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Polycystic ovary syndrome (PCOS) is a complex endocrine metabolic disorder

that affects 5–10% of women of reproductive age. The endometrium of women

with PCOS has altered immune cells resulting in chronic low-grade

inflammation, which attribute to recurrent implantation failure (RIF). In this

study, we obtained three PCOS and RIF datasets respectively from the Gene

Expression Omnibus (GEO) database. By analyzing differentially expressed genes

(DEGs) and module genes using weighted gene co-expression networks

(WGCNA), functional enrichment analysis, and three machine learning

algorithms, we identified twelve diseases shared genes, and two diagnostic

genes, including GLIPR1 and MAMLD1. PCOS and RIF validation datasets were

assessed using the receiver operating characteristic (ROC) curve, and ideal area

under the curve (AUC) values were obtained for each disease. Besides, we

collected granulosa cells from healthy and PCOS infertile women, and

endometrial tissues of healthy and RIF patients. RT-PCR was used to validate

the reliability of GLIPR1 and MAMLD1. Furthermore, we performed gene set

enrichment analysis (GSEA) and immune infiltration to explore the underlying

mechanism of PCOS and RIF cooccurrence. Through the functional enrichment

of twelve shared genes and two diagnostic genes, we found that both PCOS and

RIF patients had disturbances in metabolites related to the TCA cycle, which

eventually led to the massive activation of immune cells.

KEYWORDS

PCOS, RIF (Recurrent Implantation Failure), integrated transcriptomic analysis, machine
learning, TCA cycle
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1 Introduction

Polycystic ovarian syndrome (PCOS), one of the most common

endocrine-reproductive-metabolic disorders in women, is

characterized by chronic anovulation, hyperandrogenism, and

polycystic ovarian morphology and is consistently associated with

obesity, insulin resistance (IR), and low-grade chronic

inflammation (1, 2). A variety of immune disorders often

accompany PCOS patients, which are associated with infertility

and consequently, impact ovarian function, oocyte quality, and

endometrial receptivity (ER) (3). Especially in obese patients with

high estrogen and androgen levels, dysfunction of immune cells

may lead to continuous stimulation of the immune system,

increasing pro-inflammatory cells (4). This pro-inflammatory

condition can negatively affect critical physiological processes,

such as proliferation, migration, and invasion of trophoblastic

cells into the endometrium that ultimately lead to embryo

implantation failure (5, 6). As a result, PCOS accounts for a

nonnegligible part of the gynecological diseases that lead to

recurrent implantation failure (RIF) during IVF/ICSI-ET (7).

RIF is defined as a lack of clinical pregnancy after at least four

embryos have been transferred in a minimum of three fresh or frozen

cycles in a couple under 40 years of age, with an incidence rate of about

15% (8). To date, many studies have shown that RIF etiology is largely

attributed to three categories: decreased endometrial receptivity (ER),

embryonic defects, and other combined effects (9). Among them,

immune factors may play a crucial role in influencing ER and

embryo implantation (10, 11). Normal immunological function of

the maternal-fetal interface is critical for maintaining ER, which

requires interactions with decidual cells, endothelial cells, and

infiltrating immune cells (12, 13). These immune cells regulate

maternal and fetal antigen responses, trophoblast invasion, and

vascular remodeling (14). Recently, several transcriptomic studies of

gene and protein expression profiles in the endometrium also identified

some immune-related markers in RIF patients (15, 16). Significant

progress has been made in search of the mechanism of RIF. However,

RIF remains a common and insurmountable adverse event in assisted

reproductive medicine.

Furthermore, the mechanism of impaired endometrial receptivity

(ER) has attracted research interest in recent years (17, 18). Notably, in

patients with PCOS, gene expression profiles are dysregulated (19, 20),

with differentially expressed genes closely related to steroid hormone

synthesis, inflammation, and oxidative stress (21). The establishment of

ER depends on these biological processes. Moreover, some indicators

are closely associated with ER (22), such as leukemia inhibitory factor

(LIF) (23), homeobox genes A (HOXA), avb3-integrin, and

intercellular junctions (24). As verified by clinical data analysis,

damaged ER leads to an increased risk of repeated implant failure in

PCOS patients (25). Poor endometrial receptivity is commonly

identified as the primary cause of RIF, and abnormal gene

expression contributes to ER deficiency (26). Therefore, the

bioinformatics background of PCOS women may contain the

underlying mechanism of recurrent implantation failure in

this population.

In this study, we aimed to explore the potential biomarkers and

underlying pathways involved in the development of PCOS and
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RIF. To achieve this goal, we integrated transcriptomic data related

to PCOS and RIF from the Gene Expression Omnibus (GEO) and

applied “LIMMA” package and weighted gene co-expression

network analysis (WGCNA) to identify differentially expressed

genes and critical modules in each disease. Our analysis using the

intersection and three machine learning methods led to the

identification of two disease-shared diagnostic genes, GLIPR1 and

MAMLD1, with good performance validated by external datasets.

Further, we conducted gene set enrichment analysis (GSEA) on

each of these two genes to identify common pathways associated

with PCOS and RIF. Additionally, we investigated the role of

immune cells in the co-pathogenesis of the two diseases through

immune infiltration analysis. Our results suggested that the co-

pathogenesis of PCOS and RIF might be linked to increased

immune response levels arising from abnormal TCA cycle

metabolism. In conclusion, this study provides valuable insights

into the shared molecular mechanisms underlying PCOS and RIF

and highlights the potential of GLIPR1 and MAMLD1 as diagnostic

markers for these conditions.
2 Methods

2.1 Data collection and preparation

The data sets related to PCOS and RIF were screened in the Gene

Expression Omnibus database (GEO) (http://www.ncbi.nlm.nih.gov/

geo/) since both diseases were designed in this study. For PCOS, we

used the keyword “PCOS” or “granulosa cells” to search gene

expression profiles. Inclusion criteria were as follows (1): PCOS

patients and normal controls must be included in the profiles (2),

The discovery profile should have at least ten samples to ensure

accuracy, and (3) granulosa cells should be used for sequencing.

Accordingly, we selected three datasets numbered GSE10946,

GSE34526, and GSE80432. For RIF, the eligibility criteria were as

follows (1): the profiles must include normal controls and the RIF

patients, and (2) the sample source must be endometrial tissues. After

the screening, the datasets GSE103465, GSE11974, and GSE26787 were

included in this study. Among them, GSE10946 and GSE34526 of

PCOS, and GSE103465 and GSE111974 of RIF were used as discovery

cohorts for analyzing and screening. GSE80432 and GSE26787 were

used for external validation for PCOS and RIF, respectively. The whole

analytic workflow is shown in Figure 1.

Besides, when preparing the two datasets for each disease, the

PCA plot showed a noticeable batch effect in the two disease groups.

Thus, using the “sva” R package, which identified and built

surrogate variables for high-dimensional data sets, the batch effect

was eliminated. After removing the batch effect, the PCA plot was

visualized by the “FactoMineR” and “Factoextra” R packages.
2.2 Differential gene expression analysis

After preparing the data for each disease, we compared PCOS and

RIF datasets using the Linear Models for Microarray (LIMMA)

package in R (version 4.1.2). Differentially expressed genes (DEGs)
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were calculated between disease and control groups with it. For PCOS,

the DEG threshold was set as P value <0.05 and |log2FC(fold change)|

>0.585. For RIF, the P value adjusted to 0.05 and |log2 FC|>1 were used

to identify the DEGs. Next, the difference analysis results for each

group were presented using the heatmap and volcano plot. In both

plots, blue indicated low expression, and red indicated high.
2.3 Weighted gene co-expression network
analysis (WGCNA)

Using microarray specimens, WGCNA represents one of the

most important and widely applied systems bioinformatics methods

to describe the correlation patterns among genes. Genes can be

grouped into modules based on their co-expression similarities

across samples using the “WGCNA” R package. Additionally, the

WGCNA method can be used to connect modules to clinical

elements outside the genome. In this way, relevant functional

networks can be used to identify biomarkers and new molecules.

As input files, normalized mRNA expression data (calculated using

the R package “LIMMA”) were used to perform WGCNA to

identify gene coexpression and the correlation between gene

modules and clinical characteristics (PCOS or RIF compared to

control groups). For each disease group, the following steps are

followed (1): by using the R package “gplots,” hierarchical clustering

analysis was performed to identify outliers in the sample (2), the

“pickSoftThreshold” package function was utilized to screen out

soft-power parameters ranging from 1 to 20 (3), a topological

overlap matrix (TOM) is created by converting the matrix of
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correlations with the most appropriate b value to an adjacency

matrix and then into a topological overlap matrix (4), based on the

average linkage hierarchical clustering, an hierarchical clustering

tree (linked gene best fit) was constructed, and then the dynamic

tree cut algorithm (minModuleSize = 30) was used to find different

gene modules. Similar modules were merged by a cuthight in each

group, and (5) gene modules and clinical phenotypes (CTRL and

PCOS or RIF) were correlated using the Pearson correlation

coefficient. For PCOS, the highest correlation module

antiquewhite4 was selected, and the genes associated with it were

further analyzed. However, many modules were related strongly to

RIF, so we further filtered the genes according to the gene

significance (GS) and modular membership (MM). The disease

was most closely related to genes with a high MM and GS, and we

selected the genes in the hub modules with |MM|>0.8 and |GS|>0.5

for the RIF group.
2.4 Identification of shared genes and
functional enrichment analysis

By combining DEGs and module genes identified by WGCNA,

we were able to identify the shared key genes that contributed to the

pathogenesis of both PCOS and RIF. For identifying genes’

biological functions and signaling pathways, we used the

“clusterProfier” package for Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis. The bar plots showed the significant

enrichment results of the functional enrichment with P<0.05.
FIGURE 1

The flow chart for the whole design. PCOS, Polycystic Ovarian Syndrome; RIF, Recurrent Implantation Failure; GSE, Gene Expression Omnibus
Series; LIMMA, Linear Models for Microarray Data; WGCNA, Weighted Gene Co-expression Network Analysis; DEGs, Differentially Expressed Genes;
LASSO, Least Absolute Shrinkage and Selection Operator; SVM-RFE, Support Vector Machine- Recursive Feature Elimination; GSEA, Gene Set
Enrichment Analysis.
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2.5 Feature selection by three well-
established machine learning algorithms

Further screening of co-existing genes between the two diseases

was carried out using three well-established machine learning

algorithms (LASSO: Least Absolute Shrinkage and Selection

Operator; SVM-RFE: Support Vector Machine- Recursive Feature

Elimination; RF: Random Forest). To ensure the repeatability of

these algorithms, we set the seed at 123 in both disease groups.

Firstly, the 12 shared genes obtained previously were input into

the LASSO algorithm in each disease group. We constructed a

regression model using the R package “glmnet” with 10-fold cross-

validation. In the “family” parameter, we set “binomial,” and we

chose the best lambda value by “lambda.1min”. Logarithm

(lambda) profiles of the LASSO coefficients were drawn for the 12

features. Then we drew the partial likelihood deviation (binomial

deviation) curve and the logarithm (l) curve. Next, we calculated

the best value for 1se (1-SE standard) of minimum standard.

Following that, SVM-RFE was used to eliminate recursive

features. Using the “e1071” and “MSVM-RFE” package for SVM

modeling, SVM-RFE applied sequential backward feature

elimination to determine the optimal hub gene. All of the 12

shared genes were used in our SVM model. The result of SVM-

RFE was visualized, and by tenfold cross-validation, the red circle

indicated maximum classification precision and the corresponding

gene sets were the most accurate diagnostic markers at the lowest

5×CV error and the highest 5×CV accuracy.

Finally, we used Random Forest to classify the significant genes

with the R package “randomForest”. Using a decision tree

algorithm, random forest analysis identified which variables were

most important. As a result of this algorithm, we were able to filter

the shared genes to find disease signature genes. Our first step was

to construct a random forest model using 500 trees on the discovery

cohorts and determine the optimal number of trees using cross-

validation errors. Then, we ranked genes by importance and plotted

the 10 most significant genes. For each disease group, the

significance threshold was set at 0.9 to decide the final result.

After screening the above three algorithms, we took the

intersection of the results of each algorithm. There were five

genes common to the PCOS group and seven common genes in

the RIF group shown in a Venn plot. Furthermore, we took the

intersection of the above common genes again and finally obtained

two genes as the disease diagnostic target genes. The “pROC”

package was used to construct ROC curves and displayed using

“ggplot2” to assess the accuracy of the two diagnostic genes in

discovery cohorts.
2.6 Prediction performance in
validation cohorts

To further test the accuracy of the two diagnostic genes, we

searched the GSE80432 for PCOS and GSE26787 of RIF for external

validation. We first downloaded the raw data of these two data sets

from the GEO database and normalized them with the “RMA”

package. For GSE80432, we filtered out a deviation sample through
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PCA and finally adopted four healthy control samples and three

PCOS patients. For GSE26787, five healthy controls and five

patients with RIF were used for validation. The diagnostic gene

expression pattern in validation cohorts was shown by boxplot, and

AUC (area under the ROC curve) was also calculated.
2.7 Implementation of GSEA for single
diagnostic gene

After obtaining the diagnostic genes, we performed single-gene gene

set enrichment analysis (GSEA) for each diagnostic gene in the two

groups using the “clusterProfiler” package. Using GSEA, we compared

the biological signaling pathways between the disease group and the

healthy control group. MSigDB (c5.go.bp.v7.5.1.entrez.gmt) was used to

download gene sets. Enrichplot was used to show the top 5 activating

and inhibiting pathways for each gene in the two disease groups.
2.8 Immune cell abundance

Each sample of disease was subjected to CIBERSORT analysis to

determine the relative levels of immune cells. The CIBERSORT

algorithm resolves immune cell composition by deconvolution

based on gene expression data. According to CIBERSORT’s

website (http://cibersort.stanford.edu/), LM22 contains 22

annotated gene signatures. With CIBERSORT and 1000

iterations, we quantified 22 types of immune cells based on the

LM22 gene signature. In the following analysis, we selected samples

with a CIBERSORT P value less than 0.05 for analysis. For each

sample, the output estimates from CIBERSORT were normalized to

sum to one to facilitate comparisons across immune cell types and

datasets. R packages “corplot,” “vioplot” and “ggplot2” were used to

visualize the results. Further, the correlation between immune

infiltrated cells and diagnostic target biomarkers was determined

by nonparametric correlations (Spearman).
2.9 Human samples collection

Granulosa cells of PCOS and the control patients were collected

from infertile women who underwent ART treatment in the

Reproductive Medicine Center of the First Affiliated Hospital of

Zhengzhou University in China. Inclusion criteria for PCOS patients

were based on the 2003 Rotterdam Criteria (27). Mid-secretory

endometrial samples from the RIF and control groups were also

collected to verify our data analysis. This study was approved by the

Ethics Committee of the First Affiliated Hospital of Zhengzhou

University in China. RNA of these samples was extracted using

TRIzol Reagent (Invitrogen™, Japan) and cDNA was synthesized

using HiScript III RT SuperMix for qPCR (Vazyme, Nanjing,

China). Then real-time PCR (RT-PCR) was performed to

quantitative the expression level of GLIPR1 and MAMLD1 in the

two diseases. Primer sequences of the two genes were described in

Supplementary Table 1. Statistical analysis was performed to compare

the groups, using Student’s t-test. The data were presented as mean
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values accompanied by the standard error of the mean (SEM). A

significance level of P<0.05 was considered a significant difference.
3 Results

3.1 GEO information

A total of four data sets were selected for discovery analysis

according to our inclusion criteria: GSE10946, GSE34526,

GSE103465, and GSE111974. Table 1 summarized the detailed

information on the four datasets. Among them, GSE10946 and

GSE34526 were used as discovery cohorts for the PCOS, and

GSE103465 and GSE111974 were regarded as discovery cohorts

of RIF. Besides, GSE80432 and GSE26787 were the validation

cohort of PCOS and RIF, respectively. In the present study, we

called these two disease groups PCOS and RIF for short.
3.2 Identification of DEGs.

Before the biological information analysis, we tested the batch

effects of the collected datasets and found that the batch effects of the

two diseases were apparent (Figure 2A, E). Using the “sva” package, we

removed the batch effects of the PCOS (Figure 2B) and RIF groups

(Figure 2F) to obtain reliable analysis results. A LIMMA package was

then used to characterize the DEGs between the two groups. 201 DEGs

(P<0.05, |log2 FC|>0.585) with 101 up-regulated and 100 down-

regulated genes were obtained for PCOS. For RIF, there were 253

DEGs (adj. P<0.05, |log2 FC|>1) with 167 up-regulated and 86 down-

regulated genes. Volcano plots showed all DEGs of PCOS (Figure 2C)

and RIF (Figure 2G) groups. Taken as a whole, the DEGs contained in

the two groups were visualized by heatmaps (Figure 2D, H). DEGs

associated with PCOS and RIF might play a role in their occurrence

and development.
3.3 Screening for key modules by WGCNA.

To investigate whether the diseases and key genes are

correlated, we performed WGCNA in addition to analyzing the
T

P
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differential expression between the two groups. Using the soft-

thresholding approach, this study constructed a co-expression

network. This parameter b was essential for co-expression

networks to maintain a scale-free topology. Gene expression data-

based biological networks were most likely to be scale-free.

Accordingly, in the PCOS group, the fit index greater than 0.85

was considered scale-free topology, and b was set at 9 (Figure 3A).

By using the adjacency function, the adjacency matrix was

generated. As shown in Figure 3B, hierarchical clustering was

constructed using the TOM dissimilarity measure. We have

identified 20 co-expression modules in total. The modules that

P<0.05 were regarded as key modules. As shown in Figure 3C, the

antiquewhite4 module had the strongest positive correlation, which

contained 180 genes. Also, WGCNA was applied to the RIF group,

and b=10 was the optimal value for soft power (Figure 3D). We

identified 19 modules in total, in which dark grey, dark green, and

royal blue showed a strong positive correlation, and green-yellow,

salmon, dark turquoise, and light yellow modules showed a strong

negative correlation (Figures 3E, F). Among the genes in these 7 key

modules in the RIF group, we further selected 334 genes with |MM|

> 0.8 and |GS| > 0.5. These genes in key modules derived from the

two groups could be potentially used as candidate cell-type-

specific markers.
3.4 Analysis of the shared genes and
functional enrichment

To explore the co-pathogenesis of PCOS and RIF, we took the

intersection of the DEGs mentioned above and genes screened by

WGCNA, respectively. Figure 4A showed an overlap between the

DEGs of PCOS and RIF as a total of 11 genes (CHST11, FAM150B,

GLIPR1, SLC16A6, MAMLD1, SLC46A2, ENPP3, HAPLN1,

PLCXD3, FAM110C, GAS1). There was only one gene that

overlapped the genes of WGCNA analysis (CCND2, Figure 4B). We

speculated that these 12 genes might be related to the pathogenesis of

PCOS and RIF and had a shared relationship (Figure 4C). Analyzing

these genes for functional annotation and enrichment (Figures 4D, E),

we sought to investigate the potential biological changes between PCOS

and RIF. Not surprisingly, GO analysis of the shared genes revealed

they were overrepresented in pathways associated with early embryonic
ABLE 1 Details of GEO datasets used in the study.

Diseases GEO Series GPL Platform Control Case Sample Size Group

PCOS GSE10946 GPL570 11 12 Discovery cohort

GSE34526 GPL570 3 7 Discovery cohort

GSE80432 GPL6244 4 4 Validation cohort

RIF GSE103465 GPL16043 3 6 Discovery cohort

GSE111974 GPL17077 24 24 Discovery cohort

GSE26787 GPL570 5 5 Validation cohort
COS: Polycystic Ovarian Syndrome, RIF: Recurrent Implantation Failure, GEO: Gene Expression Omnibus.
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organ morphogenesis. Notably, among all the GO terms enriched, we

noticed that several significantly enriched biological processes

pathways, such as regulation of T cell apoptotic process, mast cell

activation, and leukocyte homeostasis, suggesting that the activation

and apoptosis of immune cells might make a considerable contribution

to the co-pathogenesis of PCOS and RIF. Besides, KEGG enrichment

was consistent with the GO analysis. In addition, we noted that several

pathways related to follicular development are enriched, such as the

p53 signaling pathway, FOXO signaling pathway, hippo signaling

pathway, and PI3K-Akt signaling pathway.
3.5 Identify potential shared
diagnostic genes based on
machine learning algorithms.

For a further selection of themost candidate diagnostic gene targets

with a significantly characteristic value of classifying the disease groups

and control groups, three different algorithms (LASSO, SVM-RFE, and

Random Forest) were applied based on the above 12 shared genes. In

the PCOS group, based on the LASSO coefficient profiles and the

optimal tuning parameter selection map, l was set at 0.06851194

(PCOS) (Figure 5A). Afterward, eight genes with non-zero coefficients

were found. Then we inputted the above 12 genes into the RF classifier,

and the top 10 genes were shown on the importance scale. We selected

0.9 as the screening threshold of importance, and a set of 9 genes was

identified (Figure 5B). Also, the SVM algorithm identified 5 genes with

the lowest 5-point CV error and best 5-point CV accuracy (Figure 5C).
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Furthermore, by overlapping these three algorithms, we developed 5

shared biomarkers (CHST11, GLIPR1, SLC16A6, MAMLD1,

HAPLN1, GAS1) for the PCOS group (Figures 5D, I).

Similarly, 7 featured genes were obtained for the RIF group

when the l was set at 0.03001025 by the LASSO algorithm

(Figure 5E). Figure 5F showed the top 10 genes on the

importance scale and we chose 9 genes (importance>0.9) as

the RM result. Next, a subset of 10 hub genes were identified

using the SVM-REF algorithm (Figure 5G). Then, 7 common gene

biomarkers obtained by the three algorithms overlapped

(Figures 5H, I).
3.6 Diagnostic value and validation of
diagnostic hub biomarkers.

For a more precise understanding of the relationship between

PCOS and RIF, we took the intersection of machine learning results in

the PCOS and RIF group and got 2 shared diagnostic genes, GLIPR1

andMAMLD1 (Figure 6A). And the prediction and the discriminatory

ability of the shared diagnostic genes were assessed by analyzing the

expression pattern of the two genes. Also, an analysis of the receiver

operating characteristic curves (ROC curves) was conducted.

Firstly, we analyzed the PCOS and RIF expression levels of the

two discovery cohorts. Figure 6B showed that GLIRP1 was lower in

the RIF groups (P<0.01) and higher in the PCOS groups (P<0.01).

MAMLD1 expressed lower both in the PCOS (P<0.01) and RIF

groups (P<0.0001) (Figure 6F).
A B D

E F G H

C

FIGURE 2

Removal of batch effects and identification of DEGs in PCOS and RIF. (A, B). PCA plots showed the expression pattern in two datasets of PCOS
before and after eliminating the batch effects. (C, D). DEG heatmap and volcano plot in PCOS group. (E, F). PCA plots showed the expression pattern
in two datasets of RIF before and after removing the batch effects. (G, H). Heatmap and the volcano plot of DEGs in RIF group. CTRL, Control; RIF,
Recurrent Implantation Failure; PCA, Principle-component Analysis.
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Next, to test the specificity and sensitivity of the two target genes

for the diagnosis of two diseases, ROC analysis was applied. In

terms of PCOS biomarkers, these two genes had favorable results:

GLIPR1(AUC=0.812), and MAMLD1(AUC=0.774). The RIF group

was also subjected to the same ROC analysis. Predictive

performance was robust for each biomarker: GLIPR1

(AUC=0.723), and MAMLD1(AUC=0.879) (Figures 6C, G).

Moreover, we confirmed the reliability of GLIPR1 and

MAMLD1 as core diagnostic genes for PCOS and RIF by

conducting external validation. In the two validation groups, the
Frontiers in Immunology 07
expression levels of the two hub genes matched those in the

discovery cohorts. GLIPR1 was decreased (P<0.05) in the RIF

group and increased in the PCOS groups (P<0.05) (Figure 6D).

MAMLD1 was reduced both in the PCOS groups (P<0.01) and the

RIF groups (P<0.05) (Figure 6H). Figure 6E showed that GLIPR1

had excellent diagnostic accuracy in the validation cohort of PCOS

(AUC=1.000) and RIF (AUC=0.920). Similarly, MAMLD1 also

properly diagnosed PCOS (AUC=1.000) and RIF (AUC=0.840)

(Figure 6I). As a result, the results confirmed their ability to serve

as key discriminatory molecules for PCOS and RIF, respectively.
A

B

D

E

FC

FIGURE 3

Weighted gene co-expression network analysis (WGCNA) of PCOS and RIF. (A). Determination of soft-threshold power for PCOS. (B). Cluster
dendrogram of PCOS highly connected genes in key modules. (C). Relationships between modules and traits in PCOS. Correlations and P values are
included in each cell. (D). Calculation of soft-threshold power for RIF. (E). Cluster dendrogram of RIF modules with highly connected genes. (F).
Module–trait relationships in RIF. A correlation and P value are included in each cell. CTRL, Control; RIF, Recurrent Implantation Failure.
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3.7 Single-Gene GSEA of diagnostic genes.

Subsequently, we employed single-gene GSEA analysis of the

two biomarkers in PCOS and RIF datasets, respectively, and the top

5 up and down-regulated pathways were visualized by the “GSEA”

package. Figure 7 showed that in both disease groups, these two

genes were both involved in metabolic pathways such as glycine,

serine, threonine metabolism, alpha-linolenic acid metabolism, and

propanoate metabolism. Besides, both genes enriched in

inflammation-related pathways which linked the PCOS and RIF.
3.8 Immune infiltration analysis of shared
diagnostic genes.

Considering that PCOS and RIF are characterized by a high

immune response. The abundances of immune cells in different

groups were analyzed with CIBERSORT. In each group, the

proportion of 22 immune cells was shown as a bar plot.
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Generally, the bar graphs clearly illustrate the significant

differences between the percentages of T cells, macrophages, and

NK cell populations between PCOS (Figure 8A) and RIF

(Figure 8E). Compared with the control samples, the dendritic

cells activated were increased in the PCOS samples (Figure 8B).

While, in the RIF samples, NK cells resting, Macrophages M0 were

increased, and NK cells gamma delta, dendritic cells activated were

decreased (Figure 8F).

Moreover, the relationship between biomarkers and immune

cell contents was investigated. In PCOS samples, CD8 T cells were

significantly positively correlated with GLIPR1 (Figure 8C). In

contrast, macrophage M0 correlated negatively. MAMLD1 was

significantly positively correlated with B cells memory and

negative for macrophages M2, dendritic cells resting, and

monocytes (Figure 8D). In RIF samples, GLIPR1 had a significant

negative correlation with NK cells resting (Figure 8G). While

Neutrophils and NK cells rested negatively with MAMLD1

(Figure 8H). It appears that immune function is crucial to the

development of PCOS and RIF.
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FIGURE 4

Shared gene signatures and functional enrichment between PCOS and RIF. (A). The shared DEGs between PCOS and RIF by overlapping the DEGs of
them. (B). The shared genes between the WGCNA modules of PCOS and RIF by overlapping them. (C). Table showed details of the shared genes.
(D, E). Shared genes were represented by bar plots displaying GO and KEGG enrichment. CTRL, Control; RIF, Recurrent Implantation Failure; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 5

The screening of candidate PCOS and RIF diagnostic genes using three machine learning algorithms. (A). Coefficient profile plot of the LASSO model
for PCOS showed the final parameter selection l (lambda). (B). PCOS top-10 genes according to their discriminant ability in the RF algorithm. (C).
Five crosstalk genes were selected by using the SVM-RFE algorithm for PCOS. (D). The Venn diagram showed five candidate diagnostic genes in
PCOS by intersecting the results of three algorithms. (E). Coefficient RIF profile plot of the LASSO model showed the selection of the optimal
parameter l (lambda). (F). Top-10 RF algorithm step discriminant ability genes for RIF. (G). Ten crosstalk genes were selected by using the SVM-RFE
algorithm for RIF. (H). The Venn diagram showed seven candidate diagnostic genes in RIF by intersecting the results of three algorithms (I). Table
showed the details of candidate diagnostic genes in PCOS and RIF. CTRL, Control; RIF, Recurrent implantation failure; LASSO, Least Absolute
Shrinkage and Selection Operator; SVM-RFE, Support Vector Machine-Recursive Feature Elimination; RF, Random Forest.
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FIGURE 6

Selection and validation of the two shared diagnostic genes. (A). The Venn plot showed the two shared diagnostic genes. (B). Differential expression of
GLIPR1 in the training group for PCOS and RIF. (C). ROC curve of GLIPR1 in the training group for PCOS and RIF. (D). Differential expression of GLIPR1 in the
validation group for PCOS and RIF. (E). ROC curve of GLIPR1 in the validation group for PCOS and RIF. (F). Differential expression of MAMLD1 in the training
group for PCOS and RIF. (G). ROC curve of MAMLD1 in the training group for PCOS and RIF. (H). Differential expression of MAMLD1 in the validation group
for PCOS and RIF. (I). ROC curve of MAMLD1 in the validation group for PCOS and RIF. ROC, receiver operating characteristic. *P< 0.05, **P< 0.01, ***P<
0.001.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2023.1175384
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1175384
3.9 Validation of GLIPRand MAMLDby RT-
PCR in human tissues.

RT-PCR was performed on follicular fluid-derived granulosa

cells from normal women and PCOS patients and endometrial

tissues from healthy and RIF women. This confirmed the gene

expression levels of the two diagnostic biomarkers, GLIPR1 and

MAMLD1. Consistent with the data analysis, our results showed

that GLIPR1 expression was upregulated and MAMLD1 expression

was decreased in the granulosa cells of PCOS patients, (Figure 9A)

while both GLIPR1 and MAMLD1 expression was reduced in

endometrial tissues of RIF patients (Figure 9B).
4 Discussion

Due to the high occurrence of recurrent implantation failure for

PCOS patients in ART cycles (8, 25), it has become essential to

explore the common pathogenesis of the two diseases. In the

present study, we applied the WGCNA (28) and three machine

learning approaches to identify the common gene population and 2

diagnostic genes of GLIPR1 and MAMLD1 which were both

significantly related to PCOS and RIF. Further, by GSEA (29)

analysis, we uncovered that the co-pathogenesis of the two

diseases lay in the abnormal metabolism of many metabolites

associated with the TCA cycle, which led to the abnormal
Frontiers in Immunology 11
activation of immune cells and immune response in the disease

group. Taken together, the newly discovered diagnostic genes and

potential molecular mechanism in this study provided new clinical

insights and guidance for diagnosing and treating PCOS and

RIF patients.

GLI pathogenesis-related 1 (GLIPR1) is a gene that encodes a

protein with diverse biological functions, including cell apoptosis,

cell cycle regulation, and DNA damage response. While the direct

relationship between GLIPR1 and PCOS and RIF has not been fully

established, several studies have suggested a potential involvement

of GLIPR1 in the pathogenesis of these diseases. Notably, altered

expression levels of GLIPR1 have been observed in PCOS patients,

indicating a possible association between GLIPR1 and PCOS (30).

Studies have also identified that GLIPR1 encodes proteins that

regulate sperm-oocyte binding and mature male germ cells, which

have been linked to PCOS risk modification and metabolic

mechanisms (31). Moreover, RNA sequencing of adipose tissue in

PCOS patients has identified GLIPR1 to be differentially expressed

according to genotype near PCOS risk loci (32), suggesting a

possible relationship between insulin resistance and fertility.

Single-cell mRNA sequencing of proliferative phase endometrial

cells also identified GLIPR1 as having an important role in the

perivascular environment (33). Additionally, GLIPR1 has been

implicated in RIF. A study reported differential expression of

GLIPR1 in RIF patients compared to those with successful

pregnancies, suggesting its involvement in the immune response
A B
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FIGURE 7

GSEA for the single diagnostic gene. (A, B). GSEA analysis for GLIPR1 in PCOS and RIF group. (C, D). GSEA analysis for MAMLD1 in PCOS and RIF
group. GSEA, Gene Set Enrichment Analysis.
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associated with embryo implantation (34). Our study suggested that

GLIPR1 represented a potential diagnostic target for RIF in PCOS

patients which could be supported by previous research partly.
Frontiers in Immunology 12
MAMLD1 (NM_001177465) is a gene associated with disorders

of sexual development in 46, XY individuals, and it has been

reported that mutations in MAMLD1 resulted in male fetal sexual
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FIGURE 8

PCOS and RIF immune cell composition. (A). Infiltrating immune cells were plotted in a stacked bar chart for the PCOS group. (B). Violin diagram
indicated that the PCOS group exhibited a significantly different type of immune cell. (C). Correlation between GLIPR1 expression and immune cells
in the PCOS group. (D). Relationship between the expression of MAMLD1 and immunity in PCOS patients. (E). Stacked bar chart showed the RIF
group’s characteristics of infiltrating immune cells. (F). Evident difference in immune cell types shown by violin diagram of the RIF group. (G).
Detection of GLIPR1 expression in immune cells in the RIF group. (H). Relationship between MAMLD1 expression and immune cells in the RIF group.
P < 0.05 was highlighted.
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deve lopment (35) (36 , 37) . Fur thermore , MAMLD1

hypomethylation and upregulation of its transcript in granulosa

cells have been suggested as contributing to PCOS ovaries with

excess androgen and hormone disbalance (38). Many studies have

proved that the excess of maternal androgen leads to abnormal

placental morphogenesis and impaired endometrial receptivity (39),

resulting in granulosa cell apoptosis and inhibition of proliferation.

Consequently, decreased ER ability and maternal-fetal interface

eventually led to embryo implantation failure. Additionally,

knock-out mice models have shown that lack of MAMLD1 causes

parturition failure, high neonatal mortality rates, and an adverse

effect on functional luteolysis (40). Consistent with previous studies,

our analysis revealed that MAMLD1 appeared to play a role in

embryo development and was associated with recurrent

implantation failure in women with PCOS.

To further explore the underlying pathogenic association and

mechanisms between PCOS and RIF, we performed GSEA for the

two diagnostic genes in two disease groups. As a result of GSEA

analysis, both PCOS and RIF genes were enriched in metabolism

pathways. In the PCOS group, both two genes were enriched in

glycine, serine, and threonine metabolism. Similarly, GLIPR1 and

MAMLD1 were found to involve in the metabolism of butanoate,

propanoate, and thiamine in the RIF group. Interestingly,

metabolites like glycine (41), serine (42), and threonine (43) have

been reported to contribute to increasing protein motive force,

which is attributed to the activation of the TCA cycle and
Frontiers in Immunology 13
mitochondrial respiration chain. A previous study found that

GLIPR1 influenced the energetic potential of mitochondria which

was in accordance with these enrichment analyses (44). Specifically,

butyrate has been reported to provide energy substrates for the host,

which enter into the TCA cycle as acetyl-CoA to produce glucose

(45). Propanoate can also increase the level of mitochondrial CoA

and promote energy production through the TCA cycle (46).

Known as vitamin B1, thiamine was used in the TCA cycle to

form thiamine diphosphate (ThDP) (47). These metabolism

changes all suggest us metabolites involved in the TCA cycle are

disrupted in patients with PCOS complicated by repeated

implantation failure and finally lead to the imbalance of energy

metabolic homeostasis.

Consistent with previous studies (48, 49), our data showed that

the common gene population mainly enriched in the activation

pathways of immune cells like T cells, NK cells, macrophages, and

neutrophils. These results hinted us the high level of immunity in

PCOS and RIF patients and prompted us to further investigate

which immune cells are abnormal in the two diseases. As

anticipated, by immune infiltration (50), we detected Dendritic

cells (DCs) activated in PCOS samples and four immune cell types

in RIF samples, including T cells gamma delta, NK cells resting,

macrophages M0 and Dendritic cells activated with significantly

different abundance compared to healthy samples. The obesity

status of PCOS patients will lead to changes in the number of

DCs, and high androgen and low progesterone status will reduce the

ability to recruit NK cells (4, 51). So that the secretion of cytokines is

not enough to maintain maternal immune tolerance, and eventually

leads to endometrial receptivity impairment, abortion, implantation

failure, and other adverse events (52). While normal human

pregnancy requires complex coordination between maternal

immune tolerance and homeostasis (53). Besides, we uncovered

that the prevalence of DCs in each disease was significantly different

from the normal group. This suggests that the abnormal function of

NCs may be the main cause of repeated implantation failure in

PCOS patients.

Based on the above findings, we hypothesize that activation of a

large number of immune cells in cellular immunity caused by

disturbances of metabolites associated with the TCA cycle

accounts for the co-pathogenesis of the PCOS and RIF. As

previously mentioned, activated DCs and macrophages showed a

truncated TCA cycle that resulted in an accumulation of citrate. Of

note, the TCA cycle intermediates may leak from impaired

mitochondria, and increasing evidence indicated that these

metabolites of the TCA cycle played a substantial role in immune

regulation (54). In PCOS patients with coexisting metabolic

disorders, disruptions to their mitochondrial membranes may

result in the release of TCA cycle intermediates into the cytosol,

thereby impairing the cellular immune system. The dysregulated

immune system is characterized by a large number of activated

immune cells, particularly DCs, as observed in the present study.

These processes ultimately contribute to the failure of embryo

implantation, which is a hallmark feature of RIF.

Some limitations need to be mentioned in the present study.

First, only 3 datasets were selected for each disease, including 18
A
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FIGURE 9

Validation of RT-PCR in human tissues. (A). Expression levels of
GLIPR1 and MAMLD1 in granulosa cells of normal and PCOS
patients. (n=5) (B). Expression levels of GLIPR1 and MAMLD1 in
endometrial tissues of normal and RIF patients. (n=3) *P< 0.05, **P<
0.01.
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cases and 14 control samples in the PCOS group, and 27 cases in

both the RIF disease and normal groups for discovery. For WGCNA

and immune infiltration analysis, more sufficient samples are

needed to ensure test accuracy. Second, we know little about the

processing of the raw data, and the datasets used in our study

were profiled by microarray which was far behind today’s

advanced sequencing technology. These intrinsic traits of these

public datasets pose a challenge to the accuracy and advancement of

our analysis.

In conclusion, diagnost ic biomarkers GLIPR1 and

MAMLD1 were identified as critical biomarkers responsible

for regulating immune cell activation caused by an imbalance

of TCA cycle metabolites. Our analysis reinforces the theoretical

basis for the co-pathogenesis of recurrent pregnancy failure in

PCOS patients.
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