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Potential biological contributers
to the sex difference in multiple
sclerosis progression

Nuria Alvarez-Sanchez1,2 and Shannon E. Dunn1,2,3*

1Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada,
2Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada, 3Women's College
Research Institute, Women's College Hospital, Toronto, ON, Canada
Multiple sclerosis (MS) is an immune-mediated disease that targets the myelin

sheath of central nervous system (CNS) neurons leading to axon injury, neuronal

death, and neurological progression. Though women are more highly

susceptible to developing MS, men that develop this disease exhibit greater

cognitive impairment and accumulate disability more rapidly than women.

Magnetic resonance imaging and pathology studies have revealed that the

greater neurological progression seen in males correlates with chronic

immune activation and increased iron accumulation at the rims of chronic

white matter lesions as well as more intensive whole brain and grey matter

atrophy and axon loss. Studies in humans and in animal models of MS suggest

that male aged microglia do not have a higher propensity for inflammation, but

may become more re-active at the rim of white matter lesions as a result of the

presence of pro-inflammatory T cells, greater astrocyte activation or iron release

from oligodendrocytes in the males. There is also evidence that remyelination is

more efficient in aged female than aged male rodents and that male neurons are

more susceptible to oxidative and nitrosative stress. Both sex chromosome

complement and sex hormones contribute to these sex differences in biology.
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1 Introduction

Multiple Sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the

central nervous system (CNS) that affects 2.8 million people world-wide (1). MS most

frequently debuts as a relapsing-remitting disease (called relapsing-remitting MS or RR-

MS) that is characterized by relapses followed by periods of partial to complete neurological

recovery (1). Without treatment intervention, the majority of people with RR-MS will

transition to having a progressive course, called secondary progressive (SP)-MS, within a

few decades of diagnosis (2). Less frequently, patients exhibit a progressive trajectory of

disability from onset, which is termed primary progressive (PP)-MS (1). Although

indistinguishable from SP-MS according to the major MS risk genes or the nature of the
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CNS pathology, PP-MS has a later age of onset and white matter

(WM) lesions in PP-MS tend to be less inflammatory and exhibit

more myelin and axon damage than in SP-MS (3, 4).

Relapsing-onset MS has a strong female prevalence, which is

thought to be a result of females having more robust T cell-mediated

autoimmunity [reviewed in (5)]. By contrast, males if they develop

MS, are more susceptible to neurodegeneration in this disease.

Natural history studies of untreated MS patients have shown that

males with RR-MS also have a higher risk of developing SP-MS and

demonstrate a shorter time to conversion to this phase of disease

compared to female counterparts (6–8). Males with MS also exhibit

more extensive whole brain and grey matter (GM) atrophy and

ventricular enlargement compared to females indicating more

extensive neuronal loss in males (9–11). The underlying

mechanisms for the male predilection for neurodegeneration and

disease progression are not well understood. Here, we overview the

evidence that males with MS exhibit more rapid neuron

deterioration than females with this disease and describe how MS

pathology differs between men and women to account for these

differences. We further discuss the underlying cellular mechanisms

of the male predilection for CNS injury drawing from both studies

in human MS and animal models of this disease.

2 Male sex is associated with more
rapid progression and CNS tissue loss
in MS

2.1 Neurological progression and cognitive
decline are more rapid in males with MS

There is strong evidence that males are more prone to

neurological deterioration than females with MS. Males exhibit

greater deficits in finger dexterity as measured using the 9 hole peg

test (12, 13) and exhibit worse walking and disability scores (14, 15)

compared to females. Postural stability is also reduced more so in

men than women with progressive forms of MS (16). Men also have

a lower odds of developing a benign course of MS (17–19), and

some cohort studies report that men with MS experience greater

mortality than women (20–23). Natural history studies that have

tracked the progression of relapsing-onset MS in untreated MS

populations have reported that men are at higher risk for

development (8) and have a shorter time to conversion to SP-MS

(7, 24, 25). Males are more likely than females to debut with PP-MS

and men with this form of MS exhibit a more rapid progression of

disability when compared to female counterparts (26).

Male sex is also a predictive factor for having a shorter time to

reaching a disability milestone of expanded disability status scale

(EDSS)3 and EDSS6 (25, 27–29); EDSS3 is a stage when patients

show mild to moderate disability, but do not have mobility issues,

whereas EDSS6 is a stage where walking is affected and supports

such as a cane are required for ambulation. Interestingly, this effect

of male sex in hastening the onset of SP-MS and disability accrual

has not been observed in more recent studies where a higher

proportion of MS patients are receiving high-efficacy disease

modifying therapies (30, 31), suggesting that the autoimmune
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inflammation may be a factor in the effect of male sex

on progression.

Individuals with MS also experience cognitive deficits including

reductions in verbal and non-verbal memory, information

processing speed, attention, and executive functioning (32–36). A

large number of studies have reported that males are more

cognitively impaired than females across a number of these

domains (10, 32, 34, 36–43). A sex difference in cognition has

also been observed in newly diagnosed MS patients, where males

show increased anxiety and depression scores, and poorer attention

compared to females (34). One study reported that the greater

cognitive deficits seen in males with early MS correlated with more

extensive white matter damage, particularly in the thalamus, which

is a critical relay center in the brain (10). Males with MS also

experience more severe deficits in processing speed during relapses

compared with females, indicating that individual immune attacks

may be more detrimental to the CNS in males (44).

A number of studies have also assessed differences in functional

connectivity and neuronal network efficiency in the brains of men and

women with MS using functional magnetic resonance imaging (fMRI)

and other MRI-based approaches. For example, Schoonheim et al.

(2012) investigated the extent of synchronization of activation of

different brain regions in the resting state using fMRI (42). MS

patients were matched for educational status, pre-morbid

intelligence, disability, disease duration, and extent of white matter

damage as assessed by T2 lesion load (42). It was found that functional

connectivity and network efficiency were lower in the male compared

to the female MS patients and that these deficits correlated with worse

performance on a visuospatial memory task in males (42). Similarly, a

large study of MS that assessed hippocampal volumes and networks

using an MRI-based approach reported that, compared to males,

females exhibited a more clustered hippocampal network topology

(i.e., increased local connectivity in the hippocampus) that correlated

with better cognitive and memory performance (45). In contrast, a

study of patients at an earlier stage of MS reported that functional

connectivity between temporal and inferior frontal lobe areas and the

right amygdala and right olfactory cortex was higher in males than in

females, correlating positively with a greater extent of GM atrophy in

specific brain areas in the males (46). In this case, it was speculated that

the increased functional connectivity was an early compensatory

mechanism to retain cognitive performance in the males (46). In

conclusion, the brain functionally reorganizes its neuronal circuits to

maintain cognitive function in response to CNS damage in MS. This

may occur more so in men early in disease in response to the increased

tissue damage in this sex, however as the disease progresses, females

may have a better reserve for functional re-organization as a result of

preserved neuronal function.
2.2 Post-mortem studies and MRI studies
of those living with MS suggest that
inflammation persists and
neurodegeneration is more severe in males

Pathology studies in post-mortem brain samples in MS have

been crucial to understanding underlying pathology in MS. These
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studies have elucidated that the focal inflammatory demyelinating

lesions in the WM that underlie the acute attacks in early MS

contain CD4+ and CD8+ T cells, activated macrophages and

microglia, and show evidence of active demyelination and axonal

transection and injury (47). Some of these studies examined sex

differences, but did not detect any differences in either the number

or proportion of acute lesions or in the numbers of T cells or

activated macrophages/microglia within male or female WM

lesions (48–50). Notwithstanding, these studies did not conduct a

deep immunophenotyping of immune cells within the WM lesions

in men and women.

With aging of MS, peripheral immune-mediated inflammation

subsides and WM lesions evolve either into inactive plaques that

only have sparse immune cells present or alternatively smoldering

lesions that have a demyelinated core with a rim of activated

microglia along the lesion edge in close proximity to lymphocytic

perivascular cuffs (alternatively referred to as chronic-active or

mixed active/inactive lesions). Inactive lesions can be either

chronically-demyelinated or myelinated (also called shadow

plaques) (47). Of these lesion types, it is the proportion of

smoldering lesions that associates with the development of a

more severe MS disease course (51). In this regard, two large

post-mortem studies of CNS specimens reported finding a higher

proportion of smoldering lesions at the expense of inactive lesions

in male compared to female MS brain specimens (49, 50),

suggesting that immune-mediated inflammation persists longer in

WM lesions in males.

Quantitative susceptibility mapping (QSM) is an advanced MRI

method that is used to examine tissue concentrations of

paramagnetic iron, which accumulates in activated microglia at

the rim of smoldering lesions. A small study of QSM in living MS

patients reported that male sex conferred a 10-fold higher risk of

having more than one lesion with an active rim, even after adjusting

for age, symptom duration, EDSS, and MS subtype (52). These

findings are consistent with there being more activated microglia at

the rims of classic WM lesions in men compared with women living

with MS. Whether this increased microglia activation in male WM

lesions is driven by mechanisms intrinsic to microglia, increased

brain iron load in the males, or to immune products released from T

or B cells that reside in the perivascular spaces in these areas

remains unknown.

In addition to classic WM lesions, demyelination occurs in the

cortices in MS and these demyelinated plaques are referred to as

cortical lesions. Cortical lesions are evident even in the earliest

stages of MS, but increase in number as the disease progresses (53).

In this regard, a post-mortem study of advanced MS reported that

males with MS exhibited a higher frequency of cortical lesions

compared to females with this disease (49). Similarly, MRI studies

have reported detecting a higher number of intracortical lesions in

male versus females living with MS (54). The presence of these

lesions correlated with EDSS, lesion load, and the extent of brain

atrophy in the patients (54), suggesting that the increased presence

of cortical lesions may be an additional contributor to the more

severe disability seen in males with MS.

As MS progresses, there is an increase in the proportion of

chronically-demyelinated lesions at the expense of myelinated
Frontiers in Immunology 03
lesions (55). This loss of myelin is associated with reduced axon

conduction, an increase in the metabolic cost of action conduction,

and an increased vulnerability of axons to inflammatory and

oxidative injury (56). Chronic demyelination in MS results either

from an age-related decline in oligodendrocyte precursor cells

(OPCs) or a reduced ability of these cells to differentiate into

mature oligodendrocytes (mOL) in the environment of the WM

lesions due to the presence of pro-inflammatory cytokines and

myelin inhibitory proteins (57, 58). To date, pathological studies in

MS have not detected any differences in the number of OPCs or

mOL in male and female MS brain specimens (48). The proportion

of shadow plaques also does not differ between male and female MS

specimens (49, 50, 59); albeit, one study noted a trend for females

having a greater proportion of shadow plaques as compared to

males during middle-age (50). A smaller study of MS specimens

that scored the extent of myelination in shadow plaques reported

finding a trend for a higher myelination scores in early WM lesions

in female MS specimens (55). Together, these findings suggest a

possible tendency for greater preservation of myelin in MS plaques

in females.

The inflammation and demyelination that occurs in both WM

and cortical lesions leads to axon injury and loss, which is

considered to be the major factor leading to disability and

cognitive deficits in MS (60, 61). A small post-mortem study that

examined axon density at the level of the cervical and thoracic spine

reported that the males exhibit greater spinal cord atrophy and

reduced axon density compared to females with MS (62). Tissue

damage can be also estimated in WM lesions of living patients using

advanced MRI techniques such as diffusion tensor imaging (DTI).

Consistent with pathology findings, DTI studies have reported the

presence of more extensive WM damage in males compared with

females with MS (37, 63). One of these studies that matched male

and patients for WM lesion volumes, disease duration, and

disability scores, showed that males exhibited more WM damage

in the deep grey matter structures including the thalamus (37).

Cerebrospinal fluid (CSF) levels of neurofilament light chain, a

marker of axonal damage, are also reported to be higher in males

compared with females with MS, especially in those with PP-MS

(64, 65).

Atrophy of the whole brain and GM, which contains the cell

bodies of neurons, also occurs in MS and the extent of GM atrophy

is a predictor of cognitive and disability progression in this disease

(66). With some exceptions (9, 67), most studies report that the

extent of whole brain (11, 68, 69) and GM atrophy (9–12, 37, 70) is

greater in male than female patients. In addition, one study that

evaluated cortical volumes in MS by MRI reported that cortical

atrophy is also more extensive in male compared to female patients,

but only when the studied females were restricted to those having a

pre-menopausal MS onset (68), pointing to ovarian hormones as

protective factors against neurodegeneration in MS. In this regard,

there is evidence that both testosterone and estrogens protect

against neurodegeneration in MS (71).

Optical coherence tomography is a technique that has been used

to measure the thickness of the retinal nerve fiber layer. The retinal

nerve fiber layer contains the axons of retinal ganglion neurons that

continue through the optic nerve, which is targeted by the
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autoimmune process in MS. Studies in pediatric MS (<18 years)

showed that there is more advanced retinal nerve fiber layer

thinning in males compared to females with MS, suggesting that

sex differences in neuronal vulnerability may be apparent even

in children with this disease (72). Taken together, these studies

have revealed a greater persistence of inflammation in WM lesions

and a greater cortical lesion burden in men compared to women

with MS as they age. This is accompanied by more severe axon

loss and whole brain and GM atrophy in men. These findings

lie in sharp contrast with the knowledge that the likelihood

of MS and the frequency of relapses is higher in females with

early RR-MS [reviewed in (5)], suggesting that autoimmune

inflammation either unfolds differently in the CNS of men vs.

women or that male neurons or myelin are more vulnerable to

inflammatory insults.
3 Cellular mechanisms that have the
potential to contribute to increased
axonal and neuronal injury in MS

Although the mechanisms of axonal and neuronal loss in MS

are not completely understood, it is known that neuronal injury is

initially caused by the inflammation associated with the

development of autoimmune T cell attacks (73). Early acute MS

lesions contain transected axons and the extent of this transection

correlates with the number of immune cells present in lesions (74).

T cell and monocyte infiltration in the CNS also leads to microglia

activation. Activated microglia and peripheral immune cells

together produce pro-inflammatory cytokines, reactive oxygen

species (ROS), and reactive nitrogen species (RNS), which lead to

the development of glutamate excitotoxicity in neurons (75, 76).

This oxidative stress and glutamate excitotoxicity leads to

mitochondrial dysfunction in the neurons (75, 76). In this regard,

mitochondria in the deep cortical neurons in the progressive MS

brain exhibit impaired mitochondrial respiratory activity (77),

increased mitochondrial DNA mutations, and defects in proteins

associated with the mitochondrial respiratory chain complex

(78, 79). Inefficiencies in the respiratory chain complex lead to

increases in mitochondrial ROS, which can further compound

oxidative damage (80). Mitochondrial dysfunction also triggers

the activation of calcium-dependent degradation pathways within

neurons (81). The loss of OLs in lesions leaves axons more

vulnerable to the effects of inflammation and ROS and increases

the energy requirements for maintaining the membrane potential,

further taxing mitochondria in the neurons (56). OLs have been also

shown to support neurons metabolically by supplying them with

lactate (82, 83), and loss of this support causes degeneration both in

vitro and in vivo (82). Pro-inflammatory microglia also induce the

acquisition of subtypes of astrocytes (e.g. A1-like astrocytes) that

have neurotoxic activity (84). Certain neurons appear to be

particularly vulnerable to this inflammation and oxidative stress,

including the excitatory CUX2+ neurons in the upper cortical layers

in the brain (85), inhibitory (86) or parvalbumin-positive

interneurons (87), and corticospinal neurons (88).
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Though there is a correlation between WM lesion burden and

disability in early MS, this relationship becomes uncoupled in more

advanced MS (89). This is because T cell and microglia activation are

no longer restricted to WM lesions and inflammation spreads into

the “so-called” normal appearing white matter (NAWM) and normal

appearing grey matter (47). In addition, cortical demyelinating

lesions become more prominent contributors to overall axon injury

(47). Further, the axon transection that occurs inWM lesions initiates

a process of anterograde and Wallerian degeneration of the neurons

that continues past the lesion site (90). Disruption of axon transport

in injured axons also leads to atrophy of the neuron soma and

degeneration of synapses, which disrupts transmitter and trophic

support (90). This can lead to the loss of neighbouring neurons (a

process called trans-synaptic degeneration) (90), which may also

explain why relay centers such as the thalamus are susceptible to

atrophy in MS. Therefore, neurodegeneration in MS is a complex

process that is initiated by inflammation, ROS and RNS production,

and glutamate excitotoxicity that leads to demyelination, axon

transection and injury, mitochondrial stress, a gradual dying back

of neurons, and transynaptic nerve degeneration. The increased

neuronal damage in males with MS may relate to sex differences in

any one of these factors or to sex differences in the brain’s

endogenous repair mechanisms. How male sex can alter these

pathological processes will be discussed in the following sections.
4 Male T cells on an individual basis
may be more pro-inflammatory
in MS and EAE

Experimental autoimmune encephalomyelitis (EAE) is an

immune-based model of MS that is most commonly induced in

rodents by immunization with protein components of the myelin

sheath and adjuvants such as Complete Freund’s adjuvant (CFA)

and pertussis toxin (called active EAE) (91). Immunization with

myelin protein induces the expansion and differentiation of myelin-

specific T helper 1 (Th1) and T helper 17 (Th17) cells that migrate

to the spinal cord and brain to initiate inflammatory demyelination.

As in MS, EAE is characterized by T cell and monocyte infiltration,

ROS and RNS production, glutamate excitotoxicity, and synapse

loss, leading to focal mitochondrial and axon damage (92, 93). Over

time, this axon damage progresses to neuron loss and spinal cord

atrophy (94, 95). Despite the utility of EAE in modeling these

aspects of MS progression, studies in conventional EAE have not

been successful in modeling the effect of male sex in accelerating

neurological deterioration. This is because the pathology in these

models is dominated by Th-driven inflammation, and myelin-

specific Th cells have a greater propensity to expand and acquire

a pro-inflammatory Th1 phenotype in female mice [reviewed

in (5)].

However, an effect of male sex in increasing EAE severity has

been observed in passive EAE experiments where an equivalent

amount of purified male or female myelin-specific T cell receptor

(TCR) CD4+ T cells are used to induce the disease (96–98). For
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example, when myelin-oligodendrocyte glycoprotein (MOG) TCR

transgenic T cells (NOD background) are activated in vitro under

Th1 or Th17 polarization conditions and then transferred into

NOD.SCID recipients, male MOG-specific TCR T cells induce a

more progressive EAE course compared to female T cells, that

associates with a greater propensity of the donor MOG-reactive

Th17 cells to produce interferon (IFN-)g (96). Gonadectomy in

mice confirmed that this sex difference was not due to gonadal

hormone influences (96). Studies that used the four core genotype

mouse model, which segregates the influence of sex hormones from

sex chromosomes, clearly showed that the more progressive EAE

phenotype in the male TCR transgenic T cells was due to lowered

expression of Jarid1c, an X-chromosome encoded-histone

demethylase. T cells isolated from male MS patients also

exhibited reduced Jarid1c expression compared to female T cells

(96), indicating that this is a mechanism that is conserved in mice

and humans.

Consistent with these findings, a study that used the 2D2 line of

MOG TCR transgenic mice (C57BL6/J background) showed that

male TCR transgenic T cells that were polarized to Th1 were more

encephalitogenic than female Th1 cells upon passive transfer. In

this case, the more severe EAE correlated with a higher frequency of

the male MOG-specific TCR Tg Th1 cells acquiring a memory

effector phenotype upon in vitro activation with MOG peptide and

interleukin (IL) -12 (97). Another study, that conducted transfers

using MOG TCR transgenic T cells from 1640 mice on the SJL

background, showed that male TCR transgenic T cells caused a

more chronic form of EAE compared to the females, which instead

showed a relapsing-remitting EAE phenotype. In this case, the

chronic EAE phenotype elicited by the male T cells associated with

reduced expression of genes involved in T regulatory (Treg)

differentiation and reduced Treg clustering in the CNS lesions

(98). These findings are consistent with the finding of a higher

frequency of Treg in females compared to males with clinical

isolated syndrome that later fulfilled the diagnosis criteria for MS

(99). Together, these studies suggest that male murine myelin-

reactive Th effector cells are more pathogenic than female Th cells

and are skewed more towards an effector phenotype and away from

a regulatory T cell phenotype.

While CD4+ T cells are the major players in EAE pathology and

MS initiation, CD8+ T cells feature more prominently in WM and

intracortical lesions in MS (47, 100) and viruses such as Epstein

Barr Virus (EBV), which evoke CD8+ T cell immunity, have been

implicated in MS initiation (101). CD8+ T cells are present in the

perivascular cuffs in MS lesions and in the NAWM, are clonally-

expanded, and exhibit a tissue-resident, effector memory phenotype

characterized by high expression of activation (CD69, Ki67, ICOS)

and cytotoxic (FasL, granzyme B) markers and pro-inflammatory

cytokines (IFN-g, tumor necrosis factor (TNF)) (51, 102). Though it

is controversial whether EBV transcripts are present in MS lesions

(103), lesional CD8+ T cells can be cross-activated by EBV antigens

ex vivo (102). This has led to the hypothesis that EBV plays a role in

the initial activation of the autoreactive CD8+ T cells that then home

to the CNS where they recognize CNS antigens (102). However, it

remains to be elucidated whether EBV-specific or autoreactive

CD8+ T cells differ in phenotype between men and women and
Frontiers in Immunology 05
contribute to differences in inflammation or axonal injury in

MS lesions.

What is known is that CD8+ T cells of healthy females have a

greater capacity to expand and are more likely to adopt a T effector

phenotype compared to male CD8+ T cells, characterized by high

IFN-g and granzyme B production (104). This more robust CD8+ T

cell effector activity is associated with greater overall anti-viral

immunity in females (104). In this regard, there is evidence that

slower viral clearance in males can lead to increased MS or CNS

autoimmunity in animal models. For example, polymorphisms in

the cytolytic protein perforin (Prf1) that lead to reduced perforin

expression (and reduced viral immunity), associate with MS

development only in men (105). In addition, infection of mice

with Theiler’s murine encephalomyelitis virus (TMEV) leads to

increased development of the autoimmune demyelination in male

compared to female mice as a result of weaker T cell and antibody

responses and reduced viral clearance in the males (106, 107).

In addition, there is evidence from human studies that the

repertoire of CD8+ T cells, particularly those specific for herpes

viruses that latently infect humans including EBV and

cytomegalovirus (CMV) (a virus that is not implicated in MS)

undergoes shifts from a naïve towards an effector memory or

senescent status with aging (108, 109). It is thought that this shift

is caused by the reactivation of these viruses that leads to a selective

expansion of viral-specific T cell clones and a loss in the diversity of

the TCR repertoire (108). Interestingly, in the case of CMV, the shift

in T cells from a naïve to more senescent status with aging is more

striking in men and is associated with higher expression of TNF

(110), a cytokine that is toxic to both OLs and neurons (111, 112).

Coinciding with this, a greater reduction in the diversity of the

CD8+ T cell repertoire is also described for men compared to

women with MS (113) and MS men have a larger fraction of CD3+

T cells that produce TNF compared to female counterparts (114). A

shift from a naïve and towards a T effector status has been also

observed for EBV-specific CD8+ T cells in healthy individuals with

natural aging (109). However, it remains to be seen whether this

occurs differently between men and women and whether EBV latent

infection is driving the greater loss in TCR diversification and

acquisition of higher TNF expression seen in male CD8+ T cells

in MS.

In conclusion, CD8+ T cell immunity is overall more robust

females, which may impact autoimmune initiation by modulating

the efficiency of viral clearance and tissue damage. In addition, there

is a greater perturbation of the CD8+ T cell repertoire with aging in

males with MS that correlates with increased TNF production.
5 Sex differences in B cells and anti-
EBV humoral responses

Immune infiltrates in the perivascular spaces contain B cells

(115). B cells also are the major cell type that comprises the ectopic

follicle-like structures detected in the meninges in half of SP-MS

patients (116). The appearance of these follicle-like structures

associates with myelin and neuronal damage in the underlying

cortex (subpial cortical lesions) (117–120) and associates with the
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development of a more rapid and severe course of MS (117).

Though cortical lesions have been reported to be more prevalent

in males compared to females with MS either upon autopsy (49) or

by MRI in living patients (54), these studies lumped cortical,

leukocortical, intracortical, and subpial lesions together, making it

unclear whether the subpial lesions were more abundant in males.

This distinction is important since leukocortical and intracortical

lesions resemble WM lesions in that they are driven by intravascular

inflammation whereas subpial lesions associate with meningeal

inflammation (121). Magliozzi and colleagues did note a trend for

a higher female to male-ratio in the MS brain specimens that

contained B-cell-follicles compared to those that did not,

suggesting a tendency for a higher probability of women to this

immune reaction in MS (120). Since B cells and plasma cells in the

meninges are expected to be the major producers of intrathecal Ig,

IgG index and the presence of oligoclonal bands have been

evaluated in the cerebral spinal fluid of male and female MS

patients, but were found to not differ between the sexes (122).

However, larger cohort studies did report that oligoclonal band

negative patients with MS were more likely to be male (123, 124).

These data suggest a tendency for an increased presence of B cell

clusters and oligoclonal bands in females, which is consistent with

the knowledge that healthy females have higher numbers of

immunoglobulin (Ig) M-producing memory B cells in peripheral

blood (125, 126) and exhibit overall better antibody responses to

vaccination (126) than males.

EBV infection is a risk factor for MS and B cells are the cellular

reservoir for this virus (101). Some, but not all (127, 128) studies,

have reported detecting EBV-infected B cells and plasma cells in the

meningeal ectopic follicle-like structures (129–131) and in

perivascular spaces within the cortex (132) in MS brains. It has

been speculated that EBV infection can lead to the over-activation

of B cells, including those in the meningeal ectopic follicle-like

structures [reviewed in (133)]. Humoral responses against the EBV

encoded transcription factor Epstein-Barr virus nuclear antigen 1

(EBNA-1) precede conversion to clinically-definite MS (134, 135).

Those with clinical isolated syndrome or MS having the highest

quartile of serum IgG antibodies specific either for the viral capsid

antigen (VCA) in EBV or EBNA-1 have been reported to have

greater T2 lesion burden and extent of whole brain or GM atrophy

compared to patients having lower IgG levels (136–138). Despite

this link between the EBV and MS progression, studies that

examined sex differences in B cell responses against EBV are

scarce. Healthy human females are reported to have higher titers

of anti-EBV antibodies (139–141) and are more likely to be

seropositive (140) than healthy males. One study of Kuwaiti MS

patients, reported that serum titres of anti-EBNA1 and anti-VCA

were higher in males with MS compared to healthy male controls;

levels did not differ between MS males, healthy females and MS

females (142). The selective increase in EBV antibodies in males

with MS could indicate greater re-activation of the virus in this sex.

The success of anti-CD20 B cell-depleting therapy in both RR-MS

and in PP- MS (143, 144) has highlighted the importance of B cells in

MS disease mechanisms. These therapies deplete memory B cells in

the blood, but do not impact intrathecal IgG levels (145). This B cell

depletion is also associated with a decrease in T effector and
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terminally-differentiated T cell populations (146), which has been

speculated to occur as a result of reduced B cell antigen presenting

function (147) or depletion of a highly-activated CD20+ subset of T

cells that acquire CD20 from B cells through interactions (148). With

respect to sex, anti-CD20 therapy is an effective treatment in both

men and women with MS (149). To the best of our knowledge, there

exist no reports that have evaluated sex differences in the antigen

presenting function of B cells in MS before or after anti-CD20

therapy. Therefore, at present there are no strong data to suggest a

role for B cells in driving sex differences in MS progression.
6 CD56bright NK cells are increased
in the peripheral blood of
females with MS

Human NK cells can be subdivided into two major subsets

according to the expressions of CD16 and CD56: the

CD16+CD56dim subset and the CD16-CD56bright subset. Both of

these subsets are cytolytic, however, the CD56dim subset is the more

mature of the two and is capable of killing target cells without prior

sensitization, whereas the CD56bright subset is considered to have a

regulatory function (can lyse activated T cells), expresses higher

amounts of modulatory cytokines, and acquires cytolytic function

only after prolonged activation (150). The CD56dim NK cells are the

major population found in blood, whereas the CD56bright subset is

more prominent in secondary lymphoid organs (150) and in the

CSF and perivascular spaces in MS lesions (151). Whether there

exist sex differences in the abundance or activity of NK cells within

MS lesions or in the CSF has not been investigated; however, one

study has investigated sex differences in the levels of NK cell subsets

in peripheral blood of MS patients and healthy individuals. Though

no sex differences were detected in the frequency of NK subsets

when comparing healthy controls or MS patients, CD56dim NK cells

were found to be more activated in the blood of males with MS

compared to healthy males, whereas the CD56bright NK cells were

increased in the blood of females with MS relative to healthy

females, suggesting increased NK regulatory function in this sex

(152). Future studies should examine the proportion and

functionality of these subsets in MS lesions or the cerebral spinal

fluid to gain further insights into sex differences in the regulatory

function of CD56bright NK cells in this disease.
7 Female microglia become more
reactive with age compared
to male microglia

As discussed previously, men have a higher predominance of

smoldering lesions with active rims of microglia compared to

women (49, 50). Consistent with this, one study that evaluated

the expression of pro-inflammatory cytokines (IL-1b, IL-6, and
TNF) in MS lesion samples, reported that compared to female

lesions, male lesions express higher levels of TNF, a factor that is

expressed by microglia (153).
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In adult mice, microglia density is reported to be higher in

males than in female in the cortex, hippocampus, and the

cerebellum (154). Although the basal phagocytic activity of

microglia does not differ between males and female adult mice in

situ, male microglia in the cortex have a rounder morphology and

intracellular recordings of membrane current responses in

individual microglia after application of ATP suggest increased

expression of the P2X receptor (that senses of ATP released from

damaged cells) in male compared to female microglia in the cortex

(154). Cortical microglia from males also express higher levels of

MHC Class I and II in situ compared to the females (154). However,

it still remains unclear whether these altered microglia

characteristics are due to factors in the environment of the

microglia (e.g., more T cells or cell damage) or sex differences in

the potential of microglia to respond to their environment.

In regard to the latter, a number of studies have characterized

sex differences in microglia phenotype in rodents ex vivo. For

example, marked sex differences are detected in microglial gene

expression after microglia cells are isolated from mice and cultured

in vitro or passaged (an in vitro model of microglia senescence).

Young female microglia express higher levels of pro-inflammatory

genes (such as IL-6, TNF, Toll-like receptor 4 [TLR4]) compared to

male microglia after stimulation with IFN-g; however, when the

microglia are passaged, female microglia lose this ability to

upregulate these pro-inflammatory factors, whereas male

microglia uniquely upregulate IL-1 mRNA in the absence of IFN

stimulation (155). In addition, female aged microglia exhibit an

increased ability to phagocytose neuronal debris in vitro compared

to male aged microglia (155), which may aid in myelin repair.

Though this culture system is artificial, it raises the possibility that

sex differences in microglia senescence could be a factor in sex

differences in MS progression.

Microglia gene expression has been also studied in situ or after

direct isolation from young adult male and female mice. A study by

Villa et al. that compared gene expression profiles in male and

female microglia reported that the male microglia express higher

levels of genes involved in inflammatory processes compared to

female microglia; male enriched genes contained binding sites for

NF-kB and RUNX1 transcription factors (156). By contrast, female

microglia expressed higher levels of genes associated with

morphogenesis, development, and cytoskeletal organization (156).

Interestingly, these sex-dependent patterns of gene expression were

not sensitive to estrogen treatment and were maintained even after

in vitro culture or transplant into mice of the opposite sex (156),

suggesting that they were specified earlier in development by either

sex chromosome complement or early life hormonal surges. Similar

to these findings, Hanamsagar and colleagues reported that male

microglia are more reactive to lipopolysaccharide (LPS) or bacterial

stimulation in vitro and that this sex difference was apparent up to

day 60 of post-natal development (157). A study by Guneykaya and

colleagues that examined microglia in 13 week-old mice reported

that MHC Class I and II were expressed at higher levels by male

compared to female mice in the cortex suggesting increased antigen

presenting cell capacity of the male microglia (154). Analysis of

gene expression in the isolated microglia revealed greater expression

of genes involved in the defense to bacteria and greater protein
Frontiers in Immunology 07
expression of TLR and S100 proteins. In addition, male microglia

exhibited higher expression of genes involved in “ATP binding” and

higher protein expression of the ATP-sensing purinoceptors P2X 4

and 7 and P2Y purinoceptor 12 (154). On the other hand, female

microglia were enriched for transcripts involved in “GABA and

glutamate receptor activity”, ubiquitin protein activity”, and

“magnesium transport” and showed higher protein expression of

interferon regulatory factor-3 (Irf-3), which is a factor that is

involved in inducing Type I IFN (154). Consistent with the latter,

Thion et al. reported that female murine microglia have higher

expression of genes involved in type I IFN signalling (158). This

study also noted that the animal facility where the mice are housed

(microbiota/diet) had a large impact on microglia gene expression

(158), providing a possible explanation for the disparities in

microglial signatures reported by different groups. Altogether,

these findings suggest that male microglia may be more

responsive to bacterial products or ATP released from dying cells,

whereas female microglia may exhibit heightened IFN production

and responsiveness.

Studies that evaluated murine microglia in the context of aging

have suggested that female microglia acquire a more pro-

inflammatory phenotype in the steady state and during disease. A

study that measured gene expression in the hippocampus of young

adult, middle-aged, and old male and female mice concluded that

pathways related to inflammation, macrophage activation, and

activation of the “sensosome” (i.e., TREM2, complement

expression) in microglia were increased with middle- and old-age

in female mice. This increase occurred, but was less striking, in the

males (159). Comparison of these aging-related transcripts against

gene expression profiles of CNS resident cell types suggested that

the age-related genes were enriched for microglia-specific

transcripts (159). Similar to these findings in mice, a study of

aging in the human brain reported finding more extensive

upregulation of inflammatory genes (e.g., TLRs, complement

CD3, CD14) and pathways (antigen presentation, IFN-regulated,

macrophage activation) in female compared to males. Furthermore,

a study that evaluated microglia in a genetic model of Alzheimer’s

disease reported that female microglia experience a greater

downregulation of genes associated with a homeostatic phenotype

and a greater upregulation of genes associated with a damage-

associated microglia phenotype with age (160). Striking sex

differences were also seen in the morphology and metabolism of

the microglia in that the male microglia were more amoeboid and

less glycolytic than the female microglia (160). Another study that

evaluated microglia activation in aged wild type mice, and genetic

mouse models of Ab and tau pathologies, using 18-kDA

translocator protein positron emission-tomography (TSPO-PET)

reported detecting a higher signal for female microglia in both the

wildtype and Ab mice, but not in the tau model of Alzheimer’s

disease (161). This TSPO-PET signal correlated with increased

staining for microglia activation markers Iba1 and CD68 in the

female brain sections. Similarly, TSPO-PET studies in humans

describe a higher TPSO-PET signal in the brains of healthy

women versus healthy men (162).

It has been difficult in EAE studies to interpret whether there are

sex differences in microglia phenotype, since T cells infiltrate the
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CNS to a greater extent in the female than male mouse [reviewed in

(5)]. Nonetheless, EAE studies identified that p38a signalling

operates in a sex- and cell-dependent manner to modulate CNS

inflammation in this disease. When the activity of this kinase is

knocked out in the peripheral myeloid compartment, EAE is

initially more severe in both sexes (163–165), but then becomes

progressive only in mice of the female sex (164). In contrast, when

p38a expression is knocked down only in microglia, EAE is

exacerbated more so in the males (165). Deficiency of p38a in

male microglia associates with a pronounced upregulation of a

number of pro-inflammatory genes; these same genes were not

altered or were downregulated in the female microglia with p38a
deficiency (165). Thus, there exist sex differences in the activity of a

key signalling intracellular signalling pathway in microglia.

In conclusion, the literature suggests that female microglia are

more reactive to IFNs and become pro-inflammatory with age,

which contrasts with the finding that men with MS exhibit more

smoldering microglia activation at rim of WM lesions during

disease progression. It is possible, that the increased microglia

seen in male lesions is to an increased responsiveness to damage-

associated signals such as ATP, the increased presence of

inflammatory mediators secreted by lymphocytes in the

perivascular spaces, or enhanced iron release from OLs (discussed

in Section 9).
8 Astrocytes may be more reactive in
males with EAE and MS

Astrocyte activation also accompanies microglia activation in

WM lesions in MS and EAE (166–168). In MS, the disruption of

astrocytic end-feet around blood vessels and the appearance of

hypertrophic astrocytes at the rim of WM lesions is one of the

earliest histopathological features in the acute MS lesion, and

astrogliosis, defined as increased expression of glial fibrillary

acidic protein (GFAP), occurs alongside chronic demyelination

and axon loss in the core of demyelinated lesions (169).

Astrocytes become reactive upon exposure to pro-inflammatory

mediators and danger signals in EAE and MS lesions (170). Studies

in EAE have shown that astrocytes are also key producers of CCL2,

which mediates immune cell recruitment to the CNS (171). In

addition, astrocytes can acquire a neurotoxic phenotype in MS and

EAE (172). Furthermore, protein products that are released from

dying astrocytes such as GFAP and chitinase-3-like protein 1

(C3L1) are detected at increased levels in the CSF and serum of

MS and are prognostic biomarkers for disease progression

(173–175).

Astrocytes, like microglia, can also exert anti-inflammatory and

neuroprotective activities in MS and EAE [reviewed in (170)].

Astrocyte loss-of-function experiments in mice have demonstrated

that astrocytes, overall, have a protective function in EAE (176, 177).

The end-feet of these cells forms the glia limitans of the blood brain

barrier (170). In addition, these cells directly connect with OLs

through gap junctions and contact many neurons where they

produce energy, neurotransmitters, and buffer ions to support the
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health and conduction of neurons and OLs (170). Astrocytes also

produce low levels of anti-inflammatory cytokines such as IL-10 and

are important producers of brain-derived neurotrophic factor (BDNF)

(170), which is protective against axon injury in EAE (178) and

cuprizone-induced demyelination (179).

Regarding sex differences in astrocytes, levels of GFAP and

C3L1 levels are not reported to differ between male and female MS

patients in the CSF (65, 174). However, another astrocyte-produced

factor, macrophage inhibitory factor (MIF), has been implicated to

be a male-specific factor in predicting MS progression. MIF is

highly expressed by hypertrophic astrocytes in chronic MS lesions

(180) and the levels of MIF in the serum correlate with EDSS score

and the number of black holes (areas of permanent neuronal loss)

on MRI (181). Males with progressive forms of MS also exhibit

higher levels of MIF in the CSF compared to females (180, 182).

Furthermore, polymorphisms in the MIF gene that associate with

increased MIF expression predict the development of a progressive

MS course only in males (182). Studies in the EAE model have

confirmed that MIF has pro-inflammatory activities during

neuroinflammation (183) and that this factor is expressed at

higher levels in the spinal cords of male compared with female

mice during disease (184).

Besides these findings for MIF, it remains controversial whether

there exist sex differences in astrocyte phenotype in EAE, with some

studies showing greater activation in males and others showing

greater activation in females. For example, post-natal isolated

astrocytes derived from males have been shown to express higher

levels of IL-1, TNF, and IL-6 mRNA after culture in the presence of

LPS compared to female astrocytes (185), suggesting that there may

be intrinsic sex differences in the potential of astrocytes to become

activated in response to bacterial stimuli. Studies in a murine model

of stroke also reported that male mice exhibit worse outcomes,

correlating with more extensive astrocytic changes in calcium flux,

release of S100b protein, and altered polarization of expression of

aquaporin 4 (expressed in astrocyte end-feet); this occurred despite

females having increased microglia activity (186). More extensive

astrocyte and microglial activation has also been observed in males

in a cortical brain injury model (187). In this case, males showed a

higher density of microglia at the edge of the wound that correlated

with higher expression of CCL2 by astrocytes (187). In the

cuprizone-induced demyelination/remyelination model, male

mice exhibited greater deficits in conductivity in the corpus

callosum (CC) in the remyelinating phase of disease that

associates with higher GFAP and Iba1 staining (188). In MOG

peptide 35-55 (MOG p35-55)-induced EAE in C57BL6/J mice,

some studies report that males exhibit more pronounced GFAP

immunoreactivity in the spinal cord (189, 190); however, this is not

observed in all studies: one study found equivalent GFAP

expression in the spinal cord of males and females and that it was

the females that had a higher number of C3+ GFAP+ cells (marker

of neurotoxic astrocytes) in the optic nerve (172). Taken together,

these studies suggest that males may be more prone to astrogliosis

in some models of brain injury.

Astrocytes also are key mediators of the neuroprotective effects

of gonadal hormones in EAE and MS. Mice that have deletion of

estrogen receptor (ER)-a specifically in astrocytes, but not in
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neurons, are resistant to the neuroprotective responses to estrogens

(191). Further, treatment with an ER-a ligand substantially

ameliorates clinical symptoms, peripheral immune cell

infiltration, and axonal loss in female mice with EAE; effects are

exclusively mediated through astrocyte-induced ER-a (191).

Further, treatment with an ER-a ligand reduces the expression of

chemokines CCL2 and CCL7 by astrocytes, suggesting a role for

estrogens in regulating the severity of developed inflammation (72).

However, a drawback of these studies is that they were only

conducted in female mice, thereby not permitting an evaluation

of how this biology factors in one sex versus another.

Consistent with hormone signalling being protective in

astrocytes, a histopathological study of female and male MS

lesions detected an upregulation of sex hormone receptors in MS

lesions compared to the surrounding healthy tissue and NAWM

and found that this occurred in a sex-dependent manner (153).

Females preferentially upregulated the progesterone receptor and

an enzyme involved in progesterone synthesis, whereas males

upregulated TNF, ER-b and aromatase, which can convert

testosterone to estradiol (153). Immunolocalization studies

confirmed that the expression of the hormone receptors and

hormone synthesizing enzymes in the GFAP+ astrocytes. Though

associative, these findings suggest that progesterone and estrogen

are part of an endogenous protective mechanism in MS and that

females harness progesterone to mediate this protection, whereas

males harness ER signalling, which may be less effective in

inhibiting inflammation as evidenced by the higher expression of

TNF (153).

Taken together, these finding suggest that astrocytes produce

and respond to steroids and mediate the neuroprotective effects of

ovarian hormones in the brain. There is evidence from animal

studies that male rodents may be more prone to develop reactive

gliosis during injury and neuroinflammation and that MIF-1, a

factor that produced by astrocytes in MS lesions associates with

disease progression in males with MS.

9 Iron accumulates at the rim of
active lesions and in deep GM nuclei
more so in males with MS

Iron is present in the healthy brain where it is essential to

supporting the normal metabolic functioning of neurons and glia

and myelin repair mechanisms (192). Iron is primarily stored in the

non-toxic ferric (Fe3+) form bound to ferritin and these stores are

contained in OLs and to a lesser extent in neurons, microglia and

astrocytes (193, 194). However, during acute MS attacks iron is

liberated from dying OLs where it collects in granules in the

perivascular space and can be taken up by microglia and

macrophages (194). During this process, there is a conversion of

ferric iron into the more reactive ferrous (Fe2+) form, which can

interact with oxidants produced by microglia and macrophages to

generate the highly reactive and neurotoxic hydroxyl molecule

(192). Ferrous iron is localized in areas of axon injury and

oxidative damage in acute WM lesions and in deep grey matter

nuclei in MS (194), suggesting that it contributes to the
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development of neuronal injury in this disease. Over time, this

pathological release of iron from OLs leads to a depletion in iron in

demyelinated cores of WM lesions and in the NAWM and to an

increase in iron in microglia at the rim of smoldering lesions as well

as the deep grey matter nuclei. Iron-laden microglia acquire

dystrophic features such as fragmented processes, suggesting that

these cells are damaged by increased iron load (194).

Regarding sex differences, QSM MRI studies in living MS

patients have demonstrated that iron accumulates more so in

men compared to women both at the edge of smoldering WM

lesions (52) and in the caudate and putamen (195), which are highly

susceptible to neurodegeneration and atrophy in MS (192).

However, a pathological study of iron in deep GM nuclei

reported finding no sex differences in the extent of demyelination,

and if anything female lesions showed a higher iron density and

staining for oxidative lipids (193), suggesting that the interaction of

iron with ROS to produce oxidant species may be higher in females.

On the other hand, iron load is higher in men as compared to

women in deep grey matter nuclei during healthy aging (196–198)

and in MS (195) suggesting that there is more iron in these regions

that can be liberated from male OLs if they are damaged.

One study that investigated the effects of iron overload on the

development of EAE in Dark Agouti rats reported that iron

treatment accelerated development of EAE in females, but

resulted in greater progression and higher mortality from disease

in the males (199). This more extensive damage in the males

correlated with a higher degree of CNS lipid peroxidation and

demyelination and gliosis in the spinal cord, providing proof of

concept that high iron can accelerate neurological progression

(199). Taken together, the finding of a greater accumulation of

iron in the brains of males in areas that are implicated in MS

progression is compelling, but further studies are necessary to

define whether iron is a pathogenic factor in the increased

microglia activation and neurodegeneration seen in WM lesions

the males or is an epiphenomenon related to the increased microglia

activation or OL damage at these sites.
10 Sex differences in susceptibility to
demyelination and repair

It has been suggested that females with MS have an advantage

when it comes to myelin repair in lesions (55). Studies in rodents

have described a number of sex differences in myelin biology in the

steady state and in toxin-induced demyelination/remyelination

models that may account for this sex difference. For example, a

study that evaluated myelination in different brain regions in

rodents found that the density of OLs was higher in the CC, the

fornix and the spinal cord of males versus females (200). This was

seen in a variety of rodent strains and was accompanied by higher

expression of mature myelin proteins such as proteolipid protein

and myelin basic protein in the males (200). On the other hand, it

was observed that female OLs turned over at a faster rate than the

male OLs (200). Castration of the males reduced the number of OLs

and increased the generation of new OPCs in the males (200),

suggesting that sex differences in myelination are regulated by male
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gonadal hormones. Similar sex differences in myelination were

observed in the CC of mice in another study that also provided

evidence of a role for the post-natal surge in androgens (i.e., mini-

puberty) in mediating these sex differences (201). Consistent with

these findings, a study that compared the in vitro proliferation and

differentiation of OPCs that had been isolated from perinatal (1-2d

old) rats noted the same phenotype of increased proliferation of the

female OPCs and a greater ability of the male OPCs to differentiate

to mOLs in vitro (202). Besides these sex differences in myelin

turnover and differentiation, female OPCs exhibit more rapid

migration compared to male OPCs by scratch assay, and are less

vulnerable to in vitro glucose deprivation compared to male

OPCs (202).

Sex differences in the extent of demyelination and/or

remyelination have been observed in rodent models of toxin-

induced demyelination. For example, a study of cuprizone-

induced demyelination in SJL mice reported that there is a greater

sparing of mature OLs in the CC of females compared to males in

the demyelinating phase of disease (203). This sex difference was

not accompanied by differences in the extent of microglia or

astrocyte activation or in the density of OPCs between males and

females (203). By contrast, no sex differences in MBP staining were

seen in the demyelination or remyelination phase in a cuprizone-

induced demyelinating model in C57BL/6 mice (188, 204).

However, an experiment in C57BL6/J mice that evaluated the

effect of gonadectomy on the kinetics of demyelination and

remyelination revealed that castration and ovariectomy hindered

remyelination after cuprizone withdrawal (188). This defect in

remyelination with gonadectomy was restored by exogenous

treatment with estradiol and testosterone, which can be

aromatized to estradiol, but not dihydrotestosterone (DHT),

which binds the androgen receptor, but cannot be aromatized to

estradiol; this effect of sex hormones correlated with an increased

number of OLs in the CC (188). These findings suggest that

estradiol is a factor that can promote remyelination in both males

and females (188).

Further supporting myelin-protective effects of estradiol,

treatment with pregnancy levels of estradiol prevents the loss of

OLs in the CC during the demyelinating phase in the cuprizone-

induced demyelination model that correlates with a delay in

microglia recruitment and activation (205). Estrogen treatment

also improves remyelination in a more chronic (6 or 9 weeks)

cuprizone feeding regimen and this correlated with an increase in

the number of OPCs, immature and mature OLs in the CC (206).

These protective effects are negated in mice that were deficient in

ER-b in cells of the OL lineage (206). Further studies using a specific
ER-b agonist revealed pro-myelinating effects of this agonist in EAE

that associated with an upregulation of the expression of genes

related to cholesterol synthesis in the OPCs (206). In addition to

estradiol, the ovarian hormone progesterone has been shown to

stimulate the proliferation, migration and maturation of OPCs via

the insulin-like growth factor pathway in vitro (207) and the

additive activities of estradiol and progesterone can protect

against demyelination in the CC during the demyelinating phase

of the cuprizone model (208). Thus, estradiol at physiological

concentrat ions can promote remyelination and when
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administered at pregnancy levels along with progesterone can also

spare myelin in toxin-induced demyelinating models.

The role of sex chromosome complement on demyelination and

remyelination has been also investigated in the cuprizone

demyelinating/remyelination model using the four core genotype

mice. When these four sets of mice (gonadal XX females, gonadal

XX males that are transgenic for the testes determining gene Sry,

gonadal XY males, gonadal XY-Sry-/- females) are gonadectomized

and subjected to cuprizone feeding followed by a period of

cuprizone withdrawal, it was found that mice that had an XX

chromosome complement had significantly higher electrical

conductivity in the CC during the remyelinating phase of disease.

This greater recovery correlated with higher proliferation of the

female OPCs compared to the male OPCs (209).

Aging may also be a factor in the sex differences in myelination.

In the ethidium-bromide-induced demyelination model, ethidium

bromide is injected into the caudal cerebellar peduncle, which

results in focal demyelination and this is followed by a period of

spontaneous remyelination over 4 weeks. When this experiment

was conducted in young rats, no sex differences were seen in

myelination (210). However, in older rats, which remyelinate

more slowly, older females showed more extensive myelination at

8 weeks post injection of ethidium bromide compared to males

(210). Gonadectomy did not influence these sex differences,

suggesting that they were hard-wired in OPCs at an earlier stage

of development.

Neuronal progenitor cells (NPCs) are multipotent cells that can

self-renew, and migrate to injured WM regions in both EAE (211)

and in cuprizone-induced demyelination model (212) where they

can give rise to astrocytes, OPCs, and neurons. These cells are

located in the subventricular zone and the dorsal lateral horn in the

brain. A study that examined sex differences in the proliferation of

NPCs in the steady state in C57BL6/J mice, found no differences in

the proliferation of these cells in young adult male and female mice;

however, with middle age, the proliferation of NPCs declined more

so in the males and this sex difference was reversed by castrating the

males. OPCs numbers in the CC changed in lock step with the

number of BrdU+ NPCs in the dorsal lateral horn suggesting that

the progenitor cells were differentiating into OLs in the CC.

However, no sex differences were observed in the number of

proliferating NPCs in other mouse strains. Thus, while results

vary between rodent strains and model systems, the data

collectively point to females having an advantage when it comes

to either sparing or regenerating myelin, particularly during aging.
11 Sex differences in neuron
vulnerability and circulating
levels of neurotoxic molecules

In addition to the mechanisms described above, there is

evidence from both murine EAE and in vitro studies that male

neurons are more vulnerable to the pro-inflammatory molecules

and ROS and RNS generated during neuroinflammation. For

example, studies in EAE that utilized the four core genotype
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mouse model provided strong evidence for a role for XX

chromosome complement in protecting neurons from damage

(213). Studies were performed where gonadal female mice (XX or

XY-Sry-/-) were irradiated (which removes the immune system) and

then provided with either XX and XY-Sry-/- bone marrow, thereby

generating mice that had ovaries and equivalent hormone levels but

had either an XX or XY-Sry-/- genotype in the radioresistant

(microglia, neurons, astrocytes) or radiosensitive (immune

system) compartment. When the radiation bone marrow

chimeras were induced to have EAE, XY-Sry-/- gonadal female

recipients developed more severe clinical symptoms than XX

gonadal females regardless of chromosomal sex in the immune

system (213). The more severe EAE in the XY-Sry-/- females did not

correlate with the extent of T cell or macrophage infiltration in the

CNS, but instead with more severe loss of myelinated axons and

neurons (213) . Interest ingly , the major corre late of

neurodegeneration in XY-Sry-/- females was higher expression off

the X chromosome-encoded gene Tlr7 in neurons (213). Additional

work revealed that this was due to lower methylation of a gene

cluster that included Tlr7 on the inherited maternal versus paternal

X chromosomes: males in only inheriting the maternal X had higher

expression off this gene cluster compared to the females which had a

mosaic of expression of these genes off the paternal and maternal X

chromosome (214). Thus having an XY chromosome complement

made male neurons more vulnerable to inflammatory insults.

Consistent with this, in vitro studies of neurons have also

revealed cell-intrinsic differences in the viability of male and

female neurons. For example, when primary hippocampal

neurons are harvested from embryonic day 16-17 rat pups and

cultured with a variety of toxic agents, XY neurons are more

vulnerable to oxidative, nitrosative stress, and glutamate

excitotoxicity compared to XX neurons (215). Treatment with N-

acetylcysteine, which raises glutathione levels, reverses these sex

differences pointing to sex differences in antioxidant defence

mechanisms in neurons (215). This study also demonstrated that

XX and XY neurons proceed through different pathways of

apoptosis during nitrosative stress, with the XY neurons utilizing

an apoptosis-inducing-factor-dependent pathway and XX neurons

utilizing a cytochrome C-dependent pathway (215). Together, these

studies further point to intrinsic sex differences in the neuron

vulnerability driven by sex chromosome complement.

One reason neurons die in MS is because mitochondria become

damaged as a result of oxidative and nitrosative stress, leading to

respiratory chain deficiencies, energy deficits, and increased

mitochondrial ROS production (80). Studies in rodents have

provided strong evidence that mitochondria from female brains

or neurons have greater respiratory function and higher resistance

to oxidative damage in response to treatment with neurotoxins. For

example, mitochondria isolated from brains of young female mice

exhibit higher NADH-dependent respiratory rate compared to male

microglia, that associates with a higher activity of pyruvate

dehydrogenase and increased glutathione concentrations in the

female mitochondria (216). This sex difference correlates with

brain progesterone levels and is negated by aging or ovariectomy

of the females, but not by castration of the males (216). Consistent

with this, a study in rats showed that mitochondria that were
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isolated from the brain exhibited a reduction in function with aging,

especially in the males who showed reduced mitochondrial capacity

compared to the females (217). In addition, in vivo treatment of

female rats with the ovarian hormones E2 and progesterone

increased the respiratory rates of brain mitochondria, which

correlated with increased cytochrome C oxidase and reduced rate

of oxygen leak and lipid peroxidation (a sign of oxidative damage)

in the mitochondria (218). Studies in a murine model of

Alzheimer’s disease have also shown that female neurons are

more viable than male neurons due to the female mitochondria

being less vulnerable to calcium overload (219).

Sex differences in neuronal vulnerability linked with altered

mitochondrial function have also been seen in studies that treated

mice or neurons with neurotoxins that target the respiratory chain

including 1-methyl-4-phenyl-1, 2, 3, 6 (MPTP) and b-N-oxalyl
amino-L-alanine (L-BOAA). For example, treatment of mice with

MPTP results in a loss of dopaminergic neurons in the substantia

nigra only in male mice, which correlates with lower levels of

glutathione mRNA in the male brain; females become sensitized to

the neurotoxin when treated with an ER-a antagonist (220).

Similarly, when mesencephalic neurons are cultured in vitro with

another toxin, 6-hydroxydopamine, which is used to induce

experimental Parkinson’s disease, female neurons are less

vulnerable to apoptotic and necrotic death and this correlates

with increased expression/activity of mitochondrial respiratory

subunits and reduced ROS production (221). In addition,

treatment of mice with L-BOAA, which induces mitochondrial

protein oxidation, only elicits motoneuron death in male mice and

this protection in females associated with higher expression of

glutaredoxin, which is a component in the glutathione

antioxidant system in the CNS (222). Females are made

vulnerable to the neurotoxin by ovariectomy or by knocking

down glutaredoxin (222).

Homocysteine is an amino acid generated from the dietary

methionine that has toxic activities on neurons even when present

at physiological concentrations (~10 µM) [reviewed in (223)].

Studies have demonstrated that in vitro treatment of neurons

with homocysteine contributes to increased mitochondrial

dysfunction and oxidative stress, and stimulates apoptotic and

excitotoxic pathways in these cells (223). Accordingly, a number

of studies have reported that homocysteine is present at

significantly higher levels, close to the range of neurotoxicity, in

the plasma of male compared to female MS patients (224, 225). One

study that investigated the concentrations of homocysteine in the

plasma in MS patients and healthy controls reported it to be

uniquely elevated in the male MS group (224). Another study

reported homocysteine levels to be higher in the males compared

to the females both in healthy individuals and those with MS (225).

This study further showed that homocysteine levels associated with

more rapid progression, increased disability, and the development

of a more progressive course of disease (225). Therefore, elevated

homocysteine levels could be an additional factor that is

contributing to increased neurodegeneration in males.

Taken together, studies in rodent models suggest that XY

neurons are more vulnerable to inflammatory and oxidative

stresses compared to XX neurons due to sex differences in X
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chromosome methylation and effects of ovarian hormones in

promoting mitochondrial respiration and antioxidant defense

mechanisms. Further homocysteine is a neurotoxic factor that

circulates at higher levels in males. If these findings translate to

MS, it would give female neurons a survival advantage in the pro-

inflammatory environment of the MS lesion.
12 Sex differences in gut microbiota

Gut dysbiosis, which is defined by a reduced diversity or altered

composition of bacterial species in the gut, has been reported to

occur in MS [reviewed in (226)]. Besides having a potential to cross-

activate autoreactive T cells through antigen molecular mimicry

(227), gut bacteria can promote or modulate systemic inflammation

through bacterial translocation, by increasing gut permeability, or

through differential production of bacterial metabolites (228). Proof

of concept that the microbiome can modulate the immune system

in MS was provided by the seminal study that colonized germ-free

mice with the microbiota from twins that were discordant for MS

(229). Though sequencing of the microbiota did not identify major

differences between the MS or healthy microbiota, the microbiota

from the RR-MS patient had the effect of increasing the incidence of

spontaneous EAE in recipient TCR transgenic mice compared to

the healthy twin microbiota and this associated with a reduction in

IL-10 producing T regulatory cells (229). Furthermore, there is

strong evidence that production of metabolites by certain species of

gut bacteria is protective in MS. For example, short-chain fatty acids

(SCFA) butyrate and propionate protect against the development of

EAE (230) and MS autoimmunity (231) by shifting the balance

between T effector cells and T regulatory cells. Indeed, a clinical trial

in MS showed that propionate treatment reduced relapses,

stabilized disability, and reduced brain atrophy after 3 years,

providing proof of concept that SCFAs can regulate disability

progression (231). Studies in mice have provided strong evidence

that the bacterial composition of the gut and lung microbiota and

generated metabolites can affect the phenotype of microglia and

other glial cells in the CNS (232–235).

Though a large majority of studies of the microbiota in MS have

focused on RR-MS, several studies have reported on microbiota

changes in progressive MS (236–239). Although differences were

found in the composition of gut bacteria between healthy people and

MS patients, no major differences were found between SP-MS and

RR-MS patients; with the exception of a small number of bacterial

species (238, 239). For example, a study in Japan that sequenced gut

bacteria in people with various MS subtypes found increased

expression Streptococcus and S. parasanguinis in SP-MS compared

to RR-MS (238). Metagenomic analysis revealed an increased

presence of microbial genes involved in DNA mismatch repair and

reduced microbial carbohydrate metabolism, whereas metabolite

analysis revealed an increased ratio of cysteine persulfide to

cysteine (238). The authors interpreted these data to indicate that

there is excessive DNA oxidation in the gut of SP-MS patients and

speculated that it was due to the overgrowth of Streptococcus that can

produce hydrogen peroxide. Unfortunately, this study was small and

the authors did not disaggregate their data according to sex.
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A study of the CLIMB cohort in Boston reported finding 16

species of bacteria that were differentially abundant between RR-MS

and SP-MS patients including Bacteroides, Enterobacteriaceae and

Clostridium g24 FCEY (237). They also found that the abundance of

the Clostridium species associated with higher EDSS and fatigue

scores in the patients, suggesting that these bacteria could be a driver

of disease progression (237). Though this study identified sex to be a

contributor to microbiome variation, the authors controlled for this

variable as opposed to presenting data by sex, making it difficult to

study the interaction of sex with microbiota composition in disease.

Sex differences in gut microbiota have been described for both

healthy humans and rodents [reviewed in (240)]. Akkermansia, and

its family, Verrucomicrobiaceae, and Bacteroides spp. are more

abundant in healthy female mice (241, 242) and female humans

(243, 244) compared to male counterparts. Although the genus

Akkermansia is increased in progressive MS and EAE (237, 245), its

presence correlates with lower disability in both progressive MS

(237) and in the progressive phase of EAE in NOD mice (246). The

gut microbiota of animals with RR-EAE has more Bacteroides spp.

compared with mice with chronic-progressive EAE (245). On the

other hand, SCFA-producers, whose abundance affects Treg/Th17

balance (231) and negatively correlates with disease activity in PP-

MS (236), are more abundant in the gut microbiota of pre-

menopausal females than in males, but not in post-menopausal

females (247). If this sex difference is also preserved in MS, it may

explain the more profound brain atrophy, axonal damage and

physical and cognitive deficits seen in men and disability

worsening reported for post-menopausal females in some studies

(248–250) (also see Section 2).

Importantly, sex hormones can drive sex differences in gut

microbiota (251) and vice-versa (252). Thus, amelioration of EAE

by 17b-estradiol is associated with an increase of Lachnospiraceae

and a decrease of Erysipelotrichaceae in gut microbiota (253). These

bacterial families associate with MS progression: while

Erysipelotrichaceae correlates with brain atrophy in progressive

MS, and Lachnospiraceae negatively correlates with fatigue,

anxiety, and depression (237). Akkermansia abundance is reduced

when female mice are treated with androgens (254), and castration

switches the gut microbiota of male NOD mice to a more feminine

one, abrogating male protection against type 1 diabetes (255).

Altogether, sex differences in gut bacteria have been described for

healthy mice and humans, and the bidirectional relationship described

between sex hormones and gut microbiota suggests that microbiota

changes have a potential to drive sex differences in both peripheral and

CNS populations that are important to MS progression.
13 Summary

There is more neurodegeneration in males than in females with

MS that explains the more rapid physical and cognitive decline in

this sex. There are a number of biological mechanisms that may

contribute to this more severe neurodegeneration in men (Figure 1).

First, inflammation in the WM plaque persists longer in males.

Males also develop a higher number of cortical demyelinating

lesions. This may be due to individual T cells being more pro-
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inflammatory or microglia and astrocytes becoming more reactive in

the males, as evidenced by greater TNF and MIF expression at WM

lesion sites in males. Iron load is higher in men in the deep grey

matter regions and also accumulates more substantially at the rim of

WM lesions in males, which may contribute to greater oxidative

damage and inflammation. Furthermore, myelin repair mechanisms

are more efficient in female rodents. Finally, there is strong evidence

that neurons of males have a greater vulnerability to oxidative

damage that may relate to sex differences in mitochondria

respiration and antioxidant defense mechanisms. Future studies

should focus on defining the basis for the increased smoldering
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inflammation seen in male WM lesions as well as better explore the

impact of environmental influences such as EBV, diet, the gut

microbiota, obesity, and cigarette smoking in amplifying these sex

differences in neurological progression.
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FIGURE 1

Cellular mechanisms that may be involved in sex differences in MS progression. In progressive MS, peripheral immune cells peripharl immue cells
reside in the perivascular spaces at the edge of WM lesions (indicated by a grey oval) and in ectopic follicle-like structures in the subarachnoid space.
T cells secrete pro-inflammatory cytokines, which can activate neighbouring microglia to produce other pro-inflammatory cytokines such as TNF
and reactive oxygen species (ROS). ROS production leads to mitochondrial damage in neurons, which can trigger calcium-dependent proteases and
damage enzymes in the mitochondrial respiratory chain. The latter increases mitochondrial ROS, which elicits even more oxidative damage. Also, the
immune attack mediated by pro-inflammatory cytokines, antibody/complement and cytotoxic T cells causes the loss of oligodendrocytes (OL),
leaving the axons even more vulnerable to damage. The death of OLs leads to the release of iron, which can convert to the ferrous form that reacts
with ROS to produce the hydroxyl molecule. Iron is detected as deposits in the extracellular space and is taken up by microglia. Pro-inflammatory
cytokines produced by microglia also activate astrocytes to adopt a neurotoxic phenotype. Furthermore, axon damage results in anterograde and
Wallerian degeneration in the neuron. Sex differences have been detected in a number of these immune cells and processes. The green text
indicates cellular mechanisms that are more prominent in males and the orange text indicates cellular mechanisms that are more prominent in
females in MS (regular font) or in EAE (italic font). Sex differences that have been described in other disease models (not in MS and EAE) are displayed
with a question mark. For example, males T cells have a higher propensity to be pro-inflammatory and reside near activated microglia at the rims of
aged WM lesions. Male OLs also carry a higher iron load, which is released upon immune-mediated damage. Microglia loaded with iron are detected
at an increased frequency at the rims of WM lesions of male MS patients. There is evidence of greater perturbation in the male CD8+ T cell repertoire
suggesting greater clonal expansion of these cells with MS; this can lead to the T cells becoming pro-inflammatory. In addition, it has been
consistently reported across a number of disease models that astrogliosis is higher in males and the production of the astrocyte factor MIF is
increased uniquely in males with MS. Homocysteine, which is a neurotoxic factor, is present at higher levels in the blood of male MS patients. In
contrast, females are more likely to exhibit overall greater CD8+ T cell responses which may translate into greater anti-viral immunity. This could
counter MS progression if EBV is re-activated and is driving this process.
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