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and future directions
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Glioblastoma (GBM) is among the most fatal and recurring malignant solid

tumors. It arises from the GBM stem cell population. Conventional

neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and

radiotherapy have rendered the prognosis of patients unsatisfactory.

Radiotherapy and chemotherapy can frequently induce non-specific damage

to healthy brain and other tissues, which can be extremely hazardous. There is

therefore a pressing need for a more effective treatment strategy for GBM to

complement or replace existing treatment options. Cell-based and cell-free

immunotherapies are currently being investigated to develop new treatment

modalities against cancer. These treatments have the potential to be both

selective and successful in minimizing off-target collateral harm in the normal

brain. In this review, several aspects of cell-based and cell-free immunotherapies

related to GBM will be discussed.
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1 Introduction

As the most common type of primary intracranial tumor, gliomas develop from a

variety of neuroglial cells in the brain. According to the 2016 World Health Organization

(WHO) histopathological and clinical criteria, gliomas are classified as grades I-IV (1). The

use of Roman numerals in the intra-tumor grading system raises the risk of confusion

between ‘II’ and ‘III’ or ‘III’ and ‘IV’, and uncorrected typographical errors may

compromise treatment outcomes (2). The WHO Central Nervous System (CNS) 5 of

2021 recommends grading using Arabic numerals, whereWHO grade 1 gliomas are usually

considered benign, curable by complete surgical excision and rarely evolve into more
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advanced lesions (3). In contrast, WHO grade 2 or 3 gliomas

(mesenchymal astrocytomas and mesenchymal/malignant

gliomas) are aggressive, progress to more advanced lesions and

have a poorer prognosis (1, 2, 4). WHO grade 4 tumors are highly

malignant and present with a poor prognosis (4).

Glioblastoma (GBM) has been described as a grade 4 tumor by

the WHO and is among the most fatal and recurring malignant

solid tumors to date (5) accounting for 57% of all gliomas and 48%

of primary CNS malignancies (6). The median survival of GBM

patients is 14.6 months. GBM is presumably caused by

Glioblastoma stem cells (GSC), which have rapid self-renewal and

a high rate of appreciation, and decreasing GSC is useful in limiting

the progression of GBM (7, 8). Since 2005, the Food and Drug

Administration (FDA) has authorized only two medications and

one device for the treatment of GBM, namely temozolomide (TMZ)

(9), bevacizumab (BVZ) (10) and Therapeutic Tumor Fields

(TTFields) (11). The prognosis of GBM patients is still

unsatisfactory despite decades of efforts and advances in surgery,

radiotherapy and chemotherapy. The reason for this result is

directly linked to the tumor immune microenvironment of GBM.

Due to the existence of the blood-brain barrier, there are very few

immune cells from the blood circulation in the brain parenchymal

under physiological circumstances (12). When a tumor forms,

multiple types of immune cells can move to the tumor region,

either to exhibit antitumor effects or to be affected by tumor cells to

create an immunosuppressive phenotype while cause suppressive

functions (13, 14). At this period, inflammatory variables rule the

suppressive immune microenvironment of GBM, which promotes
Frontiers in Immunology 02
tumor development. This discouraging clinical outcome has made

GBM an urgent topic for cancer research. Here, we will discuss the

progress made by immunotherapy in the treatment of GBM in

recent years.

As early as the mid-nineteenth century, it was proposed that

cancer treatment could be achieved by modulating the body’s

immune system to combat cancer (15). Its distinct scientific and

clinical benefits have given rise to the idea of immuno-oncology,

which is to enhance the immune response to tumor cells through

the adaptive or innate immune system, eliminating them while

reducing collateral damage (16). The evaluation of the therapeutic

effect of glioma has always been a difficult clinical problem. RANO/

iRANO proposed by Harvard Medical School has been recognized

by the neurooncology community as a therapeutic response

evaluation standard for high-grade glioma, and has also become a

common evaluation standard for high-grade glioma clinical trials

(17). Both criteria have significant characteristics. The limitation of

RANO criteria is that if patients receive immunotherapy, their

immune response is different due to different constitutions.

However, iRANO standard does not require a large number of

case verification, but is constantly discussed and verified by experts

in clinical practice. This is why immuno-oncology medications,

including cellular treatments, oncolytic virus immunotherapy,

and immunological checkpoint blockade therapy are being

researched intensively. In this paper, a wide range of possibilities

for a new generation of cell-based and cell-free immunotherapies is

demonstrated, such that the recent history of GBM immunotherapy

can be summarized (Figure 1).
FIGURE 1

Schematic representation of cell-based and cell-free immunotherapies for GBM.
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2 Cell-based Immunotherapies
for GBM

2.1 CAR-T cell therapy

Chimeric antigen receptor (CAR) T cell therapy holds one of

the most promise as an anti-cancer therapeutic technology. CAR

are synthetic molecules formed by four regions, the antigen

recognition structural domain (variable region of monoclonal

antibodies with a single chain variable fragment scFv), the

extracellular hinge region, the transmembrane structural domain

(consisting of a hydrophobic a-helix across the cell membrane) and

the intracellular T cell signaling structural domain (zeta z signaling
chain) (18) intended to guide T cells to particular antigens. First

generation CAR is a fusion protein consisting of an extracellular

antigen-binding domain, generally in the form of a single-chain

variable fragment of an antibody, attached to an intracellular

signaling domain, most often the CD3z chain of the T cell

receptor (TCR) (18). In second-generation CAR, the activity of

CAR-T cells is enhanced through the addition of co-stimulatory

structural domains fused to CD3z, such as CD28 or CD137 (also

referred to as 4-1BB), and the involvement of these intracellular

signaling domains improves anti-apoptosis, cytokine secretion, T

cell proliferation and in vivo persistence (19). Third generation

CARs that incorporate multiple co-stimulatory structural domains

(e.g. CD28-41BB, CD28-OX40), have also been developed (19).

Fourth generation CAR, also known as TRUCK or armored CAR,

have been further augmented with factors that enhance anti-tumor

activity, persistence and T cell expansion. These potentially include

cytokines such as IL-2, IL-5, IL-12, enzymes that degrade the

extracellular matrix of solid tumors and co-stimulatory ligands

(20). The fifth generation CAR is based on the second generation
Frontiers in Immunology 03
CAR with the addition of co-stimulatory structures and domains

that activate other signaling pathways and is still in the development

stage (Figure 2).

CAR-T cells were first used to treat hematological malignancies

and have shown remarkable efficacy (21, 22). For example, the FDA

has authorized two medicines for the treatment of hematological

malignancies. The first one is Tisagenlecleucel for treating B-cell

acute lymphoblastic leukemia (21) and the other is Axicabtagene

Ciloleucel for treating large B-cell lymphoma. These CAR-T cells

target CD19 on B cells to induce effective tumor cell death (22).

Given the extraordinary success in hematological malignancies,

CAR-T therapy in solid tumors has also been a rapidly

developing research hotspot in recent years. These include

interleukin 13 receptor alpha 2 (L13Ra2), epidermal growth

factor receptor variant III (EGFRvIII), type A liver ligand protein

receptor 2 (EphA2) and human epidermal growth factor receptor 2

(HER2), all of which have been tested as targets for several clinical

CAR-T cell therapies (Table 1). However, identifying good antigens

in solid tumors is always a challenge, and such antigens have to be

highly expressed on most cancer cells but virtually absent in normal

tissue (23). Under such conditions, CAR-T cells can’t be efficiently

transported to the center of solid tumor masses, and the adverse

tumor microenvironment (TME) inhibits T cell activity (24).

2.1.1 IL-13Ra2
IL-13Ra2 as a target for CAR-T in the treatment of GBM. It’s a

membrane receptor with a high affinity for the anti-inflammatory

cytokine interleukin 13 and it has been discovered to be

overexpressed in a variety of solid tumors, most notably GBM,

and has been related to poor prognosis (25). IL-13Ra2 is

overexpressed in 76% of GBM, but not in the normal brain tissue,

which makes it a highly selective target for immunotherapy (26).
FIGURE 2

Figure 2 CAR-T cell therapy has been through five technical generations. The first generation of CAR depended only on CD3z to activate T cells.
Clinical effectiveness is limited by a lack of intracellular co-stimulatory signaling, which prevents persistent T-cell proliferation and long-term anti-
tumour effects. To the first generation CAR, the second generation CAR incorporates activation and co-stimulatory signals such as CD28 or CD137.
Third generation CAR supplement first generation CAR with two co-stimulatory and activation signals, such as CD28, CD137, CD134, and OX40.
Based on the third generation of CAR, the fourth generation of CARs incorporates pro-inflammatory cytokines like as IL-12 and co-stimulatory
ligands with the goal of overriding tumor immune microenvironment suppression. The fifth generation of CAR is still under development and is
based on the second generation of CAR with the inclusion of co-stimulatory structural domains that activate additional signaling pathways.
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In preclinical studies, Christine E. Brown et al. assessed the

potential of immunotherapy targeting IL13Ra2 to eliminate GSCs

and heavily differentiated populations. This research looked at GSCs

as a possible treatment resistance barrier in tumor cells (27). Despite

preclinical studies showing that CAR-T cells can produce effective
Frontiers in Immunology 04
anti-glioma in situ mouse models, this approach has not yet been

validated in patients. In 2015, they published the first promising

human clinical study of intracranially administered IL13Ra2-
specific CAR-T cells for GBM, which set the stage for the future

application of improved peripatetic CAR-T cells therapy (28). This
TABLE 1 CAR-T cell based clinical studies in GBM patients that have been completed or are ongoing.

Molecular
target

Clinical trial NCT number and title Study
phase

Interventions Study Results Sponsor/Col-
laborators

IL13Ra2 NCT04003649 Evaluate IL13Ra2-Targeted
Chimeric Antigen Receptor (CAR) T Cells
Combined with Checkpoint Inhibition for
Patients with Resectable Recurrent
Glioblastoma

I Biological: IL13Ralpha2-
specific Hinge-optimized 4-
1BB-co-stimulatory CAR/
Truncated CD19-expressing
Autologous TN/MEM Cells
Biological: Ipilimumab
Biological: Nivolumab

Recruiting City of Hope
Medical Center
(National Cancer
Institute)

NCT04661384
Evaluate IL13Ra2-Targeted Chimeric Antigen
Receptor (CAR) T Cells for Adult Patients with
Leptomeningeal Glioblastoma, Ependymoma or
Medulloblastoma

I Biological: IL13Ralpha2-
specific Hinge-optimized
41BB-co-stimulatory CAR
Truncated CD19-expressing
Autologous T-Lymphocytes

Recruiting City of Hope
Medical Center
(National Cancer
Institute)

NCT02208362
Cellular ImmunoTx Using Memory Enriched T
Cells Lentivirally Transduced to Express an
IL13Ra2-Specific, Hinge-Optimized, 41BB-
Costimulatory Chimeric Receptor and a
Truncated CD19 for Pts with Rec/Ref
MaligGlioma

I Biological: IL13Ralpha2-
specific Hinge-optimized 4-
1BB-co-stimulatory CAR/
Truncated CD19-expressing
Autologous TN/MEM Cells
Biological: IL13Ralpha2-
specific Hinge-optimized
41BB-co-stimulatory CAR
Truncated CD19-expressing
Autologous T-Lymphocytes

After treatment with IL13Ra2-
targeted CAR T cells, GBM
regression was observed, and this
clinical response persisted for 7.5
months (doi: 10.1056/
NEJMoa1610497)

City of Hope
Medical Center
(National Cancer
Institute;
Food and Drug
Administration)

EGFRvIII NCT02209376 Autologous T Cells Redirected
to EGFRVIII-With a Chimeric Antigen
Receptor in Patients With EGFRVIII+
Glioblastoma

I Biological: CART-EGFRvIII
T cells

After 18 months of follow-up, only
one of ten treated GBM patients
exhibited residual stable disease
(doi: 10.1126/
scitranslmed.aaa0984)

University of
Pennsylvania
(University of
California, San
Francisco)

NCT03726515 EGFRvIII-Directed CAR T Cells
Combined With PD-1 Inhibition in Patients
with Newly Diagnosed, MGMT-Unmethylated
Glioblastoma

I Biological: CART-EGFRvIII
T cells
Biological: Pembrolizumab

Completed University of
Pennsylvania

NCT01454596
CAR T Cell Receptor Immunotherapy
Targeting EGFRvIII for Patients with Malignant
Gliomas Expressing EGFRvIII

I/II Biological: CART-EGFRvIII
T cells transduced PBL
Drug: Aldesleukin
Drug: Fludarabine
Drug: Cyclophosphamide

Median overall survival was 6.9
months. Two patients survived
over one year, and a third patient
was alive at 59 months. (doi:
10.1097/CJI.0000000000000260)

National Cancer
Institute

NCT04197934 WSD0922-FU for the Treatment
of Glioblastoma, Anaplastic Astrocytoma, or
Non-small Cell Lung Cancer with Central
Nervous System Metastases

I Drug: EGFR/EGFRvIII
Inhibitor WSD0922-FU
Procedure: Therapeutic
Conventional Surgery

Recruiting Mayo Clinic
(National Cancer
Institute;
Wayshine
Biopharm, Inc.)

HER2 NCT01109095
CMV-specific Cytotoxic T Lymphocytes
Expressing CAR Targeting HER2 in Patients
with GBM (HERT-GBM)

I Biological: HER.CAR CMV-
specific CTLs

clinical benefit for 8 of 17 patients
(doi: 10.1001/
jamaoncol.2017.0184)

Baylor College of
Medicine
(The Methodist
Hospital
Research
Institute; Center
for Cell and
Gene Therapy)

NCT03389230 Memory-Enriched T Cells in
Treating Patients with Recurrent or Refractory
Grade III-IV Glioma

I HER2(EQ)BBz/CD19t+ T
cells

Recruiting City of Hope
Medical Center
(National Cancer
Institute)
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was followed by a case study they published the following year, with

the administration of CAR-modified T cells targeting the tumor-

associated antigen IL13Ra2 to a patient with recurrent multifocal

GBM (29). Regression of all intracranial and spinal tumors was

observed subsequent to CAR-T cell therapy, and there was a

corresponding increase in cytokine and immune cell levels in the

cerebrospinal fluid. Such clinical responses persisted for 7.5 months

after the initiation of CAR T-cell therapy (ClinicalTrials.gov,

NCT02208362) (29). However, these studies also highlight a few

obstacles to achieving more sustained clinical outcomes. First,

tumor heterogeneity may promote relapse through the supply of a

subsequently scalable pool of target-deficient tumor cells. To

address this issue, there is a need to find CAR-T cell approaches

that target multiple antigens. Secondly, an absence of persistence of

therapeutic CAR-T cells may be another major factor. To address

these limitations, Christine E. Brown et al. (30) describe the

optimization of IL13Ra-specific CAR-T cells that contain a 4-1BB

(CD137) co-stimulatory structural domain (IL13BBz) to enhance

the anti-tumor potency of the IgG4 Fc spacer (L235E, N297Q) and

mutation reduction with Fc g receptor binding. Enhanced anti-

tumor activity and T cell persistence in patients with IL13BB-CAR-

T cells as compared to first-generation IL13-CAR CD8+ indicates

the biological activity of T cells. Given the widespread use of

corticosteroids in the clinical care of GBM, they evaluated their

effects and found that modest dosages of dexamethasone did not

impair the anti-tumor efficacy of CAR-T cells in vivo. Local

intracranial delivery of CAR-T cells has also been reported to

have greater anti-tumor activity than intravenous administration.

In another investigation, the antigen-binding domain of newly

created IL13Ra2-specific CARs was mutated forms of IL13.

Although these CARs target IL13Ra2, they also recognize

IL13Ra1, which is broadly expressed. Giedre Krenciute et al. (31)

created a set of IL13Ra2-specific CARs with IL13Ra2-specific scFv
47 as antigen-binding domains, short or long spacer regions,

transmembrane domains, and intracellular domain molecules

derived from co-stimulation and CD3.z. In co-culture and

cytotoxicity studies, IL13Ra2-CAR T cells detect IL13Ra2-
positive target cells but do not cross-react with IL13Ra1. Only
IL13Ra2-CAR T cells with a short spacer region, on the other hand,

generated IL2 in an antigen-dependent way. T cells expressing

IL13Ra2-CAR with a short spacer region and the internal

domains CD28.z, 41BB.z, and CD28.OX40.z demonstrated

significant anti-glioma activity in vivo. Overall, CAR-T cell

therapy has the potential to become an effective approach for the

clinical management of brain tumors.

2.1.2 EGFRvIII
The epidermal growth factor receptor (EGFR), as the first

tyrosine kinase receptor to be cloned, is still at the leading edge of

targeted cancer therapy. Being the most common variant of EGFR,

EGFRvIII is usually expressed in GBM (32) and is also detected in

many epithelial cancers, but not in normal tissues. It is caused by

an in-frame deletion in exons 2 to 7 of the EGFR gene and the

creation of a new glycine residue at the junction of exon 1 and

exon 8. This mutant receptor has constitutive activity in tumors
Frontiers in Immunology 05
and can lead directly to the cancer phenotype because of its

oncogenic nature.

Overexpression of EGFRvIII is considered as a poor prognostic

marker, independent of other factors such as age and extent of

resection, and may be partly due to its oncogenic nature conferring

stability and a persistent tumorigenic signal. Peptide vaccine

strategies (rindopepimut) targeting EGFRvIII mutant

oncoproteins is a therapeutic approach (33), and secondary

immunotherapy using redirected T cells does not require the

presentation of antigens and stimulation of primary immune

responses and may have more favorable kinetics as compared to

vaccines. A neoepitope of EGFRvIII is induced by an in-frame loss

of portion of the extracellular structural domain. Based on the

success of mouse scFv-based CARs in a GBM xenograft model,

Laura A. Johnson et al. (34) chose a vector backbone encoding

second-generation CARs. In xenograft subcutaneous and in situ

models of human EGFRvIII+GBM, EGFRvIII-targeted CAR T cells

were also able to suppress tumor development. They also planned a

phase I clinical research utilizing humanized scFv-transduced CAR

T cells targeting EGFRvIII in patients with residual or recurrent

GBM based on these findings (ClinicalTrials.gov, NCT02209376)

(35). A first-of-its-kind human study was conducted by Donald M.

O’Rourke et al. (35) in which a single dose of autologous T cells was

redirected to EGFRvIII mutations by CAR for intravenous infusion.

The result showed that single dose of peripherally infused

EGFRvIII-directed CAR-T cells mediates antigen loss and induces

adaptive resistance in patients with relapsing GBM. However, the

major challenges to clinical success of this treatment are the

heterogeneity of EGFRvIII expression and the suppressive tumor

milieu, which is increasingly immunosuppressive after CAR-T cells.

The former requires new antigens to be targeted, while the latter

may be circumvented by current medications that target

immunosuppressive molecules. Animal studies have indicated

that an additional 4-1BB co-stimulatory signaling promotes

tumor persistence and localization (31), hence the third-

generation construct was chosen for clinical trials. Stephanie L.

Goff et al. (36) used a third-generation chimeric antigen receptor

construct produced from a human antibody in a dose-escalation

phase I study in patients with recurrent GBM expressing EGFRvIII

(ClinicalTrials.gov, NCT01454596). Anti-EGFRvIII-CAR+ T cells

were treated with infusion products in 18 patients. All patients

experienced the expected transient hematological toxicity from

preparations of chemotherapy, and the median overall survival of

patients was 6.9 months, with two patients surviving for more than

a year and a third patient surviving for 59 months. The persistence

of CAR+ cells correlated with cell dose, but there was no objective

response. However, the Administration of anti-EGFRvIII CAR-

transduced T cells in this phase I pilot trial did not show a clinically

meaningful effect in patients with polymorphic GBM.

2.1.3 EphA2
The EphA2 receptor is a member of the Eph family of receptor

tyrosine kinases. Although EphA2 overexpression is a crucial

antigen in the maintenance of the malignant GBM phenotype,

EphA2 is not expressed in normal brain tissue (37). Targeting
frontiersin.org
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EphA2 could prevent tumor immune escape, and Jill Wykosky et al.

proposed that EphA2 could be a novel molecular marker and target

for GBM (38). CAR-T treatment for GBMmust guarantee that such

antigens are abundantly expressed on most tumor cells but are

generally lacking in normal tissues. Therefore, EphA2 has already

proven to be a successful target antigen for CAR-T immunotherapy

for GBM. A development of an EphA2-specific CAR was reported

by Kevin KH Chow et al. (39) to redirect T cells to EphA2-positive

GBM in vitro with the aim of identifying and killing EphA2-positive

glioma cells and glioma-initiating cells, as well as inducing tumor

induction in an in situ xenografted GBM with Severe Combined

Immunodeficiency (SCID) mouse model of regression. However,

such manipulations are still carried out through highly artificial

means and may not better predict future clinical effectiveness. H.T.

Lin et al. (40) conducted the first human study of EphA2-redirected

CAR T cells in EphA2-positive recurrent GBM patients. A single

intravenous infusion of EphA2-redirected CAR T cells was

combined with a lymphocyte clearance regimen of fludarabine

and cyclophosphamide. Two patients had grade 2 cytokine release

syndrome with pulmonary edema, which was entirely cured with

dexamethasone medication therapy, with most cytokines reverting

to normal as the edema dropped. The pulmonary edema observed

in these patients may be due to an “on-target, off-tumor” effect.

However, the possibility of “off-target, off-tumor” lung organ

cytotoxicity cannot be completely ruled out in the study. There

were no additional organ toxicities, including neurotoxicity. They

detected CAR T cell growth in peripheral blood and cerebral fluid

for more than four weeks. The tumour shrank metastatically in one

patient. One patient had stable disease, while the other two had

progressing disease, with an overall survival of 86 to 181 days. At the

dose level tested, the intravenous infusion of EphA2 redirected CAR

T cells was initially tolerated with transient clinical efficacy. Future

research will be needed to modify the dose and frequency of CAR T

cell infusions. Zhongzhen Yi et al. (41) showed the anti-tumour

effectiveness of third-generation CAR-T cells targeting distinct

EphA2 epitopes against GBM. While there have been substantial

advances in the clinical effectiveness of EphA2 redirected CAR-T

cells for GBM, the anti-tumour effects of CAR-T cells generated in

different labs or by different methods remain uneven. Several

parameters, including target antigen affinity, off-target toxicity

and terminal differentiation, could influence the anti-tumour

effects of CAR-T cells, therefore future research on CAR-T cells

against GBM are still in its early stages.

2.1.4 HER2
HER2, an epidermal growth factor receptor protein encoded by

the ERBB2 gene, has been found to be over-expressed as a tumour-

associated antigen in 80% of GBM cells, signaling a poor prognosis,

but not in normal neurons or glial cells (42). HER2 is now being

aggressively targeted as a cell surface protein in GBM-directed

CAR-T cell treatments in preclinical models. Nabil Ahmed et al.

(43) identified HER2-specific T cells to target primary GBM stem

cells and induce autologous experimental tumour regression. In a

phase I clinical trial, Nabil Ahmed et al. (44) revealed that the

infusion of autologous HER2-specific embedded CAR-modified
Frontiers in Immunology 06
virus-specific T cells (VST) is safe and is potentially linked to

c l in i c a l b enefi t i n pa t i en t s w i th p rog r e s s i v e GBM

(ClinicalTrials.gov, NCT01109095). These cell lines are enriched

with cytomegalovirus, Epstein-Barr virus and adenovirus. In this

study, they determined the safety of autologous HER2-CAR VST in

17 patients with progressive GBM, with no serious adverse events. 8

patients showed clinical benefit, with a median overall survival of

11.1 months after T-cell infusion and 24.5 months after diagnosis,

and 3 patients were alive at last follow-up with no disease

progression. However, the efficacy of HER2-CAR VST as a single

agent or in combination with other immunomodulatory

approaches for the treatment of GBM needs to be further

evaluated in phase 2b studies.

2.1.5 Multi-antigen targeted CAR-Ts
Regardless of the major breakthroughs in clinical efficacy, every

CAR-T therapy has certain drawbacks when it comes to treating

GBM (30, 35, 41, 44). This is due in large part to the fact that safe,

specific and homogeneously expressed targets are more difficult to

identify, which suggests that there are few antigens that are truly

tumour-specific and consequently the cross-reactivity of engineered

T cells with normal tissues for targeting/non-tumour can lead to

lethal toxicity (45–48). Rather, these targets are often

heterogeneously expressed even when antigens with high tumour

specificity are identified, and selective CAR targeting can allow

antigen-negative tumour cells to escape (35). GBM is a prime

example of this dual challenge, and several of these issues that

have impeded the efficacy of CAR-T cells need to be addressed

during the treatment of GBM. Therefore, in recent years, more and

more CAR-T therapies targeting multiple antigens have been

proposed, thus avoiding the problems of tumour specificity and

heterogeneity associated with single CAR-T therapies. As revealed

by Masasuke Ohno et al. (49), expression of MicroRNA (miR) -17-

92 augments the anti-tumour activity of T-cells transduced with the

anti-EGFRvIII chimeric antigen receptor in mice bearing human

GBM xenografts. Meenakshi Hegde et al. (50) used two glioma

antigens, HER2/IL-13Ra2 bivalent T-cell products, both of which

counteracted antigen escape and enhanced T-cell effector function.

However, site-specific antigen pairs are variably different between

patients and therefore require the generation of permutations of

bivalent T-cell products, which would make the successful clinical

translation of this approach challenging. Kevin Bielamowicz et al.

(51) created for the first time a trivalent T-cell product, i.e. a single

CAR-T cells product using 3 targetable glioma antigens (HER2,

IL13Ra2 and EphA2) for broader application. Trivalent CAR-T

cells have the potential to overcome antigen heterogeneity in GBM

and improve treatment results. Furthermore, Joseph H. Choe et al.

(52) hypothesized that T cells recognizing various antigen

combinations give a potential solution to the issue of maximizing

tumour identification specificity and killing integrity at the same

time. SynNotch receptors that identify particular priming antigens

in GBM (53), such as the highly tumour-specific GBM neoantigen

EGFRvIII or the CNS tissue-specific ant igen myel in

oligodendrocyte glycoprotein (MOG), can be employed to

homogeneously trigger CAR production in tumors. EGFRvIII
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expression in tumors is extremely selective, and while CAR-T cells

successfully destroy EGFRvIII+ tumour cells, EGFRvIII- tumour

cells can escape and thrive (34, 35, 49). EGFRvIII has specificity but

is heterogeneous, as opposed to EphA2 and IL13Ra2, both of which

are more homogenous but only partially specific for tumors. Due to

their unique flaws, it is possible that these antigens be coupled to

form a multi-antigen circuit with both high specificity and the

ability to cause death more comprehensively. In addition, because

they lacked co-localized priming antigens, EGFRvIII synNotch-

EphA2/IL13R2 CAR-T cells were able to efficiently and completely

eliminate GBM tumors without destroying surrounding normal

tissue or EphA2 or IL13R2-positive cells elsewhere in the body.

They also discovered that T cells carrying a-MOG synNotch

receptor may be effectively and selectively activated in the CNS

body by endogenously produced MOG (54, 55). If these cells are

driven to produce a-EphA2/IL13R2 CAR, they will only kill CAR-

expressing cells in the CNS, not those transplanted outside the CNS.

Ultimately, through the use of circuits incorporating recognition of

multiple imperfect but complementary antigens, the specificity,

integrity and persistence of the T cells targeted to GBM were

improved, and therefore, they managed to provide a general

recognition strategy applicable to other solid tumors.
2.2 NEs therapy

Neutrophils (NEs), the most prevalent leukocyte population in

the blood, may be rapidly recruited to sites of inflammation, and are

thought to be a powerful platform for tumour-targeted drug

delivery, similar to mesenchymal stromal cells (MSCs) (56). More

importantly, NEs can also penetrate the BBB/BTB and specifically

brain tumour sites. Inflammation can activate NEs and is often

accompanied by a local inflammatory response in the brain after

surgical resection of GBM, with massive release of inflammatory

factors. Therefore, the inflammatory TME may be a promising

therapeutic strategy for GBM. Nanoparticle-based drug delivery

systems (DDSs) are seen as a promising prospective technique for

brain-targeted medication delivery (57). Although it has

demonstrated the capacity to improve tumour targeting, these

DDSs cannot accomplish the full therapeutic potential of

postoperative glioma therapy because the predominant

distribution of particles is in the perivascular region of recurring

tumors and because intratumoural drug concentrations are low (58,

59). Xue Jingwei et al. (60) created a cell-based anti-cancer DDS that

uses the physiological features of natural NEs to improve the

efficacy of postoperative glioma therapy. Unlike conventional

nanoparticles, their accumulation at the tumour site is based on

passive targeting, i.e. increased permeability and retention effects, or

active targeting via ligand-receptor interactions. NE-mediated DDS

have the ability to recognize post-operative inflammatory signals

such as IL-8 and CXCL1/KC and deliver chemotherapeutic agents

to infiltrating glioma cells in a spontaneous and on-demand

manner. They used cationic liposomes carrying paclitaxel (PTX)

as a delivery vehicle based on NEs to effectively deliver PTX to

tumour cells and induce cytotoxicity and inhibit post-operative

recurrence of GBM (60). Furthermore, highly concentrated
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inflammatory signals in the brain after surgery triggered NEs to

release liposomal PTX, thus allowing the delivery of PTX to the

remaining invasive tumour cells. This suggests that this NE-

mediated drug delivery is effective in slowing down recurrent

tumour growth. Meiying Wu et al. (56) internalized doxorubicin-

loaded magnetic mesoporous silica nanoparticles (D-MMSNs)

loaded with the antitumor drug Adriamycin (DOX) into

inflammation-activatable neutrophils. It provides magnetic

resonance imaging (MRI) to track drug-loaded cells and actively

target inflamed brain tumors after surgical removal of the primary

tumour, releasing D-MMSNs to be taken up by infiltrating GBM

cells, so as to maximize the bioavailability of the drug for accurate

diagnosis and high anti-glioma efficacy. However, it has been shown

that NEs can be polarized into different functional phenotypes in

the TME, while it can also be polarized into N1-type anti-tumour or

N2-type pro-tumour phenotypes, i.e. the controversy of having both

pro- and anti-tumour effects (61–63). The antitumor activity of N1

TAN includes the expression of more immune activating cytokines

and chemokines, reduced arginase levels, and a greater ability to kill

tumour cells in vitro. As blockade of TGF-b facilitates the

accumulation of N1 TAN with antitumor activity, TGF-b is the

major proximal cytokine within tumors that defines the TAN

phenotype and biases differentiation towards the N2 pro-

tumorigenic phenotype (62). To address this controversy, Jun

Wang et al. (59) mounted DOX into neutrophil exosomes (NEs-

Exos), which are extracellular vesicles with characteristics of NEs. It

can produce a chemotactic response to inflammatory stimuli and

target infiltrating tumour cells in inflamed brain tumors without the

risk of tumour promotion. This is an addition to the current

research on NEs for GBM.
2.3 Immunotherapy of MSCs

MSCs are pluripotent stem cells, which are normally derived

from bone marrow, umbilical cords/placenta, and adipose tissue.

MSCs have tissue healing capability and low immunogenicity, and

they are not restricted by the BBB/BTB, so they can be intrinsically

subsumed into the brain tumour site (64, 65), overcoming the

difficulties of conventional therapy being isolated by the BBB/BTB.

That is, MSCs exhibit tropism to the cytokines, chemokines and

growth factor-mediated TME. Studies have shown that MSCs and

their derived soluble factors exhibit inhibitory effects on the growth

of GBM cells, revealing a well-established role for MSCs in the

treatment of CNS malignancies (66). Nevertheless, there are certain

benefits and drawbacks of MSCs generated from different tissues

(Figure 3), and we will explore the mechanism by which MSCs

derived from diverse tissues prevent the development of GBM in

recent years.

2.3.1 Bone marrow-derived MSCs
MSCs were first identified in bone marrow and their tumour

tropism has been used for the delivery of anti-cancer therapeutic

genes, but MSCs exact mechanisms in the TME remain unknown.

Vy A W Ho et al. (67) investigated the biological effects of MSCs

from bone marrow on glioma cells. MSCs limit tumour
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angiogenesis by releasing anti-angiogenic factors, according to their

findings. Further studies using antibody array technology showed

reduced expression of platelet-derived growth factor (PDGF)-BB,

IL-1b, phosphorylated Akt and histone B proteins in MSCs/glioma

co-cultures. In conclusion, their findings imply that the antitumor

actions of MSCs may be mediated by down regulation of the PDGF/

PDGFR axis, which is important in glioma angiogenesis. Based on

the fact that bone marrow-derived MSCs have been shown to

localize to gliomas after intravascular delivery and that these cells

are located in inflammatory regions of tissue injury in the TME,

Jonathan G. Thomas et al. (68) used ionizing radiation (IR) to

increase the tropism of bone marrow MSCs towards GBM. IR is a

therapeutic modality that can effectively trigger local damage or

inflammation in the TME. According to their results, IR to GSC-

derived gliomas increases MSCs tropism, which can be boosted by

the chemokine CCL2. Nevertheless, IR can increase vascular

permeability by disrupting the BBB (69–72), reduce tight junction

proteins (73) or induce endothelial cell damage (74), leaving the

mechanism of action of IR in an in vivo situation where tumour

cells are integrated with supportive cells more unknown. Improving

the efficiency of MSCs in the treatment of GBM requires the use of

appropriate tools and technical abilities. Extensive research has

revealed the promise of suicide genes in the treatment of glioma

tumors. Enhancing their effectiveness relies on the ability to apply

the right tools and techniques. Saeed Oraee-Yazdani et al. (75)

investigated the safety and feasibility of treating patients with

primary and secondary polymorphic GBM with lentiviral

transduced autologous bone marrow MSC containing herpes
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simplex virus thymidine kinase (HSV-TK) in combination with

intravenous ganciclovir. From the five patients they recruited, it was

possible to find that all patients had a 1 year progression-free-

survival (PFS) and overall survival (OS) of 60% and 100%,

respectively, and two patients had an OS of more than 3 years

and a PFS of more than 2 years. This finding suggests that

intracerebral injection of bone marrow MSCs expressing the

HSV-TK gene, in conjunction with intravenous ganciclovir is safe

and practical for treating GBM patients. When recurrent cell

infusions are necessary in the same patient, autologous cell

sources are frequently used. Some studies have discovered that

bone marrow MSCs from healthy donors can be viral carriers (76).

However, it is unknown if bone marrow MSCs can be created from

chemotherapy-treated glioma patients, or whether such bone

marrow MSCs can successfully transmit oncolytic virus. Yuzaburo

Shimizu et al. (77) conducted a prospective clinical experiment in

which they discovered that bone marrow MSCs could be collected

from GBM patients who had previously had chemotherapy and that

bone marrow MSCs were efficient carriers of oncolytic virus.

Additionally, Nazneen Aslam et al. (78) suggested a possible

solution for GSCs and discovered that when actively developing

GSCs were treated with paracrine factors from MSCs, the

prospective growth capacity and pluripotent of GSCs were

disrupted. This effect was mediated by up regulation of the DKK1

gene, which in addition was mediated by up regulation of the Wnt

pathway mediated by inhibition of growth factor activity and down

regulation of the KITLG gene activated by growth factor and

cytokine activity, thus exhibiting antitumor properties. The main
FIGURE 3

Advantages and disadvantages of bone marrow-derived, cord- and placenta-derived, adipose-derived MSCs and MSCs-derived Exo.
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active component of paracrine secretion is extracellular vesicles

(EVs), which will be discussed in the Cell-free Immunotherapies for

the GBM section. Even so, the proliferation and differentiation

capacity of bone marrow-derived MSCs in terms of cell numbers

decreases considerably with age, thus leading to limitations in cell

extraction. It is also harmful to the donor, the extraction and

preparation process is difficult to achieve quality control, and

transplantation into humans may trigger an immune response

(79, 80). These issues have hampered the therapeutic use of bone

marrow MSCs.

2.3.2 Umbilical cord or placental-derived MSCs
The umbilical cord and placenta are novel tissues and the cells

removed are primitive. As the cells are young, the functional activity

of cell surface antigens is low, making it difficult to stimulate an

immune response. It has also been shown to be a waste product that

does not cause any harm or damage to the mother or newborn when

collected and has a greater capacity for proliferation and

differentiation (80–83), so it may be an ideal alternative to bone

marrow-derived MSCs. Based on the fact that MSCs exhibit tropism

towards cytokines, chemokines and growth factor-mediated TME.

Adriana Bajetto et al. (84) examined the effect of umbilical cord

MSCs on the growth of GSCs. Umbilical cord MSCs released large

amounts of soluble cytokines regarding inflammation, angiogenesis,

cell migration and proliferation, such as IL-8, GRO, ENA-78 and

IL-6. They regulate GBM cells, either through direct cell-to-cell

interactions or indirectly. These cytokine ligands share a receptor,

CXC chemokine receptor 2 (CXCR2), so they also assessed the effect

of CXCR2 on the proliferation of GSCs induced by umbilical cord

MSCs. The results showed that direct (intercellular contact) or

indirect (via release of soluble factors) interactions between GSCs

and umbilical cord MSCs in co-culture had different effects on anti-

GSCs, with the former causing mainly an inhibitory response and

the latter a stimulatory response involving paracrine activation of

CXCR2. miRs are promising therapeutic targets for GBM, but the

difficulties in delivering them to tumour target cells has limited their

usage. MSCs can migrate to cancer sites, including GBM, and exert

antitumor effects. S Sharif et al. (85) found that delivery of

exogenous miR-124 to GBM cells via umbilical cord-derived

MSCs reduced cell proliferation and migration and conferred

sensitivity to the chemotherapeutic agent TMZ. To explore the

potential clinical application of gadolinium neutron capture therapy

(Gd-NCT) in GBM treatment affected by the rapid clearance and

non-specific bio-distribution of gadolinium-based drugs, Yen-Ho

Lai et al. (86) developed a stem cell-nanoparticle system (SNS) that

actively targets GBM by using gadobisamine-concealed magnetic

nanoparticles (Gd-FPFNP) on umbilical cord-derived MSCs was

performed to actively target GBM for advanced Gd-NCT. The

findings of their study indicate that SNS can potentially overcome

the current limitations of Gd-NCT, including off-target effects and

rapid metabolism, and that it combines the advantages of cellular

therapy and nanotechnology for an alternative strategy to treat

brain disorders. However, umbilical cord-derived and placental-

derived MSCs are limited in availability, which limits their clinical

application (80, 87).
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2.3.3 Adipose tissue-derived MSCs
The proliferative potential of adipose tissue-derived MSCs does

not reduce with increasing patient age and is less harmful and

uncomfortable to the donor (81). Most significantly, because it is

easy to extract and has a high potential for self-renewal, adipose

tissue-derived MSCs are thought to be a viable alternative source of

therapeutic stem cells (87). Mona N. Oliveira et al. (88) emphasized

the processes through which adipose-derived MSCs interact with

GBM cells, with substantial implications for MSCs in the treatment

of GBM. MSC-based gene delivery of tumour necrosis factor-

related apoptosis-inducing ligand (TRAIL) is recognized as a

potent therapy for GBM (89, 90). The systemic treatment of

TRAIL-secreting stem cells is problematic in that some of these

delivery vehicles do not always reach tumour microsatellite nests.

Furthermore, as many stem cells are home to normal brain

parenchyma and perivascular gaps, TRAIL-laden stem cells are

unable to reach tumour microsatellite nests, causing them to remain

in normal brain tissue and cause adverse effects such as neuronal

cell death. To regulate the expression of suicide inducers and reduce

off-target damage, Man Li et al. (91, 92) exploited endogenous

tumour signaling pathways to modulate the release of the suicide

inducer TRAIL. Findings from their study suggested a significant

improvement in the efficacy of adipose MSC-mediated gene

delivery for the treatment of GBM. Bahattin Tanrikulu et al. (93),

Valentina Coccè et al. (94) also found that the combination of

TRAIL-expressing adipose MSCs and multiple drugs (e.g. X-linked

apoptosis protein (XIAP) inhibition, XIAP silencing, and octane

diamide isohydroxamic acid) or paclitaxel induced GBM cell

apoptosis and reduced their proliferation. To improve the

effectiveness of adipose-derived MSCs to reach the actual tumour

target, Francesco Agostini et al. (95) utilized growth factor-rich

supernatant as an additive to adipose MSCs. The results showed

that the growth factor-rich supernatant enhanced the specific

homing and secretory properties of adipose MSCs towards GBM.

However, the ability of adipose-derived MSCs to differentiate into

cells is relatively limited.

Despite the numerous benefits of MSCs in the battle against

GBM, there are some drawbacks to their use, such as poor biological

activity and restricted availability. Additionally, when MSCs come

into direct touch with GBM cells, they not only do not operate as

tumour suppressors, but instead accelerate tumour development

(96). These restrictions add to the inherent dangers of MSCs as

live cells.

The ability to homing is critical for MSCs to be employed safely

and successfully in therapeutic applications. However, many

systemically administered MSCs are lost in patients’ substantial

organs such as the lungs, liver, and spleen, significantly reducing

MSCs’ therapeutic usefulness. If they are given a “GPS” to guide

them to their final destination, off-target effects can be minimized.

To address this problem, research have looked at using pro-

inflammatory cytokines (IL-7, IL-12, and TNF-a) and

chemokines (CXCR1, CXCR4) to better recruit MSCs to GBM

sites (97, 98). In addition to this, the targeting of MSCs to the GBM

can be improved by targeting target genes that are specifically

highly expressed in the GBM or highly heterogeneous. For
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1175118
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1175118
example, Irina V Balyasnikova et al. (99) found that MSCs

genetically engineered to express EGFRvIII on the cell surface

had increased affinity for GBM target sites. TRAIL is one of the few

anti-cancer proteins that selectively causes apoptosis in tumour

cells by activating death receptors, while having no effect on

healthy cells. Xiang-Jun Tang et al. (100) found that MSCs

carrying TRAIL exerted sustained anti-GBM activity. In another

preclinical study, MSCs armed with both EGFR-targeting

nanoantibodies (ENb) and TRAIL were evaluated to significantly

improve the survival of animals in a GBM in situ resection model

(101). OV selectively replicates and kills cancer cells and spreads

within the tumour without harming normal tissue. It also promotes

the release of tumour-associated antigens, activates antigen-

presenting cells, promotes the activation and aggregation of CD4

+ and CD8+ T cells, and directly kills tumors (26). The use of

MSCs as a delivery vehicle helps protect the virus from the immune

system and improves therapeutic efficiency by enhancing tumour

shrinkage (102). Delta-24-RGD is a tumourolytic virus who’s

binding to MSCs has been shown to selectively target intra-

arterially delivered hMSCs-Delta24 to GBM and to deliver and

release Delta-24-RGD into tumors, thereby improving survival and

tumour eradication in a subpopulation of mice (76). MSCs loaded

with oHSV induced significant anti-GBM mechanisms in

preclinical models or GBM resection (103). MSCs enhance the

tumourolytic effect of Newcastle disease virus on GBM and GSC

cells through the secretion of TRAIL (104).
2.4 NK cells therapy

Natural killer (NK) cells play an essential role in the body’s anti-

infection, anti-tumour, and immunomodulatory processes as

recognition and effector cells in the innate immune system. NK

cells do not inhibit the killing of their own normal cells, but

selectively recognize and kill cells that are low in expression or

lack their own major histocompatibility complex (MHC)-I

molecules (105). MHC-I molecules are also known as human

leukocyte antigen class I (HLA-I) molecules. The binding of killer

cell immunoglobulin-like receptors (KIRs) on the surface of NK

cells to HLA-I on the surface of target cells induces inhibition of NK

cell killing activity (106, 107). When there is a lack of expression of

HLA-I on the surface of target cells, the killing activity of NK cells

against them can be triggered. The imbalance between KIRs and

HLA-I has been shown to trigger NK cells to successfully destroy

glioma cells (108). Furthermore, NK cells activity is governed by a

variety of signaling factors, and Hila Shaim et al. (109) discovered

that GSCs are susceptible to in vitro destruction by healthy

allogeneic NK cells. Their findings demonstrated that GBM

tumour-infiltrating NK cells acquired an altered phenotype

associated with impaired lytic function when compared to

matching peripheral blood NK cells from GBM patients or

healthy donors. This immune evasion approach was attributed to

av integrin-mediated TGF-b activation, which directed interactions

between GSCs and NK cells. In contrast, blocking the av integrin/

TGF- b axis can increase NK cell antitumor function. Gregory J

Baker et al. (110) found that NK elimination of intracranial
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neuroGBM was possible in the presence of decreased tumour-

derived galactose lectin 1 (gal-1).

The function of monoclonal antibodies like bortezomib and

bevacizumab in the antitumor process is getting attention. Andrea

Gras Navarro et al., Thi-Anh-Thuy Tran et al. (111, 112) discovered

that pretreatment of GBM with the monoclonal antibody

bevacizumab increased NK cell cytotoxicity and extended animal

life. Relay transfer of CAR-modified NK cells has shown significant

anti-glioma activity both in vitro and in vivo. In contrast to CAR-T

cells, which require autologous cells for each patient, NK cells are

safe under allogeneic circumstances, which broadens the pool of cell

donors capable of producing therapeutically meaningful amounts of

CAR-NK cells for therapy (113). In terms of safety, CAR-NK cells

outperform CAR-T cells because they operate autonomously on

antigen-antibody reactions and do not produce cytotoxic effects,

such as cytokine release syndrome, in different studies (114). The

inherent characteristics of NK cells make them an appealing option

to CAR-engineered effectors in cancer treatment, clearing the way

for several clinical studies to further develop the strategy and better

its ability to fight glioma cells (114, 115). CAR-NK cells, in brief,

identify CAR-targeted antigens and induce NK cell activation,

proliferation, and secretion of different inflammatory cytokines

and chemokines. When NK cells recognize cancer cells, they

establish lytic synapses with them to guide the delivery of lytic

granules to susceptible cancer cells while maintaining their normal

activating and inhibitory receptors (115). Thus, CAR-NK cells can

kill cancer cells that do not exhibit CAR-targeting antigens (CAR

non-dependent) as well as cancer cells that do express CAR-

targeting antigens (CAR dependent) (116).
2.5 DC cells therapy

Dendritic cells (DC) are now recognized as the most potent and

only specialist antigen-presenting cells in the body capable of

activating naïve T cells. It is called after the numerous dendritic

protrusions that emerge from the cell surface during maturation.

Immature and mature dendritic cells perform distinct tasks, with

immature dendritic cells being good at antigen differentiation and

phagocytosis and mature dendritic cells being good at antigen

presentation. DC have MHC class I and II molecules on their

surface, which when combined with antigenic peptides trigger CD4

+ helper T cells (Th) and CD8+ cytotoxic T lymphocytes (CTL) to

elicit specific anti-tumour cellular and humoral immunity,

inhibiting tumour cell growth (117). DC also upregulate the

expression of cell surface co-stimulatory factors such as MHC-II,

CD80, CD86 and CD40, and secrete cytokines such as interleukins

and chemokines to stimulate T cell activation, proliferation and

aggregation, thereby inducing the activation of an adaptive

immune response.

DC vaccines, which are currently being studied extensively in

anti-tumour immunotherapy, are based on the powerful antigen-

presenting ability of dendritic cells. The key to developing and

manufacturing DC vaccines is to allow dendritic cells to carry a

marker for the target tumour, which can come from a variety of

sources, such as tumour antigen gene modifications (118), synthetic
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antigenic peptides, antigen-encoded mRNA or DNA (119), which

DC then deliver to T cells. Immune cells such as killer T cells can

then accurately and effectively recognize and assault the target

tumour cells, significantly decreasing collateral harm to normal

cells. According to research, recombinant adenovirus-mediated

gene transfer is the most efficient way of changing DC cells (120).

GBM secrete a range of immunosuppressive and immune escape

factors, such as substantial loss of Fas, to avoid immune killing

initiated by the Fas/FasL system (121, 122). Mature dendritic cells

improve antigen presentation, activating the Fas/FasL-mediated

apoptotic pathway and increasing Fas mRNA, causing a caspase

enzyme chain reaction that results in planned cell death. Dendritic

cells have no direct killing impact, but they improve

immunosurveillance and tumour suppression by improving

antigen expression (123). Furthermore, studies have shown that

NK and other cells have a glioma-killing impact (124), implying

that there is still much space for study into the inhibitory effect of

DC-associated killer cells on gliomas. Xin Ma et al. and Haidar A

Shamranet al. (125, 126) discovered that glioma cells secreted

immunosuppressive factors VEGA and IL-10, which reduced

immune cell function, meanwhile Yawen Ma et al. (127)

discovered that miR-153 can down-regulate VEGA expression in

malignant glioma vessels, inhibiting tumour growth. The first two

clinical studies involving DC cell vaccines for the treatment of high-

grade gliomas were reported (128). Surasak Phuphanich et al. (129)

assessed the findings of a phase I clinical study of the autologous DC

cell vaccine ICT107. The vaccine was pulsed with class I peptides

from six tumour-associated antigens (TAA) of AIM-2, MAGE1,

TRP-2, gp100, HER2/neu and IL-13Ra2, which are expressed on

gliomas and over expressed in their cancer stem cell population.

The feasibility, safety, and biological efficacy of a TAA-pulsed

dendritic cell vaccination in patients with GBM were proven in

this phase I study of ICT-107. Based on PFS and OS measures in

newly diagnosed GBM patients, AIM2 and MAGE1 antigen

expression in pre-vaccination tumors was related to longer

survival, whereas HER2 and gp100 expression exhibited a trend

toward prolonged PFS and OS. They are conducting a randomized,

placebo-controlled phase II study based on these positive results.

Patrick Y Wen et al. (130) published the findings of a phase II

clinical study in which ICT-107 improved the immunosuppressive

microenvironment in newly diagnosed GBM and helped patients

overcome tumour heterogeneity, but there was no advantage in

terms of total patient mortality (ClinicalTrials.gov, NCT01280552).

HLA-A2 primary tumour antigen expression was more frequent

than in HLA-A1 patients. HLA-A2 patients had a higher immune

response (by Elispot) and patients in the pre-specified subgroups of

methylated and unmethylated MGMT achieved meaningful

therapeutic benefit with ICT-107. This was the first vaccination

study to demonstrate a clinical benefit in GBM, and it paved the way

for a phase III trial in patients with HLA-A2+ newly diagnosed

GBM. Linda M Liau et al. (131) published interim results from a

phase III clinical trial of the autologous tumour cell lysate-loaded

dendritic cell vaccine DCVax-L in combination with TMZ dendritic
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cell vaccine, and the phase III trial results showed promising

application (ClinicalTrials.gov, NCT00045968) (Table 2). They

later reported that including DCVax-L in standard of care (SOC)

resulted in a clinically relevant and statistically significant extension

of life for patients with GBM when compared to concurrent (132).

The use of autologous DC vaccines pulsed with allogeneic GBM or

GBM stem cell line lysates for the therapy of freshly identified and

recurring GBM is also safe and well accepted, according to Jethro L

Hu et al. and Ian F Parney et al. (133, 134). The above clinical

findings contribute to the evidence that immunotherapy may play a

part in the treatment of GBM.
2.6 Microglia and Tumour-associated
macrophages

Microglia and tumour-associated macrophages (TAMs) are the

main components of GBM myeloid cells, which are maintained by

self-renewal under physiological conditions and are associated with

functions such as CNS inflammation and development (135).

Under pathological conditions, especially in GBM, GBM cells

release multiple chemokines, such as MCP-1 and CCL2, which

allow microglia to activate and accumulate in large numbers around

the tumour. At this point, BBB/BTB function is hampered, and

monocytes in the blood also penetrate the brain parenchymal via

the impaired BBB/BTB, and both cells are converted into critical

drivers of tumour development by acting as TAMs together to

infiltrate at GBM locations (136).

TAMs are the most common immune cells in the TME, and

their phenotype is diverse and flexible (137). The bulk of

macrophages in tumors are Tumour-promoting TAMs (pTAMs),

which interact tightly with tumour cells and thus support tumour

growth. pTAMs have the characteristics of M2 macrophages, which

are M2 TAMs that support tissue healing and remodeling, Th2

immune response, and tumour progression, and generate Arg-1, IL-

10, and TGF-b. pTAMs are the primary factors to the development

of an immunosuppressive microenvironment in tumors (138).

TAMs are a subset of macrophages in tumors that phagocytose or

destroy tumour cells, thereby inhibiting tumour development (139).

TAMs have M1 macrophage characteristics, and M1 TAMs exhibit

high amounts of pro-inflammatory factors (e.g. TNF-a) and anti-

tumour factors IL-12, IL-13, IL-1, and TNF-b, which can boost Th1

responses and tumour-killing capability. Because many

malignancies, including GBM and brain metastases, contain

significant quantities of tumour growth-promoting pTAMs,

recoding pTAMs into sTAMs is a novel approach to successful

cancer control and therapy. Wenchao Zhou et al. demonstrated that

GSCs can greatly decrease the capacity of TAMs to attract TAMs by

silencing periostin (POSTN) secretion, thereby inhibiting tumour

development (140). GSC-secreted granulocyte-macrophage colony-

stimulating factors (GM-CSFs) produced CD11+ macrophages, a

subset of CD11c (high) cells with tumour-promoting activity,

according to Yasuhiro Kokubu et al. (141).
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3 Cell-free Immunotherapies for GBM

3.1 MSCs-derived exosomes as carriers

Despite the many advantages of MSCs in the fight against GBM,

there are some limitations to the use of MSCs, such as low biological

activity and limited accessibility (79, 80, 87). Furthermore, in direct

contact with GBM cells, MSCs enhance the development of tumors

rather than inhibit them (96). This argument highlights the

inherent danger of MSCs as live cells. EVs are cell-secreted

nanoparticles with a bilateral lipid membrane structure that are

actively released by the cell. Based on their biogenesis, size and

biophysical properties, the types of EVs can be classified as

microvesicles, apoptotic vesicles and exosomes. Microvesicles,

approximately 100-1000 nm in diameter, generated by cells

directly outwards budding or extruding from cells, containing cell

membranes and some cytoplasmic components (142, 143).

Apoptotic vesicles, which range in size from 50 nm to 5000 nm,

are vesicles shed or burst during apoptosis or death and released

outside the cell (144, 145). Distinct from microvesicle formation,

exosomes (Exo), which are approximately 30-100 nm in diameter,

begin at the cell membrane and bud inwards to produce

intracellular vesicles, then undergo early intracellular vesicles,

multivesicular complexes, directed assembly and migration, and
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finally fuse with the cell membrane and depart the cell by exocytosis

(146, 147). Exo have the lowest average particle size, the greatest

mean content, and the most diversified roles among the three kinds

of extracellular vesicles.

MSCs can be an abundant source of Exo, and all Exo express the

same group of proteins, such as tetraspanins (e.g. CD63, CD9,

CD81), adhesion proteins (e.g. L1CAM, LAMP2), Alix and TSG101

(148–150). Exo vesicle proteins are closely related to proteins in the

source cells, such as heat shock proteins (HSP70, HSP90) and

cellular skeletal proteins (actin, tubulin, cofilin) (151). Apart from

this, Exo carries the same bioactive substances as the source cells,

such as nucleic acids, proteins and lipid substances, and can

produce a variety of biological effects (152–154).

MSCs exosomes (MSCs-Exo), as paracrine mediators of the

therapeutic effect of MSCs, have comparable biological activity to

MSCs. However, compared with MSCs, MSCs-Exo are smaller,

penetrate biological membranes more easi ly, are less

immunogenic, more biocompatible, and better preserved (155,

156). Previous studies have shown that exosomes are important

mediators of intercellular communication. It can be used as

carriers of drugs/signaling molecules to efficiently transport cargo

to target cells (157, 158). Therefore, MSCs-Exo can be used to

safely and effectively deliver drugs to GBM sites in the brain.

MSCs-Exo preferentially homed to damaged tissues and sites of
TABLE 2 Dendritic cells based clinical studies in GBM patients that have been completed or are ongoing.

Molecular
target

Clinical trial NCT
number and title

Study
phase

Interventions Study Results Sponsor/Col-
laborators

DC NCT01280552 A Study of
ICT-107 Immunotherapy in
Glioblastoma Multiforme
(GBM)

II Biological: ICT-
107
Biological:
Placebo DC

The ICT-107 vaccination was well tolerated, with a 2.2-month
improvement in progression-free survival. Overall survival, the
primary outcome, was not improved. (doi: 10.1158/1078-
0432.CCR-19-0261)

Precision Life
Sciences Group

NCT02546102 Phase 3
Randomized, Double-blind,
Controlled Study of ICT-107
in Glioblastoma

III Biological: ICT-
107
Biological:
Placebo

Suspended Precision Life
Sciences Group;
Medelis Inc.

NCT03014804 Autologous
Dendritic Cells Pulsed With
Tumor Lysate Antigen
Vaccine and Nivolumab in
Treating Patients With
Recurrent Glioblastoma

II Biological:
autologous
dendritic cells
pulsed with
tumor lysate
antigen Vaccine
Other:
Laboratory
Biomarker
Analysis
Biological:
Nivolumab
Other: Quality-
of-Life
Assessment
Other:
Questionnaire
Administration

Withdrawn Jonsson
Comprehensive
Cancer Center;
Northwest
Biotherapeutics
Bristol-Myers
Squibb
Brain Tumor
Funders
Collaborative

NCT00045968 Study of a
Drug [DCVax®-L] to Treat
Newly Diagnosed GBM
Brain Cancer

III Drug: Dendritic
cell
immunotherapy

As of this analysis, 223 patients are ≥ 30 months past their
surgery date; 67 of these (30.0%) have lived ≥ 30 months and
have a Kaplan-Meier (KM)-derived mOS of 46.5 months. Only
2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event
that was deemed at least possibly related to the vaccine.
doi: 10.1186/ 2236 s12967-018-1507-6

Northwest
Biotherapeutics
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inflammation, including brain malignant gliomas (159, 160). This

suggests that these exosomes, like the MSCs from which they are

formed, could be used as potential new therapeutics. Furthermore,

they provide considerable advantages over uncontrolled cell

development and potentially tumour formation in live cells due

to their ability to decrease severe side effects and infusion toxicity

(96, 161–163). Many studies have demonstrated that microRNAs

(miRs) such as miR-93 (164), miR-519a (165), miR-758-5p (166),

miR-330-5p (167), miR-139-5p (168), miR-590-3p (169), miR-34a

(170, 171) may inhibit GBM production. Unfortunately, the lack of

an ideal delivery system has limited the clinical application of miRs

in the fight against GBM. Several studies on GBM (including

GSCs) have established the transport of GBM-inhibitory miRs to

tumour sites through MSCs-Exo to limit tumour development

(172–178), suggesting that MSCs-Exo have significant potential for

application in the treatment of GBM. Pharmacological delivery to

treat GBM has been unsatisfactory, mainly attributed to drug

resistance and low targeting efficiency. A combination of

selective targeting of GBM cells and synergistic induction of

apoptosis using a cocktail of therapeutic agents may help to

improve drug delivery. Rana Rahmani et al. (179) found that

treating GBM cells with modified MSCs-Exo with two apoptosis-

inducing gene therapy agents, cytosine deaminase (CDA) and

miR-34a, and targeting the EGFRvIII antigen, enhanced the rate

of apoptosis.
3.2 Oncolytic virus

With the advancement of scientific research, not only cellular

therapy and Exo are used for tumour immunotherapy but also

oncologic viruses (OV) have become effective new therapeutic tools

in this field (180–182). OV is a class of naturally occurring or

genetically engineered viruses that may infect or kill tumour cells

while without harming normal cells. OV has been divided into two

types, mildly virulent strain of wild-type OV/natural OV,

represented by reovirus, retroviruses and poliovirus (183, 184),

and a strain that has been genetically modified to proliferate only

within tumour cells, such as adenovirus and herpes simplex virus

(185, 186). OV exerts anti-tumour activity via several mechanisms.

At first, viruses proliferate in tumour cells and directly lyse tumour

cells (187). Then, lyses of tumour cells lead to the release of newly

generated viral particles that stimulate systemic anti-tumour

immune responses through a variety of pathways, such as

promoting tumour antigen presentation, improving the

immunosuppressive TME, disrupting the tumour vascular system

and stimulating adaptive immune responses (188–191). Due to

space constraints, this section concentrates on OV therapy of GBM

using Reovirus, adenovirus, and herpes simplex virus (Table 3).

3.2.1 Herpes simplex virus-1
Oncolytic herpes simplex virus (oHSV-1) is a neurophilic

double-stranded DNA virus. Typically, wild HSV-1 is neurotoxic,

so the virus must be genetically modified or greatly attenuated to

ensure safety. After genetic modification, OV can still maintain its
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ability to reproduce while replicating specifically in tumour cells,

and therefore OV is widely exploited. Based on previous findings,

oHSV was the first state-of-the-art genetically engineered OV to be

licensed by the United States FDA for cancer treatment (192) and

was approved for the treatment of advanced melanoma (193, 194).

However, as GBM is a primary brain tumour of the human

central nervous system, more attention deserves to be paid to the

safety of oHSV-1 in the fight against GBM. In past studies, oHSV-1

is encoded by the g34.5 gene, an ICP34.5 protein, which is

neurotoxic (195). To limit neurotoxicity, the double copy g34.5
gene was knocked out in all oHSV-1 tested in glioma clinical trials,

the first generation of oHSV-1. But replication of g34.5-deficient
oHSV-1 is often restricted and severely attenuated, particularly in

GSC (196, 197). It is crucial to assure the 34.5 deletion mutant’s

safety while also ensuring its effective replication in GBM. Hiroshi

Nakashima et al. (198) produced the gene HSV-1 OV (NG34), an

attenuated HSV-1 with the deletion of the gene encoding the viral

ICP6 gene (UL39) and the gene for g34.5. The UL39 gene encodes

the large subunit ICP6 of ribonucleotide reductase, which is

essential for postmitotic cell replication. GADD34 gene in

humans is expressed by NG34 under the transcriptional

regulation of the cellular Nestin gene promoter/enhancer element,

which is specifically expressed in GBM. In a GBM mouse model,

they discovered that the new oHSV encoding GADD34 was

efficacious and generally non-toxic. Another research found that

activating MEK in tumour cells boosted replication of g34.5-
deficient HSV-1 (199), but activating MEK in tumour-associated

macrophages (TAM) stimulated pro-inflammatory signaling while

inhibiting viral replication and propagation (200). Ji Young Yoo

et al. (201) investigated the effects of blocking MEK signaling and

oHSV-1 binding on brain tumors. It was reported that oHSV

treatment facilitated the entry of the MEK kinase inhibitor

trametinib into brain tumors and sensitized it in vivo.

G207 is a second generation oHSV-1 that inactivates the ICP6

gene by deleting the double copy g34.5 gene while inserting the lacZ
gene at the UL39 locus. During a Phase I clinical trial of genetically

engineered oHSV-1 G207 by GK Friedman et al. (202), oHSV-1

G207 was found to establish an effective anti-tumour immune

response in pediatric high-grade gliomas (ClinicalTrials.gov,

NCT02457845). Subsequently, to extend and confirm the results

of this phase I trial, an upcoming multi-institutional phase II

cl inical trial of G207 in pediatric high-grade glioma

(ClinicalTrials.gov, NCT04482933) is still under investigation.

G47D is a third generation oHSV-1 with a triple mutation in

a47 deleted from the G207 genome. Compared to G207, G47D is

further attenuated in normal cells, but has enhanced efficacy in anti-

tumour, as well as a greater safety profile. oHSV-1 G47D showed

efficacy and safety in GBM was confirmed by the American

Association for Cancer Research in 2016 (203). In subsequent

years, Tomoki Todo et al. (204) published their findings of a

phase I/II single-arm study in 2022 evaluating the safety of G47D
for the treatment of recurrent/progressive GBM (ClinicalTrials,

UMIN000002661). These findings support and formed the basis

of a phase II clinical study in patients with GBM. This was followed

by a separate report evaluating G47D in residual or recurrent GBM,
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TABLE 3 Oncolytic virus based clinical studies in GBM patients that have been completed or are ongoing.

Molecular
target

Clinical trial NCT
number and title

Study
phase

Interventions Study Results Sponsor/Col-
laborators

oHSV-1 NCT03152318
Treatment of Recurrent
Malignant Glioma With
rQNestin34.5v.2
(rQNestin)

I Drug: rQNestin
Drug: Cyclophosphamide

humans with recurrent GBM
treated with rQNestin34.5v.2 has
not shown evidence of viral-
mediated toxicity or encephalitis
(doi: 10.1016/j.omtm.2020.03.028;
doi: 10.1158/1078-0432.CCR-21-
2347)

Dana-Farber
Cancer Institute
(National
Institutes of
Health;
Candel
Therapeutics,
Inc.)

NCT02457845 HSV
G207 Alone or With a
Single Radiation Dose in
Children with
Progressive or Recurrent
Supratentorial Brain
Tumors

I Biological: G207
Single dose of HSV-1 (G207) infused through
catheters into region(s) of tumor defined by MRI

a total of 4 of 11 patients were still
alive 18 months after G207
treatment (doi: 10.1056/
NEJMoa2024947)

University of
Alabama at
Birmingham
(Food and Drug
Administration;
National Center
for Advancing
Translational
Sciences of the
National
Institutes of
Health; et)

NCT04482933
HSV G207 With a Single
Radiation Dose in
Children with Recurrent
High-Grade Glioma

II Biological: Single dose of HSV-1 (G207) infused
through catheters into region(s) of tumor defined
by MRI

Not yet recruiting Pediatric Brain
Tumor
Consortium
(Treovir, LLC)

NCT03911388 HSV
G207 in Children with
Recurrent or Refractory
Cerebellar Brain Tumors

I Single dose of G207 infused through catheters
into region(s) of tumor. If G207 is safe in the first
cohort of patients, subsequent patients will
receive a single dose of G207 infused through
catheters into region(s) of tumor followed by a 5
Gy dose of radiation to the tumor within 24
hours of virus inoculation.

Recruiting University of
Alabama at
Birmingham

OAds NCT03896568 MSC-
DNX-2401 in Treating
Patients with Recurrent
High-Grade Glioma

I Biological: Oncolytic Adenovirus Ad5-DNX-2401
Procedure: Therapeutic Conventional Surgery

The use of perfusion guidance to
enhance the precision of
endovascular super-selective intra-
arterial infusions of mesenchymal
stem cells loaded with Delta-24 in
the treatment of GBM (doi:
10.1136/neurintsurg-2021-018190)

M.D. Anderson
Cancer Center
(DNAtrix, Inc.)

NCT03072134 Neural
Stem Cell Based
Virotherapy of Newly
Diagnosed Malignant
Glioma

I Biological: Neural stem cells loaded with an
oncolytic adenovirus

The post-treatment PES and OS of
12 newly diagnosed malignant
glioma patients were 9.05 months
and 18.4 months, respectively (doi:
10.1016/S1470-2045(21)00245-X)

Northwestern
University
(National Cancer
Institute)

NCT02197169 DNX-
2401 With Interferon
Gamma (IFN-g) for
Recurrent Glioblastoma
or Gliosarcoma Brain
Tumors (TARGET-I)

I Drug: Single intratumoral injection of DNX-2401
Drug: Interferon-gamma

The addition of IFN did not
improve survival, but clinical
activity following a single injection
of DNX-2401 is encouraging (doi:
10.1200/JCO.2017.35.15_suppl.2002)

DNAtrix, Inc.

Reovirus NCT02444546 Wild-
Type Reovirus in
Combination with
Sargramostim in
Treating Younger
Patients with High-
Grade Relapsed or
Refractory Brain Tumors

I Biological: Wild-type Reovirus
Sargramostim

All patients progressed on therapy
after a median of 32.5 days and
died a median of 108 days after
recruitment (doi: 10.1093/noajnl/
vdac085)

Mayo Clinic
(National Cancer
Institute)
F
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that is, a phase II trial that revealed a survival benefit and a good

safety profile, leading to the approval of G47D as the first Japanese

OV product for the treatment of GBM.

3.2.2 Oncolytic adenovirus
Adenovirus is a non-enveloped virus with an icosahedral capsid

containing approximately 38 kb of genomic double-stranded DNA.

There are more than 50 serotypes of adenovirus in humans, of

which types 2 and 5 have been most frequently studied for the

manufacture of lysing viruses (205, 206). In addition to its high

genetic stability, high titer production and its ease of purification,

the 38kb capacity of the adenovirus capsid allows for the

introduction of large transgenes and as a result adenoviruses have

been genetically engineered into various types of oncolytic

adenovirus (OAds) or conditionally replicating adenovirus

(CRAd). Just like other types of OV, OAds are able to replicate

relatively specifically in tumour cells and lyse them, releasing

progeny viruses that then infect surrounding tumour cells and

destroy the tumour through a cascade amplification effect, so that

a better outcome can be achieved.

Several treatments for OAds are currently in clinical trials,

including Frederick F Lang et al. (207) in a phase I clinical trial of

OAds DNX-2401 (Delta-24-RGD), where 20% of patients (5 of 25),

survived > 3 years after treatment, three patients had ≥ 95% (12%)

reduction in enhancing tumors, and and > 3 years progression-free

survival from the start of treatment. This demonstrates that DNX-

2401 is safe and has anti-tumour activity in patients with GBM.

DNX-2401 is a potential second generation OAds with significant

viral replication capacity and the ability to directly destroy tumour

cells. DNX-2401 is a potential second-generation OAds with

significant viral replication capacity and direct tumour cell

destruction. Its mechanism of anti-tumour action is that a 24pb

base deletion in the E1A gene that prevents it from binding the

retinoblastoma tumour suppressor protein (Rb) protein and thus

from replicating in normal tissues, whereas in Rb-deficient tumour

cells, where E2F is in a free state, the virus can still replication (208).

As the primary mode of entry of adenovirus type 5 into host cells is

through binding to coxsackievirus and adenovirus receptors on the

cell surface, which are expressed at low levels on the surface of GBM

cells (209), DNX-2401 was designed with an RGD peptide insert,

Delta-24-RGD, which has an RGD-4C peptide motif inserted into

adenovirus fibers, and allows viral entry via the integrins avb3 and

avb5 into tumour cells, which further enhances tumour targeting

(210). To increase the anti-glioma immune effect of Delta-24-RGD,

in a preclinical study, Yisel Rivera-Molina et al. (211) decided to

arm Delta-24-RGD with co-stimulatory ligand glucocorticoid

receptor-enhanced T-cell activity (GITRL) with the aim of

activating the T-cell population recruited to the tumour after viral

infection. From their data, GITRL-armed Delta-24-RGD exhibited

enhanced anti-glioma effects, resulting in an increased frequency

and activation of T cells. In addition, specific anti-tumour

immunity and enhanced central T cell memory encouraged

preclinical testing of next generation lysing adenoviruses

equipped with immune checkpoint modulators. Given the safety

of DNX-2401 in past studies (207), through a phase I clinical trial
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on convection-enhanced delivery of Delta24-RGD in the tumour

and peripheral brain of patients with recurrent GBM, Erik HP van

Putten et al. (212) showed that 19 out of 20 enrolled patients

received the oncolytic adenovirus Delta24-RGD, which was

considered safe and feasible. Four patients demonstrated tumour

response on MRI, and one of them regressed completely and is still

alive 8 years later. This trial was the first to assess local and regional

responses to the injection of OV into the tumour and surrounding

brain by serial sampling of interstitial fluid and cerebrospinal fluid

(CSF). Analysis of cytokines and chemokines in CSF suggests that

IFNg and TNFa levels may represent potential biomarkers of

response in future OV assays. Biomarker testing may ultimately

help to identify patients who respond and improve response rates to

OV therapy. Their findings show promising clinical responses and

indications for anti-tumour immune responses, providing a basis

for future testing of (combined) Delta24-RGD treatments in GBM.

ICOVIR17 is an OAds expressing soluble PH20 hyaluronate

(HA) that degrades HA and spreads efficiently in the tumour. It has

the same mechanism of action as Delta-24-RGD, ICOVIR17

deletion of 24 base pairs in the Rb-binding domain of E1A for

tumour-selective replication and RGD modification in the fibril to

amplify tropism, except for two additional modifications: insertion

of an E2F binding site in the E1A promoter and insertion of the

SPAM1 gene encoding PH20 HA after the fibril, which is controlled

by the major late promoter control (213). Normally, adenovirus

replication is divided into two phases, early (E) and late (L). Early

stage expresses adenovirus replication-related genes E1-E4, and late

stage expresses adenovirus assembly-related genes L1-L5. However,

OAds, as well as most novel targeted therapies, face significant

transport barriers in the tumour mesenchyme, in part because they

are relatively large (90 nm) and much larger than chemotherapeutic

agents. Solid tumors exhibit unique features that impede the

transport of large molecules. Among these, the large amount of

extracellular matrix present in the tumour mesenchyme and high

mesenchymal fluid pressure are the main sources of physical

resistance to drug transport. HA is an essential component of the

ECM with high expression in most tumour xenografts. Jordi

Martinez-Quintanilla et al. (214) revealed for the first time that

intratumoural injection ICOVIR17 into nodal GBM mediated HA

degradation and enhanced viral dissemination, resulting in

significant anti-tumour effects and mouse survival. As much as

this work reveals that HA functions in GBM as a physical barrier to

effective virus dissemination and tumour killing, it remains

unknown whether HA affects the immune response induced by

OAds treatment of brain tumors as the mice used in the study were

immunodeficient. Therefore, Juri Kiyokawa et al. (215) exploited

that degradation of HA would enhance OAds immunotherapy of

GBM by overcoming the immunosuppressive function of GBM

extracellular matrix. In their study, murine GBM 005 was chosen as

a suitable in vivo model given that this GBM model encapsulates

key features of human disease, including GSC properties and

immunosuppressive TME. Their study has shown for the first

time that immunomodulatory ICOVIR17 has the dual role of

mediating HA degradation in GBM extracellular matrix and

subsequently altering the TME immune landscape, and provides a
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1175118
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1175118
mechanistic combination of immunotherapy and PD-L1/PD-1

blockers to remodel innate and adaptive immune cells.

CRAd-S-pk7, a type of oncolytic adenovirus, is a promoter

doped with survival proteins to drive expression of the replication-

essential E1A gene and modifies Ad5 fibronectin by doping with a

polylysine sequence (pk7) (216, 217). These modifications

enhanced viral replication and targeting of glioma cells, resulting

in enhanced antitumor activity and higher survival rates in vivo.

Jawad Fares et al. (218) conducted the first human phase I dose-

escalation trial investigated NSC-CRAd-S-pk7, a CRAd delivered by

neural stem cells, for use in patients with newly diagnosed GBM.

Their findings support the continuation of the study of NSC-CRAd-

S-pk7 in a phase II/III clinical trial. In addition, multi-dose neural

stem cell viral therapy (NSC-CRAd-S-pk7) for recurrent high-grade

glioma is being investigated (ClinicalTrials.gov, NCT05139056).

3.2.3 Reovirus
Reovirus (RV) belongs to the wild-type OV family of

eutheroviruses and is characterized as a staged double-stranded

RNA virus. The three prototypical serotypes of RV, first identified

in the 1960s, are well characterized as serotype 1 Lang (T1L),

serotype 2 Jones (T2J) and serotype 3 Dearing (T3D) (219). RV is

widely present in the respiratory and digestive tracts of humans and

livestock without causing disease and is only associated with mild

flu-like symptoms. RV has been shown to have a tumourolytic effect

on a variety of tumour cells and has been used in several clinical

trials (220–223). Among these, Peter Forsyth et al. (224)

demonstrated for the first time in a single institution phase I

clinical trial that intratumoural injection of wild-type eutherian

virus in GBM patients was well tolerated. Kimberly P Kicielinski

et al. (225) in a preliminary study of direct intratumoural

inoculation of the CNS, once again they observed that RV well

tolerated: patients had a median progression-free survival of 4.3

weeks and a median survival of 21 weeks. In the GBM study and

other previous studies, the tolerability of RV at the dose

administered prompted them to design a clinical trial of

incremental viral doses intended to achieve higher doses and

better distribution of study drug. With the safety and tolerability

demonstrated in several phase I clinical trial studies, RV embarked

on a phase II study to assess efficacy, particularly in areas where

GBM treatment was not effective.
3.3 Immune checkpoint inhibition

GBM generates an immunosuppressive environment through

multiple mechanisms, including the programmed cell death protein

1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), lymphocyte

activating gene 3 (LAG-3) pathway (226). Although some tumors

benefit from immune checkpoint inhibition (ICI), GBM does not (24).

The immunosuppres s i ve proper t i e s o f the GBM

microenvironment lead to immune evasion by tumour cells,

making inhibition of immune checkpoints such as PD-1 alone

ineffective (226, 227). PD-1 inhibition is thought to disrupt the
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binding of PD-1 to its inhibitory ligands, thereby stimulating

cytotoxic T cell-mediated tumour elimination. The Ivy

Foundation Early Clinical Trials Consortium conducted a multi-

institutional, randomized clinical study to evaluate immunological

response and survival in 35 patients with recurrent, surgically

resectable GBM after neoadjuvant anti-PD-1 immunotherapy

with pembrolizumab (228). Pembrolizumab is an anti-PD-1

monoclonal antibody that has been demonstrated to be effective

as a monotherapy in a variety of cancer types, but largely in

adjuvant treatment (229). OS was significantly longer in patients

randomized to neoadjuvant pembrolizumab and continuing

adjuvant therapy after surgery. Neoadjuvant PD-1 inhibition was

linked with increased T-cell and interferon-g (IFN-g) related gene

expression, but decreased intratumor cell cycle-related gene

expression, which was not observed in patients receiving adjuvant

treatment alone. Local induction of programmed death ligand 1

(PD-L1) in the tumour microenvironment, increased T cell clonal

expansion, decreased PD-1 expression in peripheral blood T cells,

and decreased monocyte numbers were more frequently observed

in the neoadjuvant group in patients treated. These data imply that

neoadjuvant PD-1 blocker administration boosts local and systemic

antitumor immune responses and may be a more effective therapy

for this consistently deadly brain tumour. In the single-arm phase II

clinical trial (ClinicalTrials.gov, NCT02550249) by Kurt A Schalper

et al. (230), preoperative doses of nivolumab followed by

postoperative nivolumab were tested in 30 patients (27 recurrent

cases for salvage surgery and 3 newly diagnosed patients for initial

surgery) until disease progression or unacceptable toxicity.

Neoadjuvant nivolumab resulted in enhanced expression of

chemokine transcripts, increased immune cell infiltration and

enhanced TCR clonal diversity in tumour-infiltrating T

lymphocytes, supporting a local immunomodulatory effect of the

treatment, although no clear clinical benefit was demonstrated after

salvage surgery.

3.3.1 Simultaneous inhibition of multiple
immune checkpoints

Simultaneous inhibition of multiple immune detection sites for

anti-GBM treatment may improve treatment outcomes. Antonio

Omuro et al. (226) evaluated the anti-PD-1 checkpoint inhibitor

nivolumab intravenously in patients with recurrent GBM in a phase

I trial, both as monotherapy or in combination with CTLA-4

blocking mAb ipilimumab at different dose levels. Nivolumab as a

single agent is well-tolerated, but the combination of nivolumab and

ipilimumab is associated with up to 30% of treatment-related

adverse events that lead to treatment discontinuation. The

tolerability of the combined treatment was determined by the

dose of ipilimumab. In two patients who were initially identified

as having suspected progression based on neuroradiological

assessment and subsequently underwent neurosurgical resection,

interestingly, substantial immune cell aggregates were identified by

histopathological examination, but no live tumors. John Lynes et al.

(231) used cytokine micro dialysis to detect real-time immune

assays in GBM patients undergoing PD-1 and LAG-3 checkpoint
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inhibition, suggesting that the anti-LAG-3 and anti-PD-1

combination may have a similar immune response side effect

profile to other checkpoint inhibitor combinations. E Antonio

Chiocca et al. (232) reported an increase in tumour-infiltrating

lymphocytes producing IFN-g and PD-1 in a phase I trial. These

inflammatory infiltrates support the immune anti-tumour effects of

human interleukin 12. E Antonio Chiocca et al. (233) found a

reduction in PD-1 and/or PD-L1 positive cells in four pre- and post-

treatment biopsy matched subjects in their trial. This validates the

hypothesis that nivolumab reduces GBM cell immune checkpoint

signaling induced after treatment with controlled IL-12 gene. In

addition, Moreover, recruitment has been completed for a phase II

study of controlled IL-12 in combination with neoadjuvant anti-

PD-1 (ClinicalTrials.gov, NCT04006119). However, as O6-

methylguanine-DNA methyltransferase (MGMT) renders tumors

resistant to TMZ, MGMT promoter status predicts both prognosis

and therapeutic response to TMZ chemotherapy. Antonio Omuro

et al. (234) conducted CheckMate-498 phase III clinical study

comparing nivolumab or TMZ for OS, each in combination with

radiotherapy (RT), in patients with newly diagnosed MGMT

unmethylated GBM, failed to meet its intended target

improvement OS endpoint (ClinicalTrials.gov, NCT02617589). In

GBM, the entry of monoclonal antibodies (mAb) is blocked due to

CNS is an immune-privileged site. In tumour types, combined

treatment with two mAb leads to higher tumour response rates and

improved survival compared to monotherapy for the cost of serious

immune-related adverse events (235–239). Johnny Duerinck et al.

(240) in a phase I clinical trial Intracerebral administration of

CTLA-4 and PD-1 immune checkpoint blocking monoclonal

antibodies in patients with recurrent GBM. The phase III

randomised CheckMate 548 study by Michael Lim et al. (241)

identified that nivolumab added to RT+TMZ was not associated

with improved survival in newly diagnosed GBM patients with a

methylated or indeterminate MGMT promoter. Although these

studies failed to demonstrate the clinical benefit of ICI, they could

be considered in new combination therapy strategies.
3.3.2 Immune checkpoint inhibition binding to
oncolytic virus

Possible complementary effects on tumour killing through

combination with OV. Dipongkor Saha and colleagues in 2018

GBM may be treated with oHSV immunoviral therapy in

combination with two checkpoint inhibitors (anti-PD-1 and anti-

CTLA-4), a triple combination that could assist in curing less

immunogenic malignancies such as GBM (31). Also based on the

fact that OV and PD-1 inhibitors have become standard

immunotherapies against certain cancers, Carmela Passaro et al.

(36) conducted preclinical trials in 2019 on GBM, i.e. they

investigated in vitro and in vivo the efficacy of a novel lysine virus

(NG34scFvPD-1) of HSV-1 against PD-1, which also expresses a

single-chain fragment mutable antibody (scFvPD-1). Irene

Appolloni et al. (65) also investigated the specificity, safety and

efficacy of EGFRvIII-targeted oHSV-1 for the treatment of human

GBM. These studies provide a basis for further exploration of this

novel OV in combination with ICI for cancer therapy.
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4 Future perspectives and conclusions

There is a deepening perception of what cell-based and cell-free

immunotherapy can bring to GBM, which offers new hope for GBM

patients, but many details and questions remain to be explored and

elucidated. According to recent statistics, adjuvant immunotherapy

can prolong survival and significantly improve outcomes for

patients with recurrent GBM compared to those treated with only

surgery, radiotherapy or chemotherapy. To summarize the lessons

learned, the extremely specific and heterogeneous nature of GBM,

as well as the complicated immune resistance mechanisms and

immunosuppressive TME have resulted in relatively limited

response effectiveness and durability of response to treatment

drugs. The BBB/BTB is another barrier to medication delivery.

These are still tough breakthroughs in GBM therapy. We not only

obtained some novel findings on the theoretical study of the local

immune characteristics of glioma, but we also provided an

experimental basis for the comprehensive diagnosis and treatment

of regulating and intervening in the immune microenvironment of

glioma. More significantly, “supporting the righteousness” and

improving the immune microenvironment, in conjunction with

“elimination of evil” by anti-tumour cells, will ideally decrease

disease mortality rates, extend patient life, and genuinely help

patients. In fact, the treatment of GBM is actually a complex

“project” and satisfactory results can hardly be achieved with only

one treatment. Immunotherapy research for GBM should be

coupled with other treatment modalities in future anti-GBM

research, resulting in truly tailored and complete care strategies

for patients. It is recommended to develop combined treatment

techniques based on immunotherapy, molecular targeted therapy,

and radiation to maximize therapeutic efficiency and reduce

acquired immunotherapy resistance. The industry therefore needs

to innovate, integrate and translate to drive immune combinations

forward in a sustained manner. Secondly, assessing therapeutic

response to immunotherapy is difficult, and in the future, a

standardized imaging and molecular biology evaluation system

will be required to reflect and forecast patient outcomes. Cell-

based and cell-free immunotherapy are predicted to become an

essential component of future glioma treatment when these

challenges are solved.
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