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Background: Recent observational studies and meta-analyses have shown that

vitamin C reduces cancer incidence and mortality, but the underlying

mechanisms remain unclear. We conducted a comprehensive pan-cancer

analysis and biological validation in clinical samples and animal tumor

xenografts to understand its prognostic value and association with immune

characteristics in various cancers.

Methods: We used the Cancer Genome Atlas gene expression data involving

5769 patients and 20 cancer types. Vitamin C index (VCI) was calculated using

the expression of 11 genes known to genetically predict vitamin C levels, which

were classified into high and low subgroups. The correlation between VCI and

patient overall survival (OS), tumor mutational burden (TMB), microsatellite

instability (MSI), and immune microenvironment was evaluated, using Kaplan-

Meier analysis method and ESTIMATE (https://bioinformatics.mdanderson.org/

estimate/). Clinical samples of breast cancer and normal tissues were used to

validate the expression of VCI-related genes, and animal experiments were

conducted to test the impact of vitamin C on colon cancer growth and

immune cell infiltration.

Results: Significant changes in expression of VCI-predicted genes were

observed in multiple cancer types, especially in breast cancer. There was a

correlation of VCI with prognosis in all samples (adjusted hazard ratio [AHR] =

0.87; 95% confidence interval [CI] = 0.78–0.98; P = 0.02). The specific cancer

types that exhibited significant correlation between VCI and OS included breast

cancer (AHR = 0.14; 95% CI = 0.05–0.40; P < 0.01), head and neck squamous cell

carcinoma (AHR = 0.20; 95% CI = 0.07–0.59; P < 0.01), kidney clear cell

carcinoma (AHR = 0.66; 95% CI = 0.48–0.92; P = 0.01), and rectum

adenocarcinoma (AHR = 0.01; 95% CI = 0.001–0.38; P = 0.02). Interestingly,

VCI was correlated with altered immunotypes and associated with TMB and MSI

negatively in colon and rectal adenocarcinoma (P < 0.001) but positively in lung
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squamous cell carcinoma (P < 0.05). In vivo study using mice bearing colon

cancer xenografts demonstrated that vitamin C could inhibit tumor growth with

significant impact on immune cell infiltration.

Conclusion: VCI is significantly correlated with OS and immunotypes in multiple

cancers, and vitamin C might have therapeutic potential in colon cancer.
KEYWORDS

vitamin C, pan-cancer analysis, prediction model, prognosis, immunotypes
1 Introduction

Vitamin C is an essential element involved in many human

physiological activities. This compound plays a major role in

collagen synthesis, oxygen sensing, and regulation of epigenetics

and host immunity (1–7). Several meta-analyses have demonstrated

that higher vitamin C levels/intake are associated with reduced

cancer incidence and mortality (8–16). Vitamin C is also an electron

donor that affects extracellular matrix remodeling and could affect

cancer metastasis (17), which is a major cause of poor prognosis in

multiple cancer types (18, 19). Vitamin C has preclinical and

clinical therapeutic effects on cancer (20, 21). Recent preclinical

studies have suggested potential benefit of vitamin C in cancer

immunotherapy (4, 22), but whether Vitamin C has specific

correlations with tumor immunological features remains unclear.

Although many observational and experimental studies support

an inverse relationship between vitamin C levels and cancer

(23–25), randomized controlled trials examining the therapeutic

effect of vitamin C supplementation in cancer patients have

reported inconsistent results (21, 26, 27). Moreover, increased

Vitamin C consumption due to cancer-related oxidative stress

activity and decreased dietary vitamin C supplementation due to

cancer-generated symptoms (dysphagia, vomiting, nausea,

abnormal taste) may contribute to its pseudo-prognostic cancer

results. Therefore, the relationship between vitamin C and cancer

prognosis and the positive or negative directions of this correlation,
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if it exists, require further exploration. Both data analysis using pan-

cancer datasets in public databases and specific laboratory

experiments are necessary to provide further insights in this area.

Mendelian randomization studies have used genetically

predicted Vitamin C levels to explore the relationship between

Vitamin C and cardiovascular disease, type 2 diabetes, and cancer

risk (28–30). Based on vitamin C predictive measures generated by

Mendelian randomization analysis, we performed a pan-cancer

analysis for the first time to examine whether intrinsically

predicted vitamin C levels could influence cancer prognosis.

Laboratory study was performed to further valid these findings.
2 Materials and methods

2.1 Analysis of public database
and cancer types

RNA sequencing (HTSeq-fragments per kilobase per million

[FPKM]), clinicopathological, and survival data from patients with

>30 types of cancers from The Cancer Genome Atlas (TCGA)

database were downloaded from the UCSC Xena database (https://

xena.ucsc.edu/) (31). Since vitamin C has a reinforcement effect in

immunotherapy (4, 24) and tumor mutational burden (TMB)

and microsatellite instability (MSI) could predict cancer

immunotherapy response (32, 33), we evaluated cancer

immunological features using TMB, MSI, and immunotype

correlation analyses (34–37). The TMB value can be calculated

using perl language or the maftools package of R software, and the

MSI score of each sample can be calculated using MANTIS

algorithm. The correlation between the VCI and TMB or MSI

was analyzed using the R language fmsb package (https://cran.r-

project.org/web/packages/fmsb/index.html). Tumor immune

microenvironment (TME) scores and tumor immune cell

infiltration were analyzed using the R language ESTIMATE and

CIBERSORT algorithms, respectively. Patient overall survival (OS)

was used as the key indicator of prognostic outcome, as it is the

universal gold-standard prognosis in clinical practice (38).

The pan-cancer analysis included samples from 20 cancer types

(n = 5769) with clinicopathological (age, gender, race, disease stage)

and survival information. This includes bladder urothelial

carcinoma (BLCA, n = 385), breast invasive carcinoma (BRCA, n
frontiersin.org
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= 973) , cholangiocarcinoma (CHOL, n = 36) , colon

adenocarcinoma (COAD, n = 269), esophageal carcinoma (ESCA,

n = 124), head and neck squamous cell carcinoma (HNSC, n = 419),

kidney chromophobe (KICH, n = 62), kidney renal clear cell

carcinoma (KIRC, n = 517), kidney renal papillary cell carcinoma

(KIRP, n = 245), liver hepatocellular carcinoma (LIHC, n = 334),

lung adenocarcinoma (LUAD, n = 440), lung squamous cell

carcinoma (LUSC, n = 382), mesothelioma (MESO, n = 84),

pancreatic adenocarcinoma (PAAD, n = 170), rectum

adenocarcinoma (READ, n = 78), skin cutaneous melanoma

(SKCM, n = 415), stomach adenocarcinoma (STAD, n = 291),

testicular germ cell tumors (TGCT, n = 78), thyroid carcinoma

(THCA, n = 413), and uveal melanoma (UVM, n = 54). Our

screening criteria required that all cancer patients in the database

must have all information on age, gender, race, and pathological

stage indicators for multi-factor analysis. Patients with incomplete

information or whose survival follow-up time less than 30 days were

excluded. The baseline patient characteristics of the 20 cancer types

included in our data analysis are shown in Supplementary Table S1.
2.2 Genetically predicted vitamin C levels

Based on previous population-based Mendelian randomization

analysis, the tumor genetically predicted vitamin C levels were

determined based on the expression of 11 relevant genes obtained

from genome-wide association study (28). For quantitative

characterization of the genetically predicted citamin C levels across

different cancers, we calculated the vitamin C index using the

following formula: VCI = 0.04 × expAKT1 + 0.063 ×

expBCAS3 + 0.058 × expCHPT1 + 0.036 × expFADS1 + 0.038 ×

expGSTA5 + 0.041 × expMAF + 0.039 × expRER1 + 0.039 ×

expRGS14 + 0.36 × expSLC23A1 + 0.102 × expSLC23A3 + 0.078 ×

expSNRPF. The VCI values of all samples were classified into high

and low subgroups, using the optimal cutoff value of 1.50 determined

by the maximally selected rank statistics for OS as described

previously (39).
2.3 Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (https://www.gsea-msigdb.org/

gsea/index.jsp) was conducted on high vs. low VCI subgroups to

determine the pathway and biological function differences (40). We

used the web tools c2 .cp .kegg .v7 .2 . symbols .gmt and

h.all.v7.2.symbols.gmt in Molecular Signatures Database

(MSigDB) for our analyses. Each GSEA process was repeated

1000 times, and gene sets with P < 0.05 and false discovery rate <

0.25 were considered significantly enriched.
2.4 Tumor xenograft and animal study

Animal study using mice bearing colon cancer xenografts was

approved by the Animal Care and Use Committee of sun Yat-sen

University Cancer Center. Female BALB/c mice (age 8-9 weeks, 12
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mice) were purchased from Beijing Victoria River Experimental

Animal Technology Co. LTD. (Beijing, China). All mice were fully

randomized before the experiment and were given a concentrated

and regular dose of sterilized feed and sterile drinking water. To test

the effect of vitamin C on tumor growth in mice, CT26 cancer cells

were injected subcutaneously into the right side of BALB/C mice.

After 7 days of tumor cell inoculation, vitamin C was injected

intraperitoneally once every 2 days (500mg/kg). By the end of the

experiments (3 weeks), the mice were sacrificed and tumor tissues

were isolated, weighted, and sliced for analysis of immune cell

infiltration using flow cytometry and immunohistochemistry.
2.5 Immunohistochemistry (IHC)

The immunohistochemical process is performed as follows.

Briefly, tumor tissue slices were first dried at 58°C for 1 hour and

then dewaxed by heating at 100 °C for 5 minutes in 10 mM sodium

citrate (pH6.0). In order to eliminate the activities of endogenous

peroxidase and alkaline phosphatase in the tissues, the tissue

sections were treated with 3% hydrogen peroxide for 15 min,

then incubated with the indicated specific antibody overnight,

followed by washing and incubation with secondary antibody for

1.5 h. DAB was used as the color substrate for revelation of the

antigen. The slices were countered stained with hematoxylin.
2.6 Flow cytometry analysis of immune
cell infiltration

The tumor tissues were digested into single cells using

collagenase III (200U/mL) and DNase (50U/mL). The immune

cells in tumor tissue suspension were stained with the respective

antibodies and analyzed using the Beckman Coulter flow cytometry

with CytExpert software (Miami, FL, USA).
2.7 Real-time RT-PCR

Total RNA was isolated from tumor tissues Trizol Reagent

(Invitrogen Life Technologies) according to manufacturer’s

instructions. Primer Script RT reagent Kit with gDNA Eraser

(Takara BIO INC, Kusatsu, Shiga,Japan) was used for reverse

transcription of RNA. Real-time quantitative PCR was performed

using the SYBR Premix Ex Taq RNAse H+ kit (Takara), and the

results were analyzed using the Bio-RAD detection system (Bio-

RAD, USA).
2.8 Statistical analysis

Continuous data are reported as medians with interquartile

ranges (IQR); categorical data are reported as frequencies with

percentages, and compared using the Mann–Whitney U test, chi-

square test, continuity corrected chi-square test, or Fisher’s exact

test where appropriate. The cancer patient OS was estimated using
frontiersin.org
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the Kaplan–Meier method and compared by the log-rank test. The

Cox proportional hazards model was performed to calculate the

adjusted hazard ratios (HRs) and the corresponding 95%

confidence intervals (CIs), adjusted with age, gender, race, and

disease stage. All statistical analyses were conducted using R version

4.0.2 (http://www.r-project.org). Statistical significance was set at

two‐sided P < 0.05. For laboratory experiments, all lab tests were

performed at least 3 times (3 independent replicates). The Student t

test was used to evaluate the statistical significance of the difference

between two groups. Statistical analysis was performed using

GraphPad Prism 8.0 (San Diego, CA, USA) and SPSS 20.0

(Chicago, IL, USA) software.
3 Results

3.1 Vitamin C index in cancer
and normal tissues

Using the TCGA datasets, we analyzed vitamin C index (VCI)

of 5769 patients from 20 cancer types based on the expression of 11

genes known to predict vitamin C levels. Table S1 summarizes

baseline patient characteristics: 2973 patients (52%) were male and

2796 (48%) were female. The median age was 61 years (IQR, 51–

71); the median OS was 2.0 years (IQR, 1.1–3.9). We first compared
Frontiers in Immunology 04
VCI values in the 20 types of cancer tissues and their respective

normal tissues, and found a significant difference between them in

the majority of cancer types, including BLCA, BRCA, COAD,

ESCA, HNSC, KICH, KIRC, KIRP, LIHC, READ, and STAD

(Figure 1A). For instance, analysis of the breast cancer datasets

revealed that VCI was significantly higher in breast cancer tissues

compared to the normal breast tissues. We then performed

experiments to validated this finding by analyzing the mRNA

expression of the 11 VCI-predicting genes in breast cancer tissues

in comparison with the adjacent normal breast tissues, and found

that the VCI value in breast cancer was more than 3-fold higher

than that in the normal tissues (Figure 1B). Interestingly,

immunohistochemical staining of the breast tissues showed that

the expressions of CD11b (a pan-macrophage marker) and CD206

(a M2-like macrophage marker) were both low while the expression

of Tryptase alpha/beta1, beta2 and gamma (all mast cell marker)

was high in the breast cancer tissues (Figure 1C). Since CD206 is

involved in antigen capture in humoral immune response and plays

a role in antigen transport, whereas CD11b is known to mediate

macrophage adhesion, migration, chemotaxis and accumulation,

the presence of CD11b+/CD206+ tumor-associated macrophages

could promote the activation of specific CD8+ T cells associated

with improved overall survival of patients (41). Thus, a reduction of

CD11b+ cells would suggest a polarization of immunosuppressive

macrophages in favor of tumor growth. These results suggest that
B

C

A

FIGURE 1

Genetically predicted vitamin C index in human tumor and normal tissues. (A) Comparison of vitamin C index (VCI) in 20 types of tumor issues
(indicated by red color) and their respective normal tissues (blue color). VCI values were calculated be the expression of the 11 vitamin C-predictive
genes as described under Methods. The names of cancer types are indicated below the horizonal line. (B) Vitamin C index in human breast cancer
tissue and the adjacent normal tissue (n=5 pairs). The mRNA levels of the expression of the 11 vitamin C-predictive genes were quantified by qRT-
PCR for calculation of VCI. (C) Representative images of breast cancer and normal tissues immune-stained with Tryptase alpha/beta1 (TPSAB1),
Tryptase beta2 (TPSB2), Tryptase gamma1 (TPSG1), CD11b, and CD206 antibodies as indicated. Date are means ± SD of three separate experiments;
*P < 0.05; **P < 0.01; ***P < 0.001.
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the level of vitamin C could affect the infiltration of certain immune

cells, and prompted us to analyze the relationship between VCI and

immunotypes in various cancer types (see Section 3.3).

Based on the distribution of VCI and the maximally selected

rank statistics, the patients were stratified into high-VCI and low-

VCI subgroups with a cutoff value of 1.5 (Figure S1). There were

3751 patients (65%) and 2018 patients (35%) in the low-VCI and

high-VCI groups, respectively. The patient clinicopathological

characteristics including age, gender, race, and disease stages were

compared between the two VCI subgroups (Table S2). We found a

significant difference between the two VCI subgroups in their

clinicopathological characteristics. Younger patients had higher

VCI than older patients, especially in BRCA, BLCA and HNSC

cancers; male patients had higher VCI than female patients,

especially in HNSC, KIRC and STAD cancers; patients in the

high-VCI also tended to have lower disease stage, whereas low-

VCI patients were more likely in the advanced stage.
3.2 Impact of vitamin C index on cancer
patient survival

As the values of VCI varied substantially in different cancer

types and among patients within a same cancer type (Figure 1A), we

tested whether VCI might have any impact on cancer patient

survival. Kaplan–Meier survival analysis was used to evaluate the

overall survival (OS) of high-VCI cancer patients in comparison

with low-VCI patients. Overall, among all 5769 patients of 20

cancer types, patients with high-VCI exhibited significantly better

OS than those with low-VCI (Figure 2A, P < 0.01). This observation

prompted us to further analyze the impact of VCI on OS within a

particular cancer type. We found that the high-VCI group had

significantly better survival than the low-VCI group in breast cancer

(Figure 2B, P = 0.03), kidney renal papillary cell carcinoma

(Figure 2C, P = 0.02), and head and neck squamous cell

carcinoma (Figure 2D, P = 0.03). There was marginal significance

for lung squamous cell carcinoma (Figure S2A, P = 0.08). The VCI

did not show significant impact on patient survival in other cancer

types (Figures S2B–L). Four cancer types (KICH, MESO, THCA,

UVM) were not included in this comparison analysis since KICH

patients were all in the low-VCI group whereas MESO, THCA and

UVM patients were all in the high-VCI group. Testicular germ cell

tumor was not included in this survival comparison analysis

because of limited patient number with insufficient OS

endpoint events.

We then tested whether the vitamin C index could

independently influence cancer prognosis, using multivariate Cox

analysis that incorporated clinicopathological covariates (age,

gender, race, disease stage) for adjustment (Figure 2E, Table S3).

The multivariable modeling results were generally consistent with

the findings from Kaplan‐Meier univariate analysis. The vitamin C

index independently influenced the overall survival when all 5769

patients were included in the analysis (adjusted hazard ratio [AHR]
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= 0.87; 95% CI = 0.78–0.98; P = 0.02). Among the specific cancer

types, breast cancer (AHR = 0.14; 95% CI = 0.05–0.40; P < 0.01),

head and neck squamous cell carcinoma (AHR = 0.20; 95% CI =

0.07–0.59; P < 0.01), kidney renal papillary cell carcinoma (AHR =

0.66; 95% CI = 0.48–0.92; P = 0.01), and rectum adenocarcinoma

(AHR = 0.01; 95% CI = 0.001–0.38; P = 0.02) exhibited statistical

significance (Figure 2E).
3.3 Relationship between vitamin C index
and immunological features in cancer

Based on the observation that normal and cancer tissues with

different levels of VCI exhibited different infiltration of immune cells

(Figure 1C), we further to analyzed the potential correlation between

vitamin C index and tumor immunological features such as

stromal scores and immune cell infiltrations, using the web

tool ESTIMATE that calculates the scores of stromal cells

(StromalScore) and the infiltration of immune cells (ImmuneScore)

in the tumor tissues based on gene expression data (https://

bioinformatics.mdanderson.org/estimate/). We found that VCI was

significantly correlated with the ImmuneScore in multiple cancer

types including BLCA (P < 0.001), LIHC (P < 0.001), LUAD (P <

0.05), SKCM (P < 0.001), STAD (P < 0.05), and UVM (P < 0.001)

(Figure 3, Figure S3). VCI was also correlated significantly with the

StromalScore in BLCA (P < 0.001), HNSC (P < 0.001), KIRC (P <

0.001), LIHC (P < 0.001), LUSC (P < 0.001), PAAD (P < 0.05), TGCT

(P < 0.001), and UVM (P < 0.001) (Figure 3, Figure S3). Based on the

above results, we used immunohistochemical method to detect the

clinical breast cancer tissue and normal tissue fibroblasts markers

VIMENTIN |, alpha SMA and endothelial cell marker CD31

expression. Results show that compared with normal tissue, the

expression of VIMENTIN, a-SMA and CD31 in breast cancer

tissues were significantly increased (Figure S3F).

The association between the VCI and the infiltration of 22 types of

specific immune cells was also analyzed using the CIBERSORT web

tool (https://rdrr.io/github/IOBR/IOBR/man/CIBERSORT.html). The

following significant associations, with P < 0.001, were found: BLCA

was associated with infiltration of neutrophils and regulatory T cells

(Tregs); BRCAwas associated with infiltration of M0macrophages and

resting mast cells; COAD was associated with infiltration of memory

activated CD4 T cells; HNSC was associated with infiltration of M0

macrophages, neutrophils, plasma cells, memory resting CD4 T cells,

CD8 T cells, and follicular helper T cells; KIRC was associated with

infiltration of resting natural killer cells; KIRP was associated with

infiltration of activated dendritic cells and restingmast cells; LUADwas

associated with infiltration of resting dendritic cells, M1 macrophages,

and follicular helper T cells; LUSC was associated with infiltration of

resting dendritic cells, M2 macrophages, neutrophils, activated NK

cells, resting CD4 memory T cells, follicular helper T cells; SKCM was

associated with infiltration of M2 macrophages, and activated CD4

memory T cells; STAD was associated with infiltration of plasma cells,

and follicular helper T cells; TGCT (naïve B cells, M2 macrophages,
frontiersin.org
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activated CD4 memory T cells), THCA was associated with infiltration

of memory B cells, activated dendritic cells, monocytes, resting CD4

memory T cells, CD8 T cells, and gamma delta T cells; UVM was

associated with infiltration of M1 macrophages, monocytes, and

follicular helper T cells (Figure 4, Figure S4). Taken together, VCI

seemed to play complex roles in affecting stromal microenvironment

and immune cell infiltration in a tissue-dependent manner.
Frontiers in Immunology 06
3.4 Impact of vitamin C on tumor mutation
burden, microsatellite instability, and
tumor growth in vivo

We also analyzed the potential correlation between VCI and

tumor mutation burden (TMB) or microsatellite instability (MSI).

As shown in Figures 5A, B, VCI exhibited a highly significant
B

C D

E

A

FIGURE 2

Relationship between vitamin C index and overall survival of cancer patients. (A) Kaplan–Meier survival analysis in all 5769 patients of 20 cancer
types with high or low vitamin C index (VCI), and in specific cancer types including breast cancer (B), head and neck squamous cell carcinoma (C),
and kidney renal papillary cell carcinoma (D), using datasets from TCGA database. (E) Cox proportional hazards analysis of VCI across multiple
cancer types, using variates including age (continuous variable), gender (male vs. female), race (white vs. Asian vs. other), and disease stage (stage III–
IV vs. stage I–II) as clinicopathological variates for adjustment in the multivariable model analysis.
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negative association with TMB and MSI in colon cancer (both, P <

0.001), and a significant positive association with TMB (P < 0.05)

and MSI (P < 0.001) in LUSC. There was a significant negative

association between VCI and TMB in BRCA (P < 0.05) and THCA

(P < 0.001), and a significant positive association in KIRC (P <

0.001) and KIRP (P < 0.01); there was also a significant negative

association between VCI andMSI in PAAD (P < 0.01) and STAD (P

< 0.05), and a significant positive association in HNSC (P < 0.01),

LUAD (P < 0.01), SKCM (P < 0.01), and THCA (P < 0.001).

Since VCI exhibited strong correlation with both TMB

(Figure 5A) and MSI (Figure 5B) and promoted the activation of

T memory cells in colon cancer (Figure 4D), we conducted animal

experiments to test the effect of vitamin C on colon cancer growth

and its impact on immune cells in mouse model. Immune-

competent Balb/C mice were inoculated subcutaneously with
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CT26 colon cancer cells, and treated vitamin C via intraperitoneal

injections. The results showed that vitamin C was able to

significantly inhibit the growth of CT26 tumor in vivo

(Figures 5C–E). Flow cytometry analysis showed an increase in

the proportion of CD8+ T cells in the tumor tissues from mice

treated with vitamin C (Figures 5F, G). And vitamin C induced a

major increase in IFN-g-producing CD4+ cells in the tumor tissues

(Figures 5H, I). In addition, plasma vitamin C concentration was

significantly higher in the treatment group than in the control

group (Figure 5J). Moreover, mRNA detection results of tumor

tissues showed that vitamin C treatment significantly decreased the

expression of VCAM-1, Vimentin, CD31 and CD44 (Figure 5K).

These data together suggest that vitamin C was able to promote

cancer immunity and might have promising therapeutic activity for

treatment of colon cancer, which remains as a major challenge due
B C

D E F

G H I

A

FIGURE 3

Correlation between Vitamin C index and the tumor immune microenvironment (TME). The correlation between VCI and TME were evaluated by
calculating stromal scores and immune scores based on gene expression characteristics of stromal and immune cells using the ESTIMATE prediction
software. There was a significant correlation between VCI and stromal score when all 20 cancer types were included in the analysis (A). For specific
cancer types, significant correlation was observed in UVM (B), LUSC (C), HNSC (D), and LIHC (E). The correlation between VCI and immune scores in
BLCA (F), LIHC (G), SKCM (H), and UVM (I) was also significant.
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to development of resistance to current therapeutic modalities

(42, 43).

3.5 Gene set enrichment analysis based on
vitamin C index

To explore the potential molecular pathways by which vitamin

C affects cancer growth and immune response, we conducted GSEA

to determine the potential biological functions of the beneficial

effect of gene set enrichment analysis (GSEA) in the high-VCI and

low-VCI cancers. BRCA, HNSC, and KIRP were selected as

representative cancers for this analysis, since VCI had significant

impact on the patient survival and immunological features in these
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cancer types. Interestingly, the results of GSEA showed that VCI

affected DNA damage repair, cell cycle-related pathway (E2F), and

reactive oxygen species (ROS) pathway (Figure 6A). This seemed

consistent with the findings that VCI was associated with tumor

mutation burden and microsatellite instability (Figures 5A, B).

Additional GSEA analyses showed that VCI was also associated

with lipid and bile acid metabolism, and also with estrogen response

(Supplementary Figure S5). These data together suggest that

vitamin C could have complex impact on multiple pathways with

a major effect on ROS and DNA stability, which could in turn

regulate immune response since DNA fragments could activate the

cGAS-STING pathway. Figure 6B illustrates the main pathways and

biological processes that could be affected by VCI.
B

C D

E

A

FIGURE 4

Association between vitamin C index and infiltration of immune cells in various cancers. Significant correlation between VCI and infiltration of
immune cells (p < 0.001) was observed in BRCA (A), KIRP (B), HNSC (C), COAD (D), and LUSC (E). The specific types of infiltrated immune cells are
indicated at the bottom of each panel.
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4 Discussion

In this pan-cancer study, we analyzed the expression of vitamin

C-related genes from 5769 cancer patient samples in the TCGA

database, and found a significant correlation between the genetically

predicted Vitamin C levels and patient overall survival.

Comprehensive analyses of immunological features showed a
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potential association between high-VCI and favorable response to

immunotherapy. To the best of our knowledge, this was the first

study that explored the potential prognostic value of VCI in

multiple cancer types and investigated the vitamin effect on

immunological features in various cancers. Laboratory study was

also performed to validate some of the key findings form analyses of

public datasets.
B

C D E

F G

H I

J

A

K

FIGURE 5

Impact of vitamin C on tumor mutation burden, microsatellite instability, and tumor growth in vivo. The relationship between the vitamin C index
and tumor mutation burden (A), and microsatellite instability (B) in various tumor types as indicated. (C–E) Balb/c mice inoculated with CT26 colon
cancer cells (5 × 10^5) were treated with vitamin C (500mg/kg, i.p.) once every 2 days, and tumors were isolated, photographed, and weighted at
the end of the experiment. The tumor volumes were measured every two days and tumor growth curves were shown, (mean ± SEM, n =6 per
group). (F, G) Flow cytometry analysis of CD8+ T cells in CT26 tumor tissues. (J) Plasma concentrations of vitamin C in treatment and control
groups. (H) Representative flow cytometric analysis of IFNg+ CD4+ T cells in CT26 tumor tissues; (I) Quantitative data of IFNg+ CD4+ T cells in CT26
tumor tissues. (K) The mRNA levels of VCAM-1, Vimentin, CD31 and CD44 in mouse tumor tissues were quantified by qRT-PCR *, P < 0.05; **,
P < 0.01; ***, P < 0.001.
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Several Mendelian randomization studies have previously

explored the relationship between genetically predicted vitamin C

levels and the risk of human diseases including diabetes,

cardiovascular disease and cancer (27–29). A meta-analysis

involving 45,758 patients demonstrated that each 50 mmol/L

increase of vitamin C could lead to a 26% decrease in cancer risk

(44). Observational studies have revealed that high-dose vitamin C

exerts favorable antitumor effects in advanced cancers, even in

chemotherapy-refractory patients (20). Since the level of vitamin C

predicted by gene expression was significantly higher in breast
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cancer than in normal tissues (Figure 1A), we thus measured the

expression of vitamin C-related genes in clinical samples of breast

cancer patients compared to normal breast tissues, and the results

were consistent with that found in the public database. In addition,

we used the GCSA database, which contains TCGA cancer multi-

omics data, to examine the copy number alterations/variations

(CNV) of the Vitamin C gene family in pan-cancer. Additionally,

the CNV percentage and the contribution of CNV to Vitamin C

gene family expression were examined in each cancer. The

heterozygous/homozygous CNV (deletion/amplification) status of
B

A

FIGURE 6

Gene expression and pathway analyses in cancer tissues with high or low vitamin C index. (A) Gene set enrichment analysis in head and neck cancer
tissues with high or low vitamin C index; (B) Schematic illustration of the changes in key events and pathways in cancer with high VCI or low VCI.
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the Vitamin C gene family exhibited a relatively comparable

alteration trend, despite the Vitamin C gene showing diverse

forms and amounts of CNV in different malignancies (Figure S6).

We also found that high VCI was associated with better survival

outcome in patients with BRCA, HNSC, and KIRP. Consistently,

VCI seemed predictive of patient survival after adjustment for

patient age and disease stage using multivariable models,

indicating that vitamin C might independently influence

prognosis through other biological functions rather than affecting

tumor cell proliferation. One possibility is that vitamin C might

promote immune functions and enhance immune cell infiltration in

the tumor microenvironment, and thus exert its anticancer activity

independent of direct effect on cancer cell. Interestingly, our

analyses suggest that vitamin C was strongly correlated with both

TMB (Figure 5A) and MSI (Figure 5B) in colorectal cancer. To

experimentally test the effect of vitamin C on tumor growth and

immune response in vivo, we selected a cancer type whose vitamin

C level was relatively low so that the supplement of vitamin C would

have a better chance to increase its level in the tumor tissue and thus

modulate the immune cell functions to impact tumor growth. Based

on the results of our analysis that colorectal cancer (COAD)

exhibited a significantly lower vitamin C index (Figure 1A)

correlated with alterations in T memory cells (Figure 4D), TMB

(Figure 5A), and MSI (Figure 5B), we thus selected colon cancer

model (CT26) for testing the therapeutic effect of vitamin C. The

results indeed showed that the growth of CT26 xenografts was

significantly inhibited by vitamin C treatment (Figure 5C), with

improved infiltration of immune cells (Figures 5E–H), suggesting

that vitamin C could have a potential in the treatment of colorectal

cancer with low intrinsic vitamin C level.

The ability of vitamin C to promote immune functions has been

known for a long time, and the underlying mechanisms are rather

complex. Our study showed that VCI was significantly correlated

with tumor mutation burden and microsatellite instability, and the

gene set enrichment analysis revealed that VCI was associated ROS,

DNA repair and cell cycle alterations, suggesting a possibility that

DNA-damage response, which is known to activate the cGAS-

STING, might be involved in the stimulation of immune response.

As such, it would be interesting to consider the possibility to

combine vitamin C with immunotherapy to improve the

treatment outcome for cancer patients. Immune checkpoint

inhibitors such as PD-l antibodies are important therapeutic

agents that show promising anticancer activity against certain

cancer. However, their efficacy differs significantly in different

cancers and some cancer types such as pancreatic cancer and

colon cancer exhibit low response rates to PD-1 antibody

treatment. Thus, it would be worth of considering combination of

vitamin C and immune checkpoint inhibitors for treatment of these

cancer types. Our study showed that vitamin C index is positively

correlated with the immune scores in lung adenocarcinoma,

stomach adenocarcinoma, skin cutaneous melanoma, and uveal

melanoma, and seemed to promote the infiltration of M1

macrophages, follicular helper T cells, activated NK cells and CD8

+T cells in the tumor tissues. Thus, combination of vitamin C with

immunotherapy could be tested in these cancer types. Interestingly,

we found that vitamin C index was negatively correlated with the
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immune score in bladder urothelial carcinoma, which seemed to be

associated with a reduction of neutrophils. Thus, the specific impact

of vitamin C on immune response might be rather complex and

likely cancer type-dependent. Obviously, future study in the

laboratory and clinical settings are required in this area.

Beside its effect on immune functions, vitamin C can affect

multiple biological processes, including inhibition of glucose

transportation and ATP production (45), inducing DNA damage

and promoting pro-oxidant effects (46). Our GSEA results are

consistent with these multifaceted effects. The impact of vitamin

C were enriched in gene sets associated with nutrient metabolism,

oxygen sensing, peroxisome, and DNA repair pathways. Further

studies are needed to evaluate the relative contributions of these

pathways to the anticancer activity of vitamin C. It is possible that

this might vary in different cancers due to their different genetic

makeups and metabolic wirings. The definite correlation between

Vitamin C and prognosis has facilitated pilot clinical trials for

evaluating its beneficial effect in improving cancer survival

outcomes and responses. Other study demonstrated that Vitamin

C combined with hyperthermia improved survival in advanced,

refractory non-small cell lung cancer (47). Nevertheless, the positive

effect of vitamin C in promoting anticancer immunity and its

negative impact against cancer cells via its pro-oxidant and DNA-

damaging effect suggest that this compound may be useful as an

anticancer agent. Considering vitamin C is a safe compound for use

in human, its use as the drug in combination with immune

checkpoint inhibitors and other anticancer agents for clinical

treatment of cancer is highly feasible. In fact, a meta-analysis

involving 23 single-arm and randomized phase I/II trials revealed

the general safety and potential therapeutic effects of vitamin C (48).

Based on the results of our study, it seems that many cancer types,

especially BRCA, HNSC and KIRP may be appropriate for testing

the therapeutic benefits of vitamin C, either alone or in combination

with other drugs.
5 Conclusions

In summary, this study characterized the effect of vitamin C in

20 tumor types through pan-cancer analyses of public datasets and

laboratory study using clinical samples and mice bearing tumor

xenografts. Our results showed that genetically predicted vitamin C

levels (or vitamin C index) are significantly corrected with the

overall survival of patients in multiple cancer types, and exerted

major influence on the tumor microenvironment, immune cells and

stromal cells. Vitamin C exhibited significant in vivo therapeutic

activity against colon cancer in mice, associated with an increase in

immune cell infiltration in tumor tissues. Our findings suggest a

strong feasibility of using vitamin C in combination with

immunotherapy to improve the treatment outcome of cancer

patients. However, the limitations of this study, which largely

based on analyses of gene expression from public datasets for

calculation of VCI, stromal and immune scores, should be noted.

Further laboratory studies and clinical trials are needed to

comprehensively evaluate the therapeutic activity of vitamin C,
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alone or in combination with immune checkpoint inhibitors or

other drugs, to identify the most effective treatment approach.
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