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Exploring the genetic association
of allergic diseases with
cardiovascular diseases:
a bidirectional Mendelian
randomization study

Shilin Wang1†, Hao Liu1†, Peiwen Yang1, Zhiwen Wang1,
Poyi Hu1, Ping Ye2*‡, Jiahong Xia1*‡ and Shu Chen1*‡

1Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China, 2Department of Cardiology, The Central Hospital of
Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: In observational and experimental studies, allergic diseases (AD)

have been reported to be associated with some types of cardiovascular diseases

(CVD), as both share common pathophysiological processes involving

inflammation and metabolic disorders. However, the direction of the causal

association between them remains unclear. This Mendelian randomization (MR)

study aims to examine the bidirectional causality between AD and CVD.

Methods: We utilized publicly available genome-wide association study (GWAS)

summary statistics data from European participants in the UK Biobank and the

IEUOpen GWAS database. Genetic variants associated with AD, asthma, and CVD

were identified and used as instrumental variables to investigate the genetically

causal association between them. MR analyses were performed using various

analytical methods, including inverse variance weighted-fixed effects (IVW-FE),

inverse variance weighted-multiplicative random effects (IVW-RE), MR-Egger,

weighted median, weighted mode, and maximum likelihood. Sensitivity tests

were conducted to assess the validity of the causality.

Results: The MR analysis with the IVW method revealed a genetically

predicted association between AD and essential hypertension [odds ratio

(OR)=0.9987, 95% confidence interval (CI): 0.9976-0.9998, P=0.024], as well

as between asthma and atrial fibrillation (OR=1.001, 95% CI: 1.0004-1.0017,

P=6.43E-05). In the reverse MR analyses, heart failure was associated with

allergic diseases (OR=0.0045, 95% CI: 1.1890E-04 - 0.1695, P=0.004), while

atherosclerosis (OR=8.7371E-08, 95% CI: 1.8794E-14 - 4.0617E-01, P=0.038)

and aortic aneurysm and dissection (OR=1.7367E-07, 95% CI: 3.8390E-14 –

7.8567E-01, P=0.046) might be protective factors of asthma. However, after a

Bonferroni correction, only the association between asthma and atrial

fibrillation remained robust.
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Conclusion: The MR study revealed that asthma is a predominant risk of atrial

fibrillation in European individuals, consistent with most experimental and

observational studies. Whether AD affects other CVD and the causality

between them needs further investigation.
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Introduction

The global prevalence of allergic diseases (AD) has increased

dramatically, posing a considerable burden on global health (1). In

some countries, nearly a quarter of the population is affected by AD

(2). Epidemiological studies have identified risk factors for certain

cardiovascular diseases (CVD), including inflammatory and

immune responses, which are the primary pathophysiological

processes of AD (3, 4). As a result, ADs have emerged as

potential risk factors for CVD development, as reported by

numerous experimental and observational studies (4–11). These

studies revealed that CVD, including atrial fibrillation (5),

atherosclerosis (4), heart attack (8), heart failure (8), hypertension

(9, 10), stroke (6), and coronary heart disease (11) can be affected by

asthma (5–7), atopic dermatitis (5, 8), and rhinitis (5, 9, 10).

Nonetheless, the findings of these investigations have been

inconclusive. In certain studies, AD has been identified as a

potential risk factor for CVD (4–10). On the other hand,

contrasting results have been proposed by other researchers (11).

Despite numerous observational studies examining the links

between AD and CVD, the presence of confounding factors and

unclear causal direction have led to biased conclusions. In an effort

to minimize the impact of confounding variables and reverse

causation, the Mendelian randomization (MR) approach was

developed. In MR, the causal relationship between exposure and

outcome are evaluated by instrumental variables (IVs). Genetic

variants, which are distributed randomly during meiosis and

remain unaltered after conception, are typically employed as IVs

to enhance the validity of the findings. To ensure unbiased

estimations, genetic variants can serve as IVs only if they fulfill

the following criteria (12): First, the variants must exhibit a strong

association with exposure. Second, the variants must be

independent of any confounding factors related to the exposure-

outcome connection. Finally, the variants should influence the

outcome solely through the exposure pathway, not via any

alternative biological routes. Moreover, MR can be extensively

applied due to the availability of public genetic data.
ascular diseases; MR,

sociation studies; AF,
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Here, a bidirectional MR analysis was performed to investigate

the causal relationship between AD and CVD, utilizing publicly

accessible summary statistics.
Methods

Study design overview

First, the causal effects of AD on CVD were estimated,

followed by an evaluation of the causal effects of CVD on AD

(Figure 1). Genetic variants were required to meet three strict

assumptions (12). Summary statistic datasets from recent

genome-wide association studies (GWAS) of AD, asthma, and

CVD were utilized.
Data sources and SNP selection of genetic
instruments for AD

AD comprises asthma, hay fever, and eczema, which share

many genetic variants that dysregulate the expression of immune-

related genes and often coexist in the same individuals. The
FIGURE 1

Study design of bidirectional Mendelian randomization study between
AD and 12 kinds of CVD. The genetic variants used as instrumental
variables meet the three conditions: ① the variants should be highly
associated with exposure; ② the variants should be independent of
confounding factors of the exposure-outcome association; and ③ the
variants affect the outcome only via the exposure pathway and not
through other biological pathways. The solid paths are significant; the
dashed paths should not exist in our study.
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summary statistics for AD were obtained from the GWAS catalog

(https://www.ebi.ac.uk/gwas/downloads/summary-statistics) or the

IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/) conducted by

Ferreira et al. (13), which included 360,838 European individuals

(180,129 cases vs 180,709 controls). Since many observational

studies focused only on asthma (5–7) rather than all three ADs,

we also estimated the causal effects of asthma on CVD. The

summary statistics for asthma were obtained from the GWAS

catalog or the IEU OpenGWAS project conducted by Demenais

et al., including 127,669 individuals of European ancestry (19,954

cases vs 107,715 controls) (14). Detailed information on the

conduction procedures and diagnostic criteria is described in the

original publications. The sample characteristics of the study

population are described in Supplementary Table S1.

Genetic variants associated with AD and asthma at genome-wide

significance (P<5×10-8 and 5×10-6, respectively) were reported by the

GWAS. Simultaneously, a linkage disequilibrium (LD) test was

conducted to ensure the independence of clumped SNPs. The LD

criteriawere established as SNPswith r2 > 0.001and aphysical distance

of kb< 10,000. SNPs with the lowest P values were retained.

Subsequently, all 74 and 39 remaining SNPs related to AD and

asthma, respectively, were examined in the Phenoscanner database

(http://www.phenoscanner.medschl.cam.ac.uk/) to determine if these

SNPs were associated with confounding factors or directly influenced

the outcome (15) (P<5×10-8). We identified 10 SNPs associated with

AD and six SNPs associated with asthma that were linked to

confounders, as presented in Supplementary Table S2. After

excluding these SNPs from the AD and asthma GWAS to mitigate

potential pleiotropic effects, the remaining SNPswere utilized as IVs in

the bidirectional MR analysis (refer to Supplementary Tables S3, S4).
Data sources and SNP selection of genetic
instruments for CVD

The second round of GWAS results from the UK Biobank (UKB)

(http://www.nealelab.is/uk-biobank) provided us with summary

statistics on CVD, which encompassed heart arrhythmia, atrial

fibrillation, supraventricular tachycardia, atherosclerosis, aortic

aneurysm and dissection, stroke, peripheral vascular disease,

cardiomyopathy, heart valve problems, heart failure, myocardial

infarction, and essential hypertension. The UKB study is a

prospective cohort study that gathered genetic and other data from

over 500,000 individuals residing in the UK (16). These diseases were

defined and identified by the UKB study based on self-reported status

or ICD10 codes. Supplementary Table S1 summarizes the specifics of

these various characteristics, including sample size, SNP count,

phenotype code, and others.

We obtained the genome-wide significant variants (P< 5×10-5)

associated with these CVDs, ensuring their independence (r2<

0.001, kb > 10,000). In a similar manner, we examined all SNPs

using the Phenoscanner database and removed all SNPs linked to

confounding variables, as shown in Supplementary Table S2.

Details regarding the SNPs utilized as IVs are presented in

Supplementary Tables S5–S16.
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MR analysis

Following the removal of SNPs whose proxy SNPs were

unavailable in the outcome GWAS, we harmonized the exposure

and outcome data before evaluation of the association between AD

or asthma and CVD. In the meantime, palindromic SNPs with

intermediate allele frequency were excluded.

We employed the TwoSampleMR package (17) in R software

(version 4.2.2) to conduct bidirectional MR analysis. The Wald

ratio method was utilized to calculate the effect of each SNP, and a

meta-analysis of the individual effect of each SNP was performed

by inverse variance weighting (IVW) to generate the concluding

beta estimate (beta outcome/beta exposure). The inverse variance

weighted-fixed effects (IVW-FE) method was our primary

analytical approach, as it is the most efficient and widely used.

Since the outcome was binary (18), we converted it to the odds

ratio (OR). To detect possible violations of IVs assumptions

because of directional horizontal pleiotropy, namely the third

assumption of SNP, we applied MR-Egger, which can effectively

test the null causal hypothesis and serves as the basis method for

horizontal pleiotropy in our analysis (19). The IVW method

assumes that all SNPs are valid IVs, which can be supplemented

by a weighted median (WM) model that provides a consistent

effect even if half of the SNPs are pleiotropic (18). All three

methods were applied to assess causal robustness of different

assumptions, given the introduction of multiple genetic variants

(18). Additionally, we employed maximum likelihood methods

and weighted mode-based estimates to further analyze the

association between exposure and outcome. The maximum

likelihood method considers the sample overlap in two-sample

MR and the uncertainty of the SNP-exposure association, which is

disregarded in IVW (20). The weighted mode-based estimate is

resilient to horizontal pleiotropy and exhibits lower type-I error

rates than other methods, such as IVW, MR-Egger, WM, and

simple median methods (21).

Heterogeneity based on IVW and MR-Egger methods was

quantified using Cochran Q statistics and I2 statistics (22). We

employed the MR pleiotropy residual sum and outlier (MR-

PRESSO) test (23) to detect outlier SNPs (Nb Distribution =

10000, Significant Threshold = 0.05), which was conducted by the

package “MR-PRESSO”, and the results are presented in

Supplementary Table S17. Furthermore, a “leave-one-out”

analysis was performed to determine if any single SNP was

overly sensitive and disproportionately responsible for the

outcome. F-statistics were used to evaluate the strength of

SNPs to satisfy the first assumption (17). After determining

the effect allele frequency (MAF) of the selected SNPs using

the package “LDlinkR”, we calculated the F-statistic with

the formula:

F = (N − k − 1)=N � R2=(1 − R2)

(N = sample size of the exposure, k = the number of selected

SNPs, and R2 represents the phenotype variance induced by the

SNPs.) When R2 is not available, we used the formula:
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R2 = 2�MAF � (1 −MAF)� (b=SD)2

(b= the effect value of the genetic variant of the exposure, MAF

= the effect allele frequency of selected SNPs, SD = SE � √N , SE =

the standard error of the genetic variant of the exposure, and N =

sample size of the exposure). All instruments exhibited F-statistics

above the standard cutoff (>10), indicating the presence of

sufficiently powerful instruments (24). Each R2 and F are shown

in Supplementary Table S17.

Given the multiple testing, a p-value below 0.002 (0.05/24) was

considered robust significance after a Bonferroni correction. A p-

value between 0.002-0.05 was considered suggestive significance,

and a p-value above 0.05 was considered no significance. All

statistical analyses were two-sided.

Results

The causal effect of AD and asthma
on CVD

In total, 64 and 33 LD-independent genetic variants were

utilized as IVs for AD and asthma, respectively, following P value

selection and LD clumping (refer to Supplementary Tables S3, S4).

After removing SNPs that were unavailable in the outcome GWAS

and distorted SNPs detected by MR-PRESSO and the “leave-one-
Frontiers in Immunology 04
out” test, the remaining SNPs were employed as IVs for AD and

asthma. The “leave-one-out” test outcomes for the final SNPs are

displayed in Supplementary Figures S1, S2. The F-statistics for the

IVs of AD and asthma indicated that the IVs were robust

instruments that reduced the bias of IV estimates.

We primarily employed the IVW-FE method to examine the

genetic correlation between AD or asthma and CVD. Genetically

predicted AD was linked to essential hypertension [odds ratio

(OR)=0.9987, 95% confidence interval (CI): 0.9976-0.9998,

P=0.024], potentially serving as a protective factor. However, this

significance disappeared after applying the Bonferroni correction.

Asthma was proposed as a risk factor for atrial fibrillation

(OR=1.001, 95% CI: 1.0004-1.0017, P=6.43E-05), with robust

significance after the Bonferroni correction, as depicted in

Figure 2. The outcomes of other models are displayed in

Supplementary Table S18. Sensitivity analyses were conducted to

detect horizontal pleiotropy presence, confirming the IVW results’

reliability, as seen in Supplementary Table S19. Cochran’s Q test did

not identify any heterogeneity based on IVW and MR-Egger tests,

as shown in Supplementary Table S20. Reporting bias results, tested

by MR-Egger and IVW, are presented in funnel plots (refer to

Supplementary Figures S3, S4). The confounding factors’ impact on

outcomes is illustrated in scatter plots (refer to Supplementary

Figures S5, S6). Forest plots for each association pair for casualty are

provided in Supplementary Figures S7, S8.
FIGURE 2

Associations of AD and asthma with 12 kinds of CVD. AD may be a protective factor against essential hypertension, and asthma is suggested to be a
risk factor for atrial fibrillation. However, after a Bonferroni correction, there was only a robust association between asthma and atrial fibrillation. OR,
odds ratio; CI, confidence interval.
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The causal effect of CVD on AD and
asthma

After LD clumping and searching in the Phenoscanner

database, the remaining SNPs are shown in Supplementary Tables

S5–S16. After excluding distortion and palindromic ambiguous

SNPs, we used the remaining SNPs as final IVs to estimate the

causal effect of CVD on AD and asthma. The “leave-one-out” test

results and F-statistics are provided in Supplementary Figures S9,

S10 and Supplementary Table S17. Based on the IVW-FE model,

heart failure might be a protective factor against AD (OR=0.0045,

95% CI: 1.1890E-04 - 0.1695, P=0.004). Atherosclerosis

(OR=8.7371E-08, 95% CI: 1.8794E-14 - 4.0617E-01, P=0.038) and

aortic aneurysm and dissection (OR=1.7367E-07, 95% CI: 3.8390E-

14 – 7.8567E-01, P=0.046) might be protective factors for asthma.

However, no robust causal effect was detected between all 12 CVD

and AD or asthma after the Bonferroni correction (Figure 3). The

outcomes of other models are displayed in Supplementary Table

S21. No horizontal pleiotropy or heterogeneity was suggested, as

seen in Supplementary Tables S19, S20. Moreover, the funnel plots,

scatter plots, and forest plots for each association pair for casualty

are provided in Supplementary Figures S11–S16.
Discussion

This bidirectional MR analysis offers evidence of a robust

association between asthma and atrial fibrillation, even after
Frontiers in Immunology 05
applying the Bonferroni correction. AD exhibits a suggestive

connection with essential hypertension. Conversely, heart failure,

atherosclerosis, and aortic aneurysm and dissection might reduce

the risk of AD and asthma. However, the reverse study did not show

robust causality after the Bonferroni correction, indicating that

there is only weak evidence to support that CVD causes AD.

To our knowledge, this is the first MR study to determine the

bidirectional causal relationship between AD and CVD. A previous

MR study established that asthma and atopic dermatitis are causal

risk factors for heart failure (P=0.03 and 0.01) (25). However, the

study could not demonstrate their causal link after the Bonferroni

correction. Previous observational studies have produced

conflicting conclusions. The presence of AD might be linked to

an increased risk of CVD, including atrial fibrillation (5),

atherosclerosis (4), heart attack (8), heart failure (8), hypertension

(9, 10), stroke (6), and others. Moreover, the co-existence of allergic

and CVD may increase the mortality of both diseases (6, 7).

However, a decreased risk of CVD and all-cause mortality has

also been reported in individuals with allergic rhinitis (11).

Observational studies are typically affected by reverse causality or

confounding factors, which could be avoided by an MR study.

Regarding the potential mechanism of these two types of

diseases, experimental studies suggest that inflammatory and

immune responses could be potent mechanisms (3, 4). AD, such

as asthma, atopic dermatitis, and rheumatic arthritic, can induce

chronic inflammation, which is associated with CVD (4–10). IgE

and IgG are essential molecules in allergic reactions (26) associated

with atherosclerosis (4). IgE-induced M1 macrophage polarization,
FIGURE 3

Associations of bioavailable AD and asthma with 12 kinds of CVD. Essential hypertension was suggested to be a protective factor against AD and
asthma. Heart failure may be a suggestive protective factor of AD. Atherosclerosis and aortic aneurysm/dissection may be suggestively associated
with asthma. However, there was no robust association between cardiovascular disease and AD or asthma after a Bonferroni correction.
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foam cell formation, and vascular cell apoptosis contribute to

plaque progression (26). Anti-IgE may serve as a protective factor

for atherosclerosis, and treatment with an anti-IgE-neutralizing

antibody could accelerate atherosclerotic lesion formation (27).

High serum concentrations of IgG have been detected in ApoE-/-

mice (28), and oxLDL-specific IgG has been observed in human

plaques (29), using antibodies that may hinder the rapid regression

of atherosclerotic lesions (30). Th2 cells are central to late-phase

allergic inflammation, and a high Th2 cell frequency in circulation

is associated with a reduced risk of myocardial infarction and stroke

(31). Th2-related cytokine interleukin (IL)-4 may be a critical

cytokine in early atherosclerosis progression (32), but IL-13

demonstrates a protective effect (33). Active mast cells can induce

matrix degradation and apoptosis and recruit inflammatory cells to

promote CVD progression (34–36). Apart from the immunological

system’s pathophysiological processes, other conditions such as

metabolism disorders (37, 38), central obesity (39), and typical

lifestyle (40) could also contribute to the potential association

between the two diseases. Some observational cohort studies have

found a clinical connection between asthma and dyslipidemia, a

significant risk factor for CVD (37, 38). Adults with eczema were

more likely to experience sleep disturbances and smoke (40).

However, our findings partially contradict these observational and

experimental studies. We found that asthma is a risk factor for atrial

fibrillation, but there was no causality between other AD and CVD.

There may be a gap between the hypothesis, experimental studies,

and the actual human situation.

This study has several limitations. First, the wide confidence

interval around the effect estimate in the reverse study remains

compatible with non-inferiority, limiting conclusions about the

causal association between two diseases. Second, we used P<5×10-

6 and 5×10-5 as the standard of genome-wide significance to select

the variants related to asthma and the 12 kinds of CVD. The

relatively small number of SNPs involved, especially in CVD and

asthma, might make the SNPs less specific. Moreover, we did not

stratify the causal association between AD and CVD by gender, age,

BMI, and other factors. However, some studies suggest that these

factors may affect the causality. Third, we were unable to detect an

association between other AD and CVD due to the limited public

genetic data. The complete data could only be obtained for

participants of European descent, and we did not verify our

conclusion in non-European populations. The instruments

identified in European populations may not be suitable for non-

European populations. Fourth, a small sample overlap between AD

and CVD may lead to bias (41). Within large biobanks with sample

sizes larger than 100,000, most two-sample MR methods can be

safely used for one-sample MR, even with substantial confounding,

particularly the IVW-FE, IVW-RM, weighted median, and

weighted mode estimator, which are more robust to pleiotropy

than one-sample MR methods (42). Since the UK Biobank is a large

dataset with over 300,000 participants, and various compatible

methods performing well in one-sample MR applied to our study,

we believe our conclusions can be trusted. Furthermore, whole-

genome arrays consist of common alleles only, which capture
Frontiers in Immunology 06
information on common but not rare alleles. However, sometimes

low-frequency variants have larger effects than the common ones,

although common alleles produce large effect sizes (43). More

reliable instruments and larger samples are needed for more

precise results.

Despite its limitations, the MR study had several advantages.

First, we included variants across the phenotypes of AD and asthma

from a recent meta-analysis. We extracted the IVs of the 12 kinds of

CVD from the largest GWAS. Second, the bidirectional MR method

reduced potential bias from confounding factors and reversed

causality, ensuring a clear causal direction in our analysis. Third,

we assessed the association between AD and a wide range of CVD,

most of which were not previously examined based on genetic

instruments. Fourth, it was easy to obtain extensive genetic data

from the public genetic dataset using the MR method. The

summary statistics can also be applied to individual-level data in

terms of statistical power (44).
Conclusions

In summary, a robust association exists between asthma and

atrial fibrillation, indicating that patients with asthma may have an

increased risk of atrial fibrillation in European individuals. AD

shows a suggestive association with essential hypertension, which

attenuates significantly after applying the Bonferroni correction. In

the reverse analysis, heart failure, atherosclerosis, and aortic

aneurysm and dissection are negatively correlated with AD and

asthma. However, the reverse study does not show robust causality

after the Bonferroni correction, suggesting weak evidence. Whether

AD exerts effects on CVD needs further investigation.
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