGs among 133 DEGs, we

performed univariate Cox regression analysis and identified 109

DEGs associated with overall survival (Table S3). Then, using Lasso

regression analysis, we compressed the coefficients of DEGs to
Frontiers in Immunology 07
retain the important DEGs. The Lasso model reached the optimal

when the lambda value = 0.0315, and a total of 15 DEGs were

remaining (Figures 6A, B). To further reduce the number of genes,

stepAIC was employed to ensure a sufficient fitting degree with the

least number of genes. As a result, seven key prognostic genes were

determined to construct a risk model (Figure 6C).

Risk Score = -0.073*CPA3 + 0.077*S100P + 0.128*PTTG1 +

0.158*LOXL2 + 0.152*MELTF + 0.119*PKP2 + 0.058*TMPRSS11E
Assessment of the seven-gene risk model

We determined the risk score for each tumor sample in the

TCGA dataset using the risk model. The median value of the risk

score was used to identify the high-risk and low-risk groups

(Figure 6D). More samples in the high-risk group had a dead

status than in the low-risk group (Figures 6D, G). With AUCs of

0.72, 0.72, and 0.65, respectively, the ROC curve showed that the

risk model was effective for predicting 1-year, 3-year, and 5-year

survival (Figure 6E). The two risk groups had varied overall

survival rates, as indicated by the Kaplan-Meier survival curve
B

C D

E

A

FIGURE 3

Constructing molecular subtypes based on DEGs. (A) Venn plot of DEGs (identified between tumor and normal samples in the TCGA dataset) and
prognostic marker genes (identified in scRNA-seq data). (B) Univariate Cox regression result of 27 intersected genes. (C) Kaplan-Meier survival
analysis of three clusters in the TCGA dataset. (D) Kaplan-Meier survival analysis of three clusters in the GSE31210 dataset. (E) The distribution of
different clinical features in three clusters in the TCGA dataset.
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(P < 0.0001; Figure 6F). We observed consistent results in the

GSE31210 dataset (Figures 6H–K), demonstrating the robustness

and reliability of the seven-gene risk model. In addition, we

evaluated the performance of the risk model in the samples with

different clinical characteristics. Survival analysis showed that the

risk model was effective in distinguishing high-risk and low-risk

samples with different clinical features including TNM stage, age,

and gender (Figure S4).
Establishing a nomogram to optimize the
application of the risk model

Risk score and stage were identified as independent risk factors

by univariate and multivariate analyses (Figures 7A, B). A

nomogram based on risk score and stage was therefore created
Frontiers in Immunology 08
(Figure 7C). The risk score showed a more significant effect on the

total points compared to the stage. The calibration curve presented

that the predicted 1-year, 3-year, and 5-year survival was close to

the observed ones (Figure 7D). Decision curve analysis validated

that patients could obtain more benefits from the nomogram

compared to the risk score (Figure 7E). Also, compared with

clinical characteristics including age, gender, and stage, both risk

score and nomogram showed higher AUC of 1-year, 3-year, and 5-

year survival (Figures 7F–H).
Assessment of immune characteristics

The immune microenvironment in high-risk and low-risk

groups was assessed with different tools and methodologies.

ESTIMATE demonstrated that the low-risk group had obviously
B

C D

E

F

A

G

FIGURE 4

Analysis of immune infiltration and tumor-related pathways in the TCGA dataset. (A) The heat map showed the distribution of 22 immune cells in
three clusters. (B) The box plot showed the estimated enrichment of 22 immune cells in three clusters. (C) ESTIMATE analysis revealed immune and
stromal infiltration of three clusters. (D) IFN-g expression level in three clusters. (E) Comparison of the enrichment of 10 immune-related cells
calculated by MCP-counter among three clusters. (F) Comparison of the enrichment of 28 immune-related cells calculated by ssGSEA among three
clusters. (G) Comparison of the enrichment of 11 tumor-related pathways calculated by PROGENy among three clusters. *p < 0.05, **p < 0.01, ****p
< 0.0001; ns, no significant.
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higher immune scores and stromal scores than the high-risk group,

indicating higher stromal infiltration and immune infiltration in the

low-risk group (Figure 8A). CIBERSORT algorithm revealed that

several immune cells were differentially enriched between the two

risk groups, such as dendritic cells, M0 macrophages, mast cells,

memory CD4 T cells, and M1 macrophages (Figure 8B). Using the

marker genes of five immune cells obtained by scRNA analysis, the

ssGSEA finding indicated that the low-risk group had a higher

immune cell score (Figure S5). This demonstrated that the two risk

groups had differential immune infiltration. Correlation analysis

further supported an association of the risk score with immune cell

infiltration (Figures 8C–F). For instance, B cell lineage (including

memory B cells, monocytes, activated B cells, and immature B cells)

was negatively correlated with risk score. M0 macrophages, M1

macrophages, and fibroblasts were positively related to risk scores.
Frontiers in Immunology 09
The potential of the risk score in predicting
immunotherapy and chemotherapy

TIDE tool can predict the response to immune checkpoint

inhibitors (ICIs). We evaluated the enrichment score of myeloid-

derived suppressor cells (MDSCs), T cell dysfunction, and T cell

exclusion and calculated the TIDE score. We observed that risk score

was positively related to TIDE score (P < 0.001, R = 0.34, Figure 8G),

suggesting that patients with high-risk scores weremore vulnerable in

the response to ICIs than those with low-risk scores. Notably, the risk

score was also positively associated with T cell exclusion (P < 0.001, R

= 0.43) and MDSC (P < 0.001, R = 0.62), which may contribute to a

negative response to ICIs. The correlation analysis between RiskScore

and immune checkpoint genes showed that RiskScore was positively

correlated with immune checkpoint genes, indicating that patients in
B C

D E F

G H I

A

FIGURE 5

Mutation analysis of three clusters in the TCGA dataset. (A, B) TMB and tumor purity of three clusters. (C) The scores of aneuploidy, homologous
recombination defect, fraction altered, and number of segments. (D–F) The top 15 mutated genes in C1 (D), C2 (E), and C3 (F). (G–I) The fraction of
affected oncogenic pathways and the fraction of samples with mutated pathways in C1 (G), C2 (H), and C3 (I). ****p < 0.0001.
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the high-risk group were more suitable for ICB therapy (Figure S6).

In addition, we used a pRRophetic package to predict the response to

chemotherapeutic drugs. The two risk groups had distinct sensitivity

to different chemotherapeutic drugs (Figure 8H). The high-risk group

was more sensitive to Cisplatin, Paclitaxel, BI-2536, and

Pyrimethamine, the while low-risk group was more sensitive to

Erlotinib, Rapamycin, PHA-665752, and Roscovitine.
The performance of the seven-gene risk
model in immunotherapy-treated patients

We further examined the performance of the risk model in the

patients administrated by PD-1 inhibitors (IMvigor210 dataset).

The same procedure was performed to divide patients into high-

and low-risk groups. Survival analysis manifested that the low-risk

group had markedly longer overall survival than the high-risk group

(Figure 9A). Notably, the grouping efficiency was higher in the

patients with early stages (I+II) than those with late stages (III+IV)

(Figures 9B, C). In the IMvigor210 dataset, patients were divided

into four groups of different responses to PD-1 inhibitors including

CR, PR, SD, and PD where CR and PR indicated positive responses

to immunotherapy. We compared the risk score between CR/PR

and SD/PD groups. Unsurprisingly, the CR/PR group had a

significantly lower risk score than the SD/PD group (P = 0.00017,

Figure 9D). TIDE score was unable to significantly distinguish

between high-risk and low-risk groups (P = 0.095, Figure 9E).

The AUC of the risk score reached 0.63 while it was 0.58 in the

TIDE score (Figure 9F).
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Seven key genes were validated by
RT-qPCR and Western blot assay

To know the expression profile of CPA3, S100P, PTTG1,

LOXL2, MELTF, PKP2, and TMPRSS11E, we used RT-qPCR and

Western blot assay to explore the expression in clinical patient

tissues. As shown in Figure 10, the mRNA level of CAP3 was

downregulated, while S100P, PTTG1, LOXL2, MELTF, PKP2, and

TMPRSS11E mRNA levels were upregulated in LUDA tissues in

comparison to paracarcinoma. Surprisingly, the protein levels of

seven genes had a similar trend in tumor tissues (Figure 11).
Discussion

In this study, we utilized scRNA-seq data and bulk RNA-seq

data to explore prognostic genes associated with LUAD and

immunity. We identified three clusters (C1, C2, and C3) with

distinct clinical and molecular features. Through differential

analysis between different clusters, we detected a series of DEGs.

We further excavated seven key prognostic genes from these DEGs

to establish a risk model. The risk model was effective in

discriminating between high-risk and low-risk patients, which

could provide guidance for clinical treatment.

C1 had the longest overall survival whereas C3 had the worst

prognosis. Consistent with clinical characteristics, samples with

advanced stages had a higher proportion in C3 compared with

the other two clusters. In addition, C3 had the largest number of

dead samples. To clarify the molecular mechanisms causing the
B C

D
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A

FIGURE 6

Establishment and verification of a risk model. (A) The change of Lasso coefficients with the increasing lambda. (B) Partial likelihood of deviance
from changing lambda values. (C) The hazard ratio of seven prognostic genes was analyzed by stepAIC. (D) The division of two risk groups and the
distribution of samples ranking by risk score in the TCGA dataset. (E) ROC curve of 1-year, 3-year, and 5-year survival in TCGA dataset. (F) Kaplan-
Meier survival curve of high- and low-risk groups in the TCGA dataset. (G) The percentage of alive and dead samples in the two risk groups in the
TCGA dataset. (H–K) The validation of the risk model in the GSE31210 dataset.
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different prognoses of the three clusters, we analyzed their immune

characteristics, biological pathways, and genomic features. C1 had

the highest immune infiltration while C3 had the lowest immune

infi l tration. The immune microenvironment has been

demonstrated to be extraordinarily associated with anti-cancer

immune response and prognosis (32). Previous research has

shown that high immune infiltration is associated with a good

prognosis in lung cancer (33, 34), which is consistent with our

result. However, C3 showed higher immune infiltration than C2.

We further analyzed the enrichment of tumor-related pathways.

Not surprisingly, C3 manifested higher enrichment of oncogenic
Frontiers in Immunology 11
pathways such as VEGF, hypoxia, EGFR, and MAPK than the other

two clusters, which were responsible for the worse prognosis of C3.

In addition, C3 had high levels of TMB, aneuploidy, homologous

recombination defect, fraction altered, and number of segments,

suggesting the genomic instability of C3. Genomic instability is one

of cancer hallmarks, which is closely associated with cancer

development (35, 36). Molecular analysis of the three clusters

explained their different prognosis and the reliability of molecular

subtyping based on immune cell markers.

Furthermore, we assessed DEGs between different clusters, and

a total of 133 DEGs were identified. KEGG analysis revealed that
B
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A

FIGURE 7

Optimization of the risk model in the TCGA dataset. (A, B) Univariate (A) and multivariate (B) Cox regression analysis of age, gender, stage, and risk
score. (C) A nomogram based on risk score and stage. (D) Comparison of observed overall survival (OS) and nomogram-predicted OS. (E) Decision
curve analysis of nomogram, stage, and risk score. (F–H) ROC curves of age, gender, stage, risk score, and nomogram at 1 year, 3 years, and 5 years.
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these DEGs were significantly enriched in the cell cycle, implying

that the dysregulation of the cell cycle pathway greatly contributed

to the different outcomes of the three clusters. Using Lasso and

stepAIC algorithms, we confirmed seven key prognostic genes

including CPA3, S100P, PTTG1, LOXL2, MELTF, PKP2, and

TMPRSS11E to establish a risk model. CPA3 belongs to zinc

metalloproteases, which may contribute to the degradation of

endogenous proteins and the inactivation of venom-associated
Frontiers in Immunology 12
peptides. CPA3 was reported as a prognostic biomarker in colon

cancer (37), but its role has not been fully investigated in cancers.

S100P is an EF-hand calcium-binding protein and its

overexpression has been detected in many cancer types (38). The

overexpression of S100P promotes cancer progression and

metastasis through extracellular signaling via the RAGE receptor

or through intracellular interaction with ezrin (38). S100P serves as

a potential therapeutic target in cancer treatment. Chien et al.
B
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FIGURE 8

The relation of risk score to immune infiltration and chemotherapeutic response. (A) Immune and stromal infiltration of the two risk groups were
calculated by the ESTIMATE algorithm. (B) The estimated enrichment of 22 immune cells in the two risk groups was calculated by CIBERSORT.
(C–F) Spearman correlation analysis of risk score with the enrichment of different immune cells and stromal cells was calculated by different
tools [CIBERSORT (C), ssGSEA (D), MCP-counter (E), and TIMER (F)]. Significant correlation pairs were presented. (G) Correlation heatmap of risk
score with TIDE, IFN-g, T cell exclusion, T cell dysfunction, and MDSC. (H) The estimated IC50 of eight chemotherapeutic drugs in the high- and
low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significant.
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revealed that targeting S100P inhibited cell motility and migration

in invasive non-small cell lung cancer (NSCLC) cells (39). PTTG1 is

also detected to be overexpressed in multiple cancers such as breast

cancer, lung cancer, and gastric cancer (40). PTTG1 is involved in

regulating the transcription of basic fibroblast growth factor,

activating c-Myc, and promoting apoptosis of specific cell types

(41, 42). Knockdown of PTTG1 strengthens the anti-cancer

immune response in LUAD (43), implying PTTG1 is a potential

target. LOXL2 belongs to the lysyl oxidase (LOX) family and

increasing evidence has shown its role in cancer cell invasion and

metastasis (44). High expression of LOXL2 is associated with poor

prognosis in NSCLC patients (45). Melanotransferrin (MELTF) is

identified as a serological biomarker in gastric cancer (46),

colorectal cancer (47), and lung cancer (48). Plakophilins 2
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(PKP2) was found to promote LUAD cell proliferation and

migration through epithelial-mesenchymal transition and EGFR

signaling (49, 50). Few papers have discussed TMPRSS11E’s

function in malignancies.

In the TCGA and GSE31210 datasets, the seven-gene risk model

performed satisfactorily in predicting the prognosis of LUAD.

Compared to patients with a potentially high risk, more

immunological infiltration and a better prognosis were found in the

low-risk group. The risk score and TIDE score were positively

correlated, showing that high-risk groups had a higher likelihood of

avoiding immunotherapy. In response to chemotherapy, the two risk

groups also showed different IC50. The high-risk group was more

sensitive to Cisplatin, Paclitaxel, BI-2536, and Pyrimethamine, while

the low-risk group was more sensitive to Erlotinib, Rapamycin, PHA-
B C

D E F

A

FIGURE 9

The performance of the risk model in immunotherapy-treated patients. (A–C) Kaplan-Meier survival analysis of the two risk groups in all patients
(A), patients of early stages (I+II) (B), and patients of late stages (III+IV) (C) in the IMvigor210 dataset. (D) Comparison of the risk score in CR/PR
and SD/PD groups. (E) Kaplan-Meier survival analysis of the high- and low-TIDE score groups. (F) ROC curve of TIDE score and risk score in the
response to immunotherapy.
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FIGURE 10

The mRNA levels of seven genes were determined by RT-qPCR. *p < 0.05.
FIGURE 11

The protein levels of seven genes were detected by Western blot. *p < 0.05, **p < 0.01.
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665752, and Roscovitine. These results supported that the risk model

may provide a direction for treating LUAD patients with

immunotherapy and chemotherapeutic drugs.
Conclusions

In conclusion, this study integrated the analysis of scRNA-seq

data and bulk RNA-seq data to identify molecular subtypes for

LUAD patients. We focused on immune cell marker genes and

confirmed three clusters with different prognoses, clinical features,

immune infiltration, and genomic features. Importantly, we

constructed a seven-gene risk model which was reliable and

effective to predict prognosis and guide personalized therapies for

LUAD patients.
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