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CD24 is a small glycosylphosphatidylinositol (GPI)-anchored glycoprotein with

broad expression in multiple cell types. Due to differential glycosylation, cell

surface CD24 have been shown to interact with various receptors to mediate

multiple physiological functions. Nearly 15 years ago, CD24 was shown to

interact with Siglec G/10 to selectively inhibit inflammatory response to tissue

injuries. Subsequent studies demonstrate that sialylated CD24 (SialoCD24) is a

major endogenous ligand for CD33-family of Siglecs to protect the host against

inflammatory and autoimmune diseases, metabolic disorders and most notably

respiratory distress in COVID-19. The discoveries on CD24-Siglec interactions

propelled active translational research to treat graft-vs-host diseases, cancer,

COVID-19 and metabolic disorders. This mini-review provides a succinct

summary on biological significance of CD24-Siglec pathway in regulation of

inflammatory diseases with emphasis on clinical translation.
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Introduction

As a GPI-anchored glycoprotein, CD24 is expressed on multiple cell types in normal

tissues, including hematopoietic and immature neuronal cells and tissue stem cells (1–3).

While CD24 was first identified as a valuable marker for cellular development and

differentiation, accumulating studies have revealed critical roles for CD24 in various

pathological conditions, including autoimmune diseases (4–8), sepsis (9), metabolic

disorders (10–12), graft vs host diseases (13, 14) and cancer (1, 15–20). Given the

heterogeneity of in post-translational modifications of CD24, it is not surprising that

CD24 may mediate different functions depending on its interacting partners. For example,

fucosylated CD24 has been shown to be a ligand for P-selectin (21, 22), while sialylated

CD24 have been shown to interact with Siglecs (9, 23). In this minireview, we will focus on

CD24-Siglec interactions, with emphasis on potential translation of this pathway for

patient care.
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CD24-Siglec interaction negatively
regulates host responses to
tissue injuries

Sialic acid-binding immunoglobulin-type lectins (Siglecs)

constitute a subfamily of type I lectin. The first member of

Siglecs, or Siglec 1 was reported nearly 40 years ago (24, 25).

Fifteen human Siglecs have been subsequently characterized (26,

27). Among them, a subgroup group called CD33 family have

attracted most attention as potential negative regulators of

immune response as they have one or more ITIM-like domains

that are phosphorylated upon ligand engagement, leading

recruitment of Src homology 2 domain containing protein

tyrosine phosphatase (SHP)1/2 and potentially suppress NFkB

activation (26, 27). While Siglecs have selectivity for different

sialoglycans (28), the endogenous ligands for Siglecs have not been

identified decades after first description of Siglecs. Lack of

endogenous ligand made it difficult to discern the physiological

function of Siglecs.

In 2009, Chen et al. reported CD24 as the major endogenous

ligand for Siglec 10 and its mouse homologue Siglec G (23). The

interaction was demonstrated by direct binding in vitro and co-

precipitation in immune cells. Subsequent studies demonstrate

requirement for sialylation in the interaction (9).
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The biological significance of CD24-Siglec interaction was first

revealed when Chen et al. (23) demonstrated that CD24-Siglec G/10

forms tri-molecular complex with HMGB1 and heat-shock proteins

(HSPs), the prototypical danger-associated molecular patterns

(DAMPs or danger signal). The concept of danger signal was first

proposed to describe inflammatory stimuli released upon tissue

injuries or cellular stress (29). Dendritic cells with mutations of

either CD24 or Siglecg genes enhanced production of inflammatory

cytokines to DAMPs such as HMGB1 and HSP70, but not to

pathogen-associated molecular patterns (PAMPs), such as

lipopolysaccharides and double-stranded RNA. Targeted

mutations of CD24 or Siglecg in the mice fatally exacerbated

inflammatory responses to acetaminophen-induced necrosis of

hepatocytes without affecting inflammatory responses to PAMPs.

Based on these data (23), the author proposed that CD24-Siglec 10

discriminate between PAMPs and DAMPs (23, 30) (Figure 1).

Pattern recognition is a pillar of contemporary immunology. As

proposed by Janeway, innate immunity based on pattern

recognition allowed the immune system to sense infections and

launch innate immune response, leading to adaptive immune

response (31–34). With the identification of pattern recognition

receptors and their ability to recognize both DAMPs and PAMPs

(35–39), it was difficult to explain how the pattern recognition

allows self-nonself discrimination. The discovery that CD24-Siglec

G interaction discriminates DAMPs from PAMPs provide a
FIGURE 1

CD24-Siglec 10/G interaction selectively repress inflammatory response to tissue injuries. Sialylated CD24 interacts with Siglec 10 to repress
inflammatory responses to danger (damage)-associated molecular patters (DAMPs) but not those to pathogen-associated molecular patterns
(PAMPs). TLRs: toll-like receptors.
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framework by which the self and non-self discrimination can be

achieved by the innate immune system. Thus, while responses

to PAMPs was unconstrained by the CD24-Siglec interaction,

those to DAMPs was restrained by the interaction, allowing

minimal inflammatory response to cell death under physiological

conditions (30) (Figure 1).
CD24 in graft vs host diseases

Cellular stress and death are generally physiological and

inflammatory response to DAMPs has been shown to beneficial

for wound-healing (40, 41). However, massive cell death that occurs

as part of cancer therapy can lead to undesirable consequences.

Therefore, regulation of host response to cell death can be explored

to enhance safety and efficacy of cancer therapy.

Due to graft vs leukemia (GVL) effect, bone marrow

transplantation (BMT) is a curative therapy for refractory

hematological malignancies (42, 43). Unfortunately, BMT often

associates with immune destruction of host tissue by the immune

cells in the graft, a pathological condition called graft vs host

diseases (GVHD). Given the massive cell death associated with

BMT, it was of interest to evaluate whether CD24-Siglec G/10

pathway contributes to pathogenesis of GVHD.

Toubai et al. reported that conditioning for BMT by irradiation

reduced expression of Siglec G on the dendritic cells, leading to an

increased expression of inflammatory cytokines and co-stimulatory

molecules on the dendritic cells (13). Targeted mutations of either

CD24 or Siglecg in the hematopoietic cells greatly exacerbated

GVHD, while treatment with CD24Fc, a fusion protein consisting

of extracellular domain of CD24 and IgG1 Fc, prevented the

development of GvHD by targeting the Siglec G on the

hematopoietic cells (13). Importantly, CD24Fc suppressed GVHD

without negatively impact GVL and that CD24Fc can suppress

DAMP-mediated T cell activation by interacting with Siglec G (14).

Based on the compelling preclinical data, OncoImmune, Inc.

launched a randomized, prospective, multi-site, placebo-controlled

phase 2a clinical trial to investigate safety of three dose levels of

CD24Fc (or blinded placebo) plus standard GVHD prophylaxis

with tacrolimus and methotrexate in matched unrelated donors.

The trial enrolled 24 patients (CD24Fc, n=18; Placebo, n=6) with

minimum follow up of one year. In this translational phase 2a trial,

administration of CD24Fc was safe and tolerable. The grade 3-4

GVHD-free survival was 94% at 180 days post BMT in patients

receiving treatment with CD24Fc versus 50% in pts receiving

placebo (HR 0.1; 90% CI 0.0-0.7) (44). A dose expansion Phase

IIb study has since been completed with data to be reported soon.
CD24 in immunotherapy-related
adverse events

Immunotherapy has provided curative treatment for multiple

cancer indications. In analogous to BMT, the efficacy of

immunotherapy has been limited by immunotherapy-related

adverse events (irAE). Given the massive death of cancer cells
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and normal cells in immunotherapy and conventional cancer

therapy, it is of interest to investigate whether irAE is regulated

by CD24-Siglec interactions. As the first-step to address this issue,

Liu et al. tested the effect of CD24Fc on irAE and tumor responses

(45). Using animal model of irAE (46), the authors demonstrated

that CD24Fc ameliorate irAE caused by clinically used anti-CTLA-4

mAb, including multiple organ inflammation and animal survival.

Surprisingly, CD24Fc not only preserve cancer therapeutic effect of

anti-CTLA-4 and anti-PD-1 antibodies, but promoted tumor

rejection in some cancer models, concurrent with reducing the

frequency of regulatory T cells among CD4 cells and preventing

exhaustion of CD8 T cells in the tumor microenvironment (45).

Additional studies are needed to understand how CD24-Siglec

pathway regulates tumor microenvironment.
CD24 in COVID-19 and acquired
immunodeficiency syndrome

Although early studies demonstrate that CD24-Siglec G/10

interaction controls inflammatory response to DAMPs but not

PAMPs, host responses to pathogenic infections can be affected

by this interaction because most infections cause cell death and thus

may trigger inflammatory response to DAMPs. Moreover, many

pathogens have been shown to disrupt CD24-Siglec G/10

interaction, either by down-regulation of Siglec G/10 (47) or by

desialylation of CD24 (9). Preclinical studies have shown that

CD24Fc protected non-human primates against acquired

immunodeficiency syndrome (AIDS) caused by the simian

immunodeficiency virus, including diarrhea and pneumonia

(48, 49).

Based on the strong therapeutic effect in the non-human

primate against AIDS as well as the safety and clinical activities of

CD24Fc in healthy volunteers and BMT patients, OncoImmune,

Inc. launched a randomized, double-blind, placebo-controlled,

phase 3 study at 9 medical centers in the US testing safety and

clinical efficacy of CD24Fc for hospitalized COVID-19 patients who

needs oxygen support. The primary efficacy endpoint is time to

clinical improvement from requiring oxygen support to

independent of oxygen support during 28 days of study period.

The data demonstrated that CD24Fc is well tolerated and

significantly accelerates clinical improvement, by more than 60%,

of hospitalized patients with COVID-19 who are receiving oxygen

support (HR=1.61, 95% CI 1.16-2.23; P=0.0028) (50). Biomarker

studies reveal that CD24Fc systematically repress inflammatory

response in the COVID-19 patients (51). Taken together, the data

demonstrated that targeting inflammation in response to tissue

injuries may provide a therapeutic option for patients hospitalized

with COVID-19.

Consistent with clinical activities of CD24Fc, HMGB1 is

elevated in plasma of COVID-19 patients (52). More importantly,

RNAseq analysis of lung tissue from healthy control and severe

COVID-19 patients revealed selective reduction of SIGLEC10

mRNA without affecting expression of other SIGLECS (47). More

recently, Shapira et al. reported in a non-randomized study that
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Exo-CD24, the CD24-containing exosomes, appeared to reduce

inflammatory markers and cytokine/chemokine while accelerated

recovery of hospitalized COVID-19 patients (53).
CD24-Siglec interaction and
metabolic disorders

While the initial studies focused on the CD24-Siglec 10/Siglec G

interaction, CD24 interacts with multiple Siglecs (12, 54). Given the

promiscuous nature of CD24-Siglec interactions, genetic studies are

necessary to understand contribution of different Siglecs in different

disease models.

Metabolic disorders are among the most common threat to

human health. While it is clear that chronic inflammation is a root

cause, the host factors that regulate the chronic inflammation

remain largely unidentified. A Phase I clinical study revealed

unexpected activity of CD24Fc in reducing low-density

lipoprotein levels in the plasma, which is consistent with broad

down-regulation of inflammation-related genes (12). To confirm

the rule for CD24 in metabolic disorder, Wang et al. compared

CD24+/+ and CD24-/- littermate mice for their development of

metabolic disorders, including obesity, dyslipidemia, insulin

resistance, and nonalcoholic steatohepatitis (NASH) in response

to high-fat feed diet and aging (12). The data demonstrated a critical

role for CD24 in suppressing metabolic disorders. To identify CD24
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receptor responsible for the metabolic disorders, the authors

produced a panel of mouse strains with single or combined

mutations of one or more Siglec genes, including those that

encode CD22, CD33, Siglec E, Siglec F, Siglec G or Siglec H

proteins. Among all genes tested, only Siglece mutation

phenocopied that of CD24, suggesting that Siglec E is the

functional receptor for CD24 in protection against metabolic

disorders. This hypothesis is confirmed by direct and sialylation-

dependent CD24-Siglec E interaction, requirement of CD24 in

either the same (cis) or separate cells (trans) in constitutional

activation of Siglec E. More importantly, in a Siglec E-dependent

manner, CD24Fc effectively suppressed obesity, dyslipidemia,

insulin resistance, and NASH in multiple mouse models.
Concluding remarks

As an endogenous ligand for Siglecs, CD24 has been implicated

as a dominant suppressor of inflammatory responses in a number of

pathological conditions. The biological significance of this pathway

has been expanded into the realm of both sterile and non-sterile

inflammations, and the concept has been confirmed in both

preclinical study and clinical trials (Figure 2). In addition to

inflammation, CD24 has been implicated in oncogenesis and

tumor evasion of host immunity. While this review has focused

on how this pathway maybe fortified to treat or prevent
FIGURE 2

Stimulating CD24-Siglec pathway for treatment of inflammatory and autoimmune diseases. The arrows indicate diseases in which either clinical
(GVHD, COVID-19) or preclinical data (IrAE, AIDS, metabolic syndrome and autoimmune diseases) have been reported. GVHD: Graft vs host
diseases; AIDS: acquired immunodeficiency syndrome; irAE: immunotherapy-related adverse events.
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inflammatory diseases, the role for CD24 in cancer therapy has also

attracted significant interest. Thus CD24-Siglec pathway has a vast

potential for translation to patient cares.
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