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Intestinal fungi and antifungal
secretory immunoglobulin
A in Crohn’s disease

Meng Sun †, Jingyi Ju †, Hongzhen Xu and Yufang Wang*

Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University,
Chengdu, China
The human gastrointestinal tract harbors trillions of commensal microorganisms.

Emerging evidence points to a possible link between intestinal fungal dysbiosis

and antifungal mucosal immunity in inflammatory bowel disease, especially in

Crohn’s disease (CD). As a protective factor for the gut mucosa, secretory

immunoglobulin A (SIgA) prevents bacteria from invading the intestinal

epithelium and maintains a healthy microbiota community. In recent years, the

roles of antifungal SIgA antibodies in mucosal immunity, including the regulation

of intestinal immunity binding to hyphae-associated virulence factors, are

becoming increasingly recognized. Here we review the current knowledge on

intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals

and in patients with CD, discuss the factors governing antifungal SIgA responses

in the intestinal mucosa in the latter group, and highlight potential antifungal

vaccines targeting SIgA to prevent CD.
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Abbreviations: CD, Crohn’s disease; SIgA, secretory immunoglobulin A; IBD, inflammatory bowel disease;

qPCR, quantitative polymerase chain reaction; GIT, gastrointestinal tract; ITS, internal transcribed spacer;

IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; CARD9, caspase recruitment domain-containing

protein 9; SNP, single-nucleotide polymorphism; PRRs, pattern-recognition receptors; CLRs, C-type lectin

receptors; Syk, spleen tyrosine kinase; BCL10, B cell leukemia-lymphoma 10; MALT1, mucosa-associated

lymphoid tissue lymphoma translocation protein 1; NF-kB, nuclear factor kappa B; DSS, dextran sulfate

sodium; GC, germinal center; CX3CR1, CX3C motif chemokine receptor 1; MNPs, mononuclear phagocytes;

ASCA, anti-Saccharomyces cerevisiae antibodies; dIgA, dimeric IgA; pIgR, polymeric immunoglobulin

receptor; PCs, plasma cells; GALT, gut‐associated lymphoid tissue; PPs, Peyer’s patches; ILFs, isolated

lymphoid follicles; MLNs, mesenteric lymph nodes; TD, T cell-dependent; TI, T cell-independent; SHM,

somatic hypermutation; LP, lamina propria; TNF, tumor necrosis factor; BAFF, B-cell activating factor of the

TNF family; APRIL, a proliferation‐inducing ligand; CSR, class switch recombination; DCs, dendritic cells;

AID, activation-induced cytidine deaminase; Als3, agglutinin-like protein 3 precursor; Sap, secreted aspartyl

proteinases; Ece1-III, Ece1-derived cytolytic toxin candidalysin; cDC2, CD11c+CD11b+CD103+

conventional DCs.
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1 Introduction

Inflammatory bowel disease (IBD), including Crohn’s disease

(CD) and ulcerative colitis, is a chronic, relapsing and incurable

inflammatory disease of the intestine, with growing global

prevalence in the 21st century (1, 2). IBD pathogenesis involves

several factors, including genetic susceptibility, environmental

exposure, gut microbiota alterations, and both innate and

adaptive immune responses (3, 4). Recent studies have revealed

intestinal fungi as a key factor contributing to intestinal mucosal

immunity and IBD development, which has raised questions

regarding the specificity, functions, and mechanisms of induction

of antifungal mucosal antibody responses in the gut (4–7).

In patients with IBD, structural and functional changes in the

gut microbiota, including bacteria, viruses, fungi, and protozoa,

disrupt the gut mucosal homeostasis, resulting in persistent and

excessive immune system activation (5, 7). Many studies have

focused on the role of bacteria in IBD, however, ample evidence

from gut microbiota studies and studies on the immune responses

to intestinal fungi suggests a potential link between fungi and IBD

(7). Although fungi account for only approximately 0.1% of the

total microorganisms in the gut, they have recently attracted

attention for their role in IBD pathogenesis (6, 8, 9). SIgA is the

most abundant antibody on the intestinal mucosal surfaces in

humans and many other mammals, with approximately 3 g per

day secreted into the human gut lumen (10–13). Acting as the first

line of defense against pathogens, SIgA defends the intestinal

epithelium by coating a substantial fraction of gut bacteria and

maintaining homeostasis of the commensal microbiota (12, 14–18).

Compared to healthy controls, mice and humans with reduced IgA

secretion levels show an altered gut microbiota composition and

increased susceptibility to IBD and other inflammatory diseases (15,

19, 20). The percentage of IgA-coated bacteria is dramatically

increased in the feces of patients with IBD, particularly in

patients with CD aged 17–40 years (21–23). In addition, in

patients with CD, IgA-bound fecal bacterial frequencies are

positively correlated with disease activity (23).

Notably, interactions between SIgA and gut bacteria may play a

critical role in IBD severity (12, 23–25). However, the potential

involvement of antifungal SIgA responses in CD remains largely

unknown. In this review, we focus our discussion on recent

advances in the understanding of intestinal fungal homeostasis

and antifungal mucosal immunity in healthy and diseased

(inflammatory) states. Further, we explore the roles and

mechanisms of antifungal SIgA responses in the intestinal mucosa

in patients with CD.
2 Intestinal fungal alterations in
patients with CD

A study by Iliev et al. revealed that the presence of fungi, as

measured by quantitative (q)PCR of fungal ribosomal DNA in the

mucosa, increased from the ileum to the colon, with the highest

frequencies in the distal colon (26). In the gastrointestinal tract
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(GIT) of humans, there are three major fungal phyla: Ascomycota,

Basidiomycota, and Chytridiomycota; some research studies

indicate that the colonic mucosa-associated fungal microbiota is

dominated by Basidiomycota and Ascomycota (27–31), whereas

other have indicated that Ascomycota are significantly more

common than Basidiomycota in the human intestinal fungal

microbial community (29, 30, 32–34). Using internal transcribed

spacer (ITS) 2 sequencing, one study reported Saccharomyces

cerevisiae and Candida albicans as the most commonly detected

fungal species in stool samples of healthy subjects (35).

Numerous studies have revealed alterations in the fungal

microbiota in patients with IBD. However, consensus is lacking

because of the high variability of microbiomes among individuals

from different areas and with different dietary preferences, and the

use of different sample types and methodologies among studies

(Table 1). Researchers have observed increased fungal diversity in

colonic biopsy tissue samples or fecal samples from patients with

CD in comparison to controls (36, 37). However, some recent

studies of mucosa-associated microbes or stool samples reported

little or no change in fungal diversity (alpha diversity) in patients

with CD, but a significant increase in the global fungus load in both

inflamed and non-inflamed mucosa during CD flare (29, 30).

Moreover, decreased intestinal fungal diversity in stool samples

from pediatric or adult patients with IBD compared to that in

healthy subjects has also been reported (38, 39) (Table 1).

Some studies have revealed an increased abundance of

Basidiomycota and a decreased abundance of Ascomycota,

resulting in a higher Basidiomycota-to-Ascomycota ratio, in

patients with CD compared to healthy controls (32, 38, 42, 43).

However, other studies have indicated that the Basidiomycota-to-

Ascomycota ratio is decreased in patients with CD (29, 30, 37, 40).

Moreover, patients with CD have a decreased proportion of S.

cerevisiae and an increased proportion of C. albicans in their gut

compared to healthy subjects (30, 38). C. albicans can increase the

production of pro-inflammatory cytokines, such as interferon

(IFN)-g, interleukin (IL)-17, and tumor necrosis factor (TNF)-a,
and disrupt the gut microbiota composition to exacerbate gut

inflammation (44–46). Besides C. albicans, Candida tropicalis and

Candida glabrata are also significantly more abundant in patients

with CD (29, 33). Recent studies have uncovered evidence for a

strong association of Malassezia restricta and Malassezia globosa

with CD, and M. restricta exacerbated colitis in mice in a CARD9-

dependent manner (29, 32). Debaryomyces, particularly

Debaryomyces hansenii, has been found to be enriched in

inflamed intestinal tissues of patients with CD and to prevent

colonic healing in the absence of altered Schaedler flora bacteria

via the myeloid cell–IFN-g–CCL5 axis (41) (Table 1).

With the rise of high-throughput sequencing, recent years have

seen a steady increase in studies on the human intestinal fungal

microbiota. Nevertheless, it is difficult to pinpoint the intestinal

fungal alterations in patients with CD versus healthy people without

differentiating the living areas and dietary preferences of study

participants, the specific tissues sampled and the sampling methods

used, and the methodology used to analyze the gut mycobiome.

Clearly, there remain many challenges to characterizing the

mycobiome. However, study findings have clearly revealed a
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strong association between the gut fungal microbiota and mucosal

inflammation or disease activity of CD, which has drawn attention

to the gut fungal microbiota composition and its possible roles

in CD.
3 Genetic and serologic evidence for
intestinal antifungal immunity in CD

Several genome-wide association studies have identified >200

loci that contribute to the risk of IBD development (47–49). These

studies revealed a common polymorphism in the gene encoding

caspase recruitment domain-containing protein 9 (CARD9), as one

of the strongest genetic risk factors linked to CD (4, 50, 51). The

CARD9 gene is located on chromosome 9q34.3 and encodes a

protein with 536 amino acids, containing an N-terminal CARD
Frontiers in Immunology 03
domain and a C-terminal coiled-coil domain (52–54). Expressed by

myeloid cells, CARD9 is a signaling adapter protein that plays a key

role in antifungal innate immunity in mice and humans, suggesting

the potential links between IBD and host antifungal immunity.

As many researches reported, some CARD9 variants are closely

associated with increased risk for IBD, while others are shown to be

protective for IBD (55–57). The single-nucleotide polymorphism

(SNP) rs4077515 in CARD9, substituting asparagine for serine at

position 12 (S12N) in the protein CARD9 (CARD9S12N), is

associated with increased expression of CARD9 mRNA and the

development of CD (58, 59). A recent study reported that M.

restricta, one of the intestinal mucosa-associated fungi

significantly more abundant in patients with CD than in healthy

controls, was particularly present in patients with CD carrying the

CARD9S12N risk allele, and exacerbated colitis via CARD9 in a

dextran sulfate sodium (DSS)-induced colitis mouse model (32).
TABLE 1 Intestinal fungal alterations reported in patients with CD.

Fungi (phylum
and genus
levels)

Reported alterations Microbiome
samples

Methods References

Fungal diversity

Increased in patients with CD Colonic biopsy tissue
samples, stool samples

Metagenomic 18S rDNA-based denaturing gradient gel
electrophoresis, internal transcribed spacer (ITS) 1
sequencing

(36, 37)

No significant difference (alpha
diversity)

Colonic mucosa, stool
samples

ITS2 sequencing and qPCR (29, 30)

Reduced in pediatric or adult
patients with IBD

Stool samples Deep sequencing of specific rRNA gene segments, ITS2
sequencing

(38, 39)

Basidiomycota/
Ascomycota

Increased proportion in patients
with IBD

Stool samples,
mucosal lavage
samples

ITS2 and ITS1 Sequencing (32, 38)

Decreased proportion in CD
patients

Colonic mucosa, stool
samples

ITS1 and ITS2 sequencing (29, 30, 37,
40)

Saccharomyces

Increased proportion in CD
patients

Colonic mucosa ITS2 sequencing (29)

Decreased proportion in CD
patients

Stool samples ITS sequencing (30)

Saccharomyces
cerevisiae

Decreased proportion in active IBD
patients

Stool samples ITS2 sequencing (38)

Candida
Increased proportion in CD
patients

Stool samples ITS1 and ITS2 sequencing (30, 37)

Candida albicans
Increased proportion in IBD
patients

Stool samples ITS2 sequencing (38)

Candida glabrata
Increased proportion in CD
patients

Colonic mucosa ITS2 sequencing (29)

Candida tropicalis
Increased proportion in CD
patients

Stool samples ITS1 sequencing (33)

Malassezia
Increased proportion in CD
patients

Mucosal lavage
samples

High-throughput ITS1 sequencing (32)

Malassezia globosa
Increased proportion in CD
patients

Colonic mucosa ITS2 sequencing (29)

Debaryomyces
Increased proportion in inflamed
intestinal tissue of patients with
CD

Ileal biopsy tissue ITS sequencing (41)
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Conversely, CARD9 S12N D11 (with deletion of exon 11) fails to

recruit TRIM62 to mediate CARD9 ubiquitination due to the lack

of a functional C-terminal domain (57, 60). As a protective variant,

it leads to negative activities of CARD9-dependent cytokine

signaling including decreased TNF-a and IL-6 production (60).

As one of the major classes of the pattern-recognition receptors

(PRRs), C-type lectin receptors (CLRs) can recognize the fungal

pathogens and activate the subsequent antifungal immune

responses in the gut (61). CLRs including Dectin-1, Dectin-2,

Dectin-3 and Mincle can respectively recognize the fungal cell

wall components such as b-glucan, a-mannose, glucosyl and

mannosyl glycolipids (26, 50, 62–64). Upon recognizing the fungi,

C-type lectin receptors recruit spleen tyrosine kinase (Syk),

inducing CARD9 to couple to B cell leukemia-lymphoma 10

(BCL10) and mucosa-associated lymphoid tissue lymphoma

translocation protein 1 (MALT1), ultimately leading to the

activation of downstream nuclear factor kappa B (NF-kB) and
Frontiers in Immunology 04
production of cytokines through the CARD9-BCL10-MALT1

complex (65–68) (Figure 1).

Furthermore, Doron et al. presented evidence that C. albicans

can induce the growth of germinal center (GC)-dependent IgG+ B

cells by activating the Syk-CARD9 pathway in fractalkine/CX3C

motif chemokine receptor 1 (CX3CR1)+ mononuclear phagocytes

(MNPs), thus inducing the development of IgG antibodies to

prevent systemic fungal infection (73). Moreover, intestinal fungi

such as Candida may be recognized and phagocytosed by gut-

resident CX3CR1+ MNPs in vivo. In patients with CD, there is a

high correlation between a loss-of-function mutation (T280M) in

the CX3CR1 gene and a reduction in antifungal IgG responses and

anti-S. cerevisiae antibodies (ASCA), demonstrating a connection

between CX3CR1+ MNPs and antifungal antibodies (74, 75).

Several studies have found that high serum titers of ASCA IgG

and IgA, which are directed against yeast cell wall-associated

mannan, are a clinical biomarker for CD (76–79). With
FIGURE 1

Classical innate antifungal signaling pathway through CLRs-Syk-CARD9. Expressed on myeloid cells, C-type lectin receptors (CLRs) including Dectin-
1, Dectin-2 and Mincle can respectively recognize the fungal cell wall components such as b-1,3-glucan, a-1,2-mannose, glucosyl and mannosyl
glycolipids, and induce intracellular antifungal signaling (26, 50, 62–64). The immunoreceptor tyrosine-based activating motif (ITAM)-coupled and
the hemITAM-bearing CLRs, often considered as “activating” CLRs. Dectin-1, one of the hemITAM-bearing CLRs, can recruit spleen tyrosine kinase
(Syk) directly, while the examples of ITAM-coupled CLRs, Dectin-2 and Mincle, indirectly activate Syk via the fragment crystallizable (Fc) receptor g
(FcRg) adaptor chain (69). Syk activates phospholipase C (PLCg), and then enhances the function of protein-kinase C (PKCd), inducing the assembly
of a CARD9–BCL10–MALT1 (caspase recruitment domain-containing protein 9–B cell leukemia-lymphoma 10–mucosa-associated lymphoid tissue
lymphoma translocation protein 1) complex (65–68). The CARD9–BCL10–MALT1 complex serving as scaffolds mediates the activation of the
canonical nuclear factor-kB (NF-kB) pathway (70). This mechanism activates the inhibitor of kappa B (IkB) kinase (IKK) complex, which
phosphorylates NF-kB inhibitor-a (IkBa), leading to its degradation and the nuclear translocation of p65-p50 complexes (71, 72). Subsequently, the
release of NF-kB dimers to the nucleus can activate gene transcription, and finally stimulate the production of related inflammatory cytokines.
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mannoproteins expressed by cell wall, C. albicans was shown to

express ASCA epitopes and the abundance of C. tropicalis was also

positively correlated with the level of ASCA (4, 33, 80). Since the

genus Candida have been described as immunogens for ASCA as

the CD biomarkers, it may be responsible for an abnormal immune

response in CD.

In summary, ample genetic and serologic evidence suggests a

possible association between intestinal fungi, antifungal antibodies,

and CD.
4 Structure and generation of SIgA
in the intestines

4.1 Structure of SIgA

Different heavy and light chains assemble to create different

immunoglobulins, which include five isotypes: IgG, IgA, IgM, IgE,

and IgD. IgA is the most abundant immunoglobulin in humans,

with a production rate of 66 mg/kg/day, and the most common

antibody isotype at mucosal surfaces (81, 82). According to the

amino acid composition in the hinge region and the number and

locations of disulfide bonds in the heavy chain, IgA in humans is

classified into two subclasses: IgA1 and IgA2. Serum IgA is

comprised of 90% IgA1 and 10% IgA2, whereas IgA2

predominates in the colon (17, 83–87). The content ratio of IgA1

to IgA2 varies in different parts of the intestines, from 3:1 in the

proximal small intestine to 1:3 in the colon (83, 85–88). With a

shorter hinge region than IgA1, IgA2 seems more advantageous in

the microbe-rich environment of the colon owing to its higher

stability (86, 87, 89, 90). A recent study showed that the IgA1+

microbiota fraction in patients with CD was notably enriched in

beneficial commensals and that local IgA2 selection of the

microbiota correlated with disease activity in CD, suggesting that

IgA1 has a pathogenic role in the lumen in CD, whereas IgA2 has a

pathogenic role in tissues (91).

Further, IgA is expressed in different forms in different parts of

the human body. Serum IgA is mostly present in the monomeric

form and produced by plasma cells in the bone marrow, spleen, and

lymph nodes (16, 17). In contrast, in mucosal secretions, SIgA

mostly exists in a dimeric form, in which two SIgA copies are linked

by a joining chain (83–85, 92). Besides stabilizing the dimeric IgA

(dIgA) tail-to-tail, the joining chain also serves as a ligand for the

polymeric immunoglobulin receptor (pIgR), which is an IgA and

IgM transporter expressed on the basolateral surface of intestinal

epithelial cells (85, 93). The resultant pIgR–dIgA complex is

endocytosed and transferred across the intestinal epithelial cells,

through a series of vesicles, to the gut lumen, where the extracellular

portion of the pIgR is cleaved to yield a fragment termed secretory

component, which then forms a complex with dIgA otherwise

known as SIgA, which is released into the gut lumen (85, 94, 95).
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4.2 Generation of SIgA through
T cell-dependent and T
cell-independent pathways

SIgA, locally synthesized at the mucosal surfaces, is secreted

mainly by plasma cells (PCs). The SIgA-producing PCs are

primarily located within the gut‐associated lymphoid tissue

(GALT) including Peyer’s patches (PPs), isolated lymphoid

follicles (ILFs), and mesenteric lymph nodes (MLNs) (83, 84, 96–

98). SIgA-producing plasma cell can be generated via both T cell-

dependent (TD) and T cell-independent (TI) pathways (13, 15,

88, 99).

TD SIgA responses typically target protein antigens and involve

iterative rounds of somatic hypermutation (SHM) and high affinity

selection in PPs and MLNs, where GCs are constitutively active (15,

16). Furthermore, contact between CD40 on the surface of B cells

and its ligand CD40L on T cells is necessary for TD responses (88,

100). Additionally, CD4+ T follicular helper cells, Foxp3+CD4+ T

regulatory cells, and Th17 cells can release various cytokines, such

as IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, and IL-21, to promote IgA

responses (84, 86, 101, 102).

T cell–deficient (TCRbd−/−) mice possess a microbiota-reactive

IgA repertoire coating non-overlapping commensal bacterial taxa

when compared with that in T cell-sufficient mice, indicating that

SIgA can be produced without T cells help (15, 100, 103). TI SIgA

seems to occur mainly within the gut lamina propria (LP) and ILFs

(17, 88, 92). The TI SIgA response to polyvalent antigens is

primarily “natural” polyreactive and shows low-affinity for

commensal bacteria with little SHM (16, 103). During the TI

pathway, two tumor necrosis factor family members, B-cell

activating factor of the TNF family (BAFF) and a proliferation‐

inducing ligand (APRIL), are responsible for stimulating class

switch recombination (CSR) to IgA (86, 100). However, the

contribution and function of high-affinity TD SIgA and low-

affinity TI SIgA in microbiota homeostasis and infection control

remain controversial (92, 94).
4.3 Inductive and effector immune sites
in the gut

The mucosal immune system can be principally divided into

inductive and effector sites (104). GALT is the site of induction of

intestinal immune responses, where antigens sampled from

mucosal surfaces activate naive and memory T or B lymphocytes

(105). By capturing particular antigens from microfold cells or

dendritic cells, B cells can generate IgA via IgM-to-IgA CSR. To

synthesize IgA, the Cµ exon in the immunoglobulin heavy-chain C-

region (CH) gene must be exchanged with the downstream Ca exon

by activation-induced cytidine deaminase (AID) and other factors

in the intestinal microenvironment (84, 88, 98, 106–108).
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IgA+ B cells differentiate during their migration to the effector

sites in the lamina propria and act as effector cells after

extravasation, retention, and differentiation (84, 104, 109, 110).

After the terminal differentiation of B cells to PCs, at least 80% of all

PCs are located in the small intestinal LP, mainly generating dIgA

which binds to pIgR, and ultimately, the formed complex is secreted

into the intestinal lumen as SIgA (111).
5 Antifungal SIgA in patients with CD

SIgA is involved in gut microbiota maintenance. It plays

multiple protective roles by preventing the adhesion of

commensal bacteria to epithelial cells, neutralizing toxins and

pathogens, and suppressing (not killing) fast-growing bacterial

species (112–114). IgA-bound pro-inflammatory bacteria have

been found to be more prevalent in patients with IBD than in

healthy subjects, whereas IgA-bound commensal bacteria and

probiotics levels were decreased; notably, the percentage of IgA-

coated bacteria was associated with disease severity (21, 24, 115).

Importantly, in addition to bacteria, intestinal fungi can also be

targeted by SIgA.

By establishing a multistep flow cytometry-based technique for

multi-kingdom antibody profiling, researchers recently showed that

a majority of intestinal fungi were bound to luminal SIgA rather

than IgG or IgM in mouse feces, independent of serum

supplementation, and systemic IgA made a small contribution to

the antifungal IgA repertoire (73). These findings suggest that,

unlike in the blood, antifungal IgA in the intestinal tract mainly

exists in the form of SIgA. Recent studies have demonstrated that,

under homeostatic conditions, intestinal colonization of C. albicans,

a potentially pathogenic fungus, induces robust SIgA responses in

the human gut and oral mucosa, which is associated with elevated

IgA+ B cell frequencies in the PPs and in the LP (73, 116–118).

As the most prevalent dimorphic fungus in the human GIT, C.

albicans colonizes the gut as a mixture of yeast and hypha cells with

varying morphologies, modes of division, occurrences, and

virulence (119, 120). In general, C. albicans yeast is more likely to

colonize the human GIT, whereas the hyphal form tends to be more

virulent and invasive; therefore, the transition from yeast to invasive

hyphae generally plays a central role in C. albicans pathogenesis

(120–122). The hyphae express diverse cell type-specific virulence

factors, particularly, cell surface adhesins, such as agglutinin-like

protein 3 precursor (Als3), secreted aspartyl proteinases (Sap), and

the Ece1-derived cytolytic toxin candidalysin (Ece1-III), which

contribute to fungal pathogenesis including tissue adhesion,

invasion, and damage (119, 120, 123–125).

Recent work has shown that SIgA antibodies preferentially bind

C. albicans hyphal morphotypes, targeting several hyphae-

associated virulence factors (Als3, Sap6, and Ece1-III) (117, 118,

126). Consistent herewith, intervention with SIgA resulted in a

reduction of C. albicans hyphae and promoted the growth of the

yeast form (118). Additionally, studies have revealed a decrease in

anti-C. albicans SIgA responses against hyphae-associated virulence

factors and an increase in granular hyphal morphologies in the gut

mucosa of patients with CD (117, 118). Together, these data suggest
Frontiers in Immunology 06
that antifungal SIgA, which prevents epithelial adhesion and

invasion of C. albicans to reduce intestinal inflammation, has an

important role in maintaining fungal commensalism in the gut and

is dysregulated in patients with CD (Figure 2).

Unlike the production of systemic antifungal IgG, which depends

solely on CX3CR1+MNPs, anti-C. albicans SIgA responses are mediated

by CX3CR1+MNPs or CD11c+CD11b+CD103+ conventional dendritic

cells (cDC2) via different pathways: one affecting IgA+ plasmablasts in

the LP and the other affecting IgA+ B cells in the PPs (73, 74, 118, 127).

Thus, intestinal fungi taken up by cDC2 and CX3CR1+MNPs can

induce antibody CSR in mature B cells towards the mycobiome (118).

Through qPCR and flow-cytometric analysis, researchers have found

that both cDC2 and CX3CR1+MNPs express genes presenting antigens,

but CX3CR1+ MNPs show higher expression of genes associated with

fungal recognition, such as those encoding Dectin-1, Dectin-2, and

Mincle (74). Furthermore, confocal microscopy examination has

revealed that Candida was efficiently recognized by intestinal

phagocytes in vivo, with >80% of all CX3CR1+ MNPs engulfing

Candida (74). Moreover, a polymorphism in the coding region of the

CX3CR1 gene is strongly associated with a decrease in antifungal

antibody responses in patients with CD (74) (Figure 2).

Overall, these results suggest that, through interaction with

CX3CR1+MNP or cDC2, the generation of SIgA targeting hyphae-

associated fungal virulence factors promotes a mutualistic

relationship between the host and commensal fungi by

suppressing the hyphal form of fungi (73, 117, 118). Furthermore,

in patients with CD, anti-C. albicans SIgA responses are decreased

and hyphal morphologies of fungi in the mucosa increased, which

may alter the balance between the host and commensal fungi (118).

However, the detailed mechanism by which SIgA antibodies are

induced by intestinal fungi and bind to the fungi in order to limit

intestinal tissue damage through B or T cells remains unclear.

Therefore, further studies on the mechanisms of antifungal SIgA

responses, especially in patients with CD, which may provide a

deeper insight into mucosal immunity and the mycobiota in the

pathogenesis of CD, are urgently needed.
6 Potential vaccines against fungi in
CD management

Currently, only a few prophylactic or therapeutic vaccines

against fungal infections are in clinical trials. According to the

literature, anti-C. albicans vaccines can be designed to target specific

virulence factors in order to reduce tissue damage. The NDV-3A

vaccine, which contains the N-terminal region of the Als3 protein of

C. albicans, is the most promising and advanced vaccine tested to

date (128). This vaccine has been tested for safety and efficacy

against recurrent vulvovaginal candidiasis in several clinical trials; it

induced robust immunologic responses with significantly elevated

serum anti-Als3 IgG and IgA1 titers, and stimulation of Als3-

specific production of IFN-g and IL-17A (126, 129). The NDV-3

vaccines also induced protective responses against Staphylococcus

aureus and Candida auris infections in mice (130–132).

Furthermore, NDV-3 vaccination prevented intestinal damage in
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C. albicans-monocolonized mice with colitis by inducing intestinal

anti-Als3 IgA responses and reducing tissue-associated C. albicans

in the colon (117).

As discussed above, the fungal microbiota is altered in patients

with CD; fungal alpha diversity, fecal fungal load, and C. albicans

abundance are increased in these patients (43). C. albicans can

aggravate gut inflammation by driving Th17-mediated immune

responses and inducing dysbiosis of the gut microbiome (31).

Collectively, these findings exemplify that SIgA antibody

responses against the C. albicans adhesin, Als3, can alleviate C.

albicans-associated damage during colitis, which may be useful in

relieving gut inflammation in patients with CD. Consequently,

novel antifungal vaccines are worth developing through further

exploring the pathways via which intestinal fungi induce SIgA

antibody responses in order to partially protect the intestinal

mucosa from inflammation or even prevent the occurrence and

development of CD by maintaining fungal commensalism in

the gut.
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In recent studies, increasing evidence indicates that intestinal

fungi and SIgA responses are essential part of mucosal immune

regulation in CD. The evidence discussed in this review suggests

that antifungal SIgA antibodies targeting hyphae-associated

virulence factors through immune interaction are a critical

regulator of fungal commensalism in the gut and are essential for

protecting the intestinal mucosa (73, 74, 116–118). As anti-C.

albicans SIgA responses are dysregulated in patients with CD, an

imbalance in the gut fungal community can result in overgrowth by

certain fungi, leading to inflammation and pathogenic

consequences (118).

Despite the increasing interest in anti-C. albicans SIgA

responses lately, the research about other fungal species

interacting with SIgA is still worth exploring. Shapiro et al.

identified increased levels of IgA coating of forty-three bacterial

taxa in IBD compared with controls, combining bacterial

fluorescence-activated cell sorting with 16S rRNA gene
FIGURE 2

The intestinal SIgA responses targeting Candida albicans in the health and the patients with CD. During homeostasis, C. albicans, one of the
commensal intestinal fungi, interacts to intestinal epithelial cells and can be recognized by IRF4+ cDC2s and CX3CR1+MNPs, leading to the antibody
CSR in mature B cells with the help of T cells (73, 116, 117). C. albicans can induce the growth of germinal center -dependent IgG+ B cells
depending on the innate immunity regulator CARD9 and CARD9+CX3CR1+ MNPs, thus inducing the development of antifungal IgG antibodies to
prevent systemic fungal infection (73). Moreover, through interaction with CX3CR1+MNPs or cDC2s, the generation of SIgA targeting hyphae-
associated fungal virulence factors (Als3, Sap6 and candidalysin) promotes a mutualistic relationship between the host and commensal fungi by
suppressing the hyphal form of fungi (116, 117). In patients with CD, anti-C. albicans SIgA responses are decreased and hyphal morphotypes of C.
albicans in the mucosa increased, which may alter the balance between the host and commensal fungi (118).
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sequencing (133). Through a certain degree of improvement, this

promising technology, IgA-SEQ, may also have potential

applications for the analysis of IgA-coated fungi in the

pathogenesis of CD to identify more fungal species targeted by

SIgA (133, 134). In the future, much work is required to elucidate

other species that induce antifungal SIgA responses, the functions of

antifungal SIgA antibodies in intestinal mucosal immunity, and the

detailed mechanisms governing the induction and regulation of

antifungal SIgA in the GIT in CD. These explorations will likely lead

to the development of novel strategies to protect the intestinal

mucosa from inflammation and maintain intestinal fungal

commensalism to prevent the occurrence and development of

CD, including potential vaccines.

Although the understanding of mucosal immunity and SIgA in

human diseases and homoeostasis has significantly improved over

the past decades, the variety and complexity of the immune

response processes, functions, and mechanisms of antifungal SIgA

antibodies in the intestinal mucosa of healthy subjects and patients

with CD remain to be fully unraveled.
Author contributions

MS conceived and designed the study, wrote the manuscript

and finished the table and figures. MS and JJ reviewed the literature,

wrote and edited the manuscript. HX analyzed articles and provided

feedback on the content. YW supervised the study and reviewed and

edited the manuscript. All authors contributed to the article and

approved the submitted version.
Frontiers in Immunology 08
Funding

This work was supported by the National Natural Science Fund

of China (81270447), the National Longitudinal Research of

China (2012BAI06B03).
Acknowledgments

The authors would like to thank Editage (www.editage.cn) for

English language editing. The Figures were partly generated using

Servier Medical Art, provided by Servier, licensed under a Creative

Commons Attribution 3.0 unported license.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al.
Worldwide incidence and prevalence of inflammatory bowel disease in the 21st
century: a systematic review of population-based studies. Lancet (2017) 390:2769–78.
doi: 10.1016/S0140-6736(17)32448-0

2. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol
Hepatol (2015) 12:720–7. doi: 10.1038/nrgastro.2015.150

3. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease:
current status and the future ahead. Gastroenterology (2014) 146:1489–99. doi: 10.1053/
j.gastro.2014.02.009

4. Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a
critical assessment. J Clin Invest (2022) 132:e155786. doi: 10.1172/JCI155786

5. Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in
pathogenesis of inflammatory bowel diseases and therapeutic approaches.
Gastroenterology (2017) 152:327–339.e4. doi: 10.1053/j.gastro.2016.10.012

6. Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi
and the host immune system.Nat Rev Immunol (2014) 14:405–16. doi: 10.1038/nri3684

7. Beheshti-Maal A, Shahrokh S, Ansari S, Mirsamadi ES, Yadegar A, Mirjalali H,
et al. Gut mycobiome: the probable determinative role of fungi in IBD patients.Mycoses
(2021) 64:468–76. doi: 10.1111/myc.13238

8. Qin J, Li R, Raes J, ArumugamM, Burgdorf KS, Manichanh C, et al. A human gut
microbial gene catalog established by metagenomic sequencing. Nature (2010) 464:59–
65. doi: 10.1038/nature08821

9. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al.
Enterotypes of the human gut microbiome. Nature (2011) 473:174–80. doi: 10.1038/
nature09944

10. Rochereau N, Roblin X, Michaud E, Gayet R, Chanut B, Jospin F, et al. NOD2
deficiency increases retrograde transport of secretory IgA complexes in crohn’s disease.
Nat Commun (2021) 12:261. doi: 10.1038/s41467-020-20348-0

11. Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front
Immunol (2013) 4:185. doi: 10.3389/fimmu.2013.00185
12. Huus KE, Petersen C, Finlay BB. Diversity and dynamism of IgA–microbiota
interactions. Nat Rev Immunol (2021) 21:514–25. doi: 10.1038/s41577-021-00506-1

13. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation
in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol
(2010) 28:243–73. doi: 10.1146/annurev-immunol-030409-101314
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