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Arterial wall damage in Takayasu arteritis (TAK) can progress despite

immunosuppressive therapy. Vascular fibrosis is more prominent in TAK than in

giant cell arteritis (GCA). The inflamed arterial wall in TAK is infiltrated by M1

macrophages [which secrete interleukin-6 (IL-6)], which transition to M2

macrophages once the inflammation settles. M2 macrophages secrete

transforming growth factor beta (TGF-b) and glycoprotein non-metastatic

melanoma protein B (GPNMB), both of which can activate fibroblasts in the

arterial wall adventitia. Mast cells in the arterial wall of TAK also activate resting

adventitial fibroblasts. Th17 lymphocytes play a role in both TAK and GCA.

Sub-populations of Th17 lymphocytes, Th17.1 lymphocytes [which secrete

interferon gamma (IFN-g) in addition to interleukin-17 (IL-17)] and programmed

cell death 1 (PD1)-expressing Th17 (which secrete TGF-b), have been described in

TAK but not in GCA. IL-6 and IL-17 also drive fibroblast activation in the arterial wall.

The Th17 and Th1 lymphocytes in TAK demonstrate an activation of mammalian

target organ of rapamycin 1 (mTORC1) driven by Notch-1 upregulation. A recent

study reported that the enhanced liver fibrosis score (derived from serum

hyaluronic acid, tissue inhibitor of metalloproteinase 1, and pro-collagen III

amino-terminal pro-peptide) had a moderate-to-strong correlation with

clinically assessed and angiographically assessed vascular damage. In vitro

experiments suggest the potential to target arterial wall fibrosis in TAK

with leflunomide, tofacitinib, baricitinib, or mTORC1 inhibitors. Since arterial wall

inflammation is followed by fibrosis, a strategy of combining immunosuppressive

agents with drugs that have an antifibrotic effect merits exploration in future

clinical trials of TAK.

KEYWORDS
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Introduction

Tissue injury resulting from transmural arterial inflammation

in Takayasu arteritis (TAK) is consequent to the infiltration of

different immune cells, including macrophages, dendritic cells,

neutrophils, mast cells, and T lymphocytes. Such arterial wall

inflammation heals with fibrosis, resulting in stenosed arteries

with a distorted microarchitecture (1–3). For reasons not yet

clear, vascular inflammation in TAK heals with a greater degree

of fibrosis (resulting in arterial stenosis) than in the counterpart

large vessel vasculitis (LVV) of giant cell arteritis (GCA), where

arterial dilatation occurs more often (4–6). Stenosis in TAK can

result in critical downstream ischemia (7) leading to myocardial

infarction or ischemic stroke (7) which can occur even during

inactive disease (8).

Relapses frequently occur when corticosteroids are tapered in

TAK (9). Therefore, maintenance immunosuppressive therapy with

disease-modifying anti-rheumatic drugs (DMARDs), whether

conventional, biologic, or targeted synthetic, is usually initiated

along with corticosteroids (10–14). However, quite unlike GCA, no

immunosuppressive therapy has been proven to be beneficial

against a placebo in a randomized controlled trial of TAK to date

(13–15). To date, there are no validated clinical measures of damage

(which may reflect vascular fibrosis) in TAK (15). However,

angiographic scoring systems are available for TAK, which

reflect vascular damage well (16). Angiographic extent of TAK

might increase over time despite having inactive disease

clinically (17). This necessitates lateral thinking to explore newer

therapeutic avenues for TAK to target both arterial wall

inflammation and vascular remodeling (18). Given the

prominence of arterial wall fibrosis following the resolution of

inflammation in TAK (2, 4–6), we review the literature regarding

the pathogenic mechanisms driving arterial fibrosis in TAK and

their potential for therapeutic modulation.
Cellular populations contributing
towards arterial fibrosis in TAK

Macrophages

Infiltration of inflammatory M1 and reparative M2

macrophages (19) into the inflamed arterial wall is recognized in

TAK. Kong et al. identified a preponderance of M1 macrophages

and localization of the macrophage chemoattractant C-C motif

ligand 2 (CCL2) in the adventitia of the arterial wall of TAK in

immunosuppressive-naïve TAK. After immunosuppression, M2

macrophages were more prevalent in the media of the arterial

wall where CCL-2 was now majorly expressed (as opposed to the

adventitial layer previously) (20). Similarly, Cui et al. also reported a

dominance of M1 macrophages coexistent with arterial wall

inflammation and M2 macrophages coexistent with arterial wall

fibrosis in TAK. The addition of leflunomide (but not

corticosteroids) to peripheral blood monocytes of TAK cultured

in vitro with monocyte colony-stimulating factor (M-CSF) reduced
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M2 macrophage polarization relative to M1 macrophages.

Methotrexate only at higher doses inhibited M2 polarization to a

similar extent as leflunomide. Cultured M2 macrophages in the

presence of leflunomide secreted lesser CCL22 and transforming

growth factor beta (TGF-b) into the culture supernatant.

Leflunomide also induced M2 macrophage apoptosis. The same

authors further used the THP-1 monocyte cell line polarized

towards M2 macrophages using IL-4 and IL-13. Upon treatment

with leflunomide, the cultured macrophages showed a reduced

expression of IL10 and IRF4 genes (associated with M2

polarization). Pro-fibrotic gene expression (TGFB1, PDGFB, and

LAGLS3) was also reduced with leflunomide, mediated by decreased

STAT6 phosphorylation (21). Thus, leflunomide reduced M2

macrophage polarization and inhibited their pro-fibrotic

phenotype in vitro (21). The role of macrophages in the vascular

fibrosis of TAK is summarized in Figure 1.
Mast cells

Mast cells are involved in tissue repair (22). Le Joncour et al.

demonstrated elevated circulating markers of mast cell activation in

TAK compared to healthy controls. Furthermore, they stimulated in

vitro cultured mast cells with interleukin-33 (IL-33) with or without

sera of TAK or healthy controls and treated cultured arterial wall

fibroblasts with the supernatant of stimulated mast cells. Platelet-

derived growth factor (PDGF) and TGF-b were elevated in the

culture supernatant of mast cells incubated with TAK sera than

those incubated with sera from healthy controls, unaffected by IL-33

inhibition or IL-6 inhibition. Cultured arterial wall fibroblasts

treated with mast cell culture supernatant incubated with TAK

sera had increased expression of markers of fibroblast activation,

i.e., collagen 1, fibronectin, and alpha-smooth muscle actin (a-
SMA) when compared with those treated with sera from TAK

alone. Furthermore, greater activation of cultured arterial

fibroblasts was observed with mast cell culture supernatant

incubated with TAK sera than from healthy controls. These

findings suggested a role for mast cells in driving the

pathogenesis of vascular wall fibrosis in TAK (23). The role of

mast cells in the vascular fibrosis of TAK is summarized in Figure 1.
T lymphocytes

Mammalian target organ of rapamycin complex 1 (mTORC1) is

a therapeutic target for fibrosis (24–26). Zhang et al. reported an

increased frequency of Th1 and Th17 lymphocytes when naïve CD4+

T lymphocytes from TAKwere cultured in vitrowhen compared with

those from healthy controls or with granulomatosis with polyangiitis

(GPA, a small vessel vasculitis). Cultured CD4+ T lymphocytes from

TAK demonstrated mTORC1 activation when compared with

healthy controls or with GPA. In vitro treatment of CD4+ T

lymphocytes from TAK with the mTORC1 inhibitor rapamycin or

silencing of mTORC1 RNA expression reduced the frequencies of

Th1 and Th17 lymphocytes. Circulating CD4+ T lymphocytes

expressing mTORC1 moderately correlated with acute phase
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reactants erythrocyte sedimentation rate (ESR) and C-reactive

protein (CRP). In a murine model of TAK using human axillary

arteries implanted into NSG mice infused with peripheral blood

mononuclear cells (PBMCs) from active TAK, treatment with

rapamycin or silencing of mTORC1 RNA expression reduced

arterial wall inflammation in vivo (27). Jiang et al. further identified

Notch-1 upregulation in CD4+ T lymphocytes from TAK compared

to healthy controls or GPA. Inhibiting Notch-1 expression using the

gamma-secretase inhibitor DAPT or silencing RNA reduced Th1 and

Th17 lymphocyte differentiation in cultured CD4+ T lymphocytes

from TAK. Furthermore, Notch-1 mediated Th1 and Th17

lymphocyte polarization via mTORC1 activation (28). Maciejewski-

Duval et al. further reported mTORC1 activation (identified by

phosphorylation of S6 ribosomal protein) in the adventitia of LVV

arteries (more in TAK than in GCA), which co-localized with CD3+

and CD4+ lymphocyte infiltration. Greater mTORC1 activation was

evident in Th1 than in Th17 lymphocytes from TAK, GCA, and

healthy controls. Th17 lymphocytes with mTORC1 activation were

more prevalent in TAK than in GCA. Upon culturing PBMCs from

TAK in vitro with rapamycin, decreased frequencies of Th1, Th17,

and IL-21-expressing CD4+ T lymphocytes were observed than

without rapamycin (29).

Programmed cell death 1 (PD1) was previously thought to be a

marker of T lymphocyte exhaustion (30). However, a seminal report
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implicated PD1+CD4+ T lymphocytes and PD1+Th17 lymphocytes

as key drivers of fibrosis via TGF-b1 secretion in idiopathic

pulmonary fibrosis and sarcoidosis-associated pulmonary fibrosis

(31). Elevated Th17 lymphocytes are associated with disease

activity in TAK (32–34). Follicular helper T lymphocytes (TFH)

that also express PD1 (35) are elevated in TAK (36). Tertiary

lymphoid organs (TLOs) were more often identified in the arteries

of TAK than of GCA. Increased PD1 expression was also noted in

TLOs from the arterial wall of TAK when compared with TLOs from

arteries affected by GCA (36). Work from our group identified

elevated CD4+ PD1+ T lymphocytes in the peripheral blood of

TAK than in healthy controls or sarcoidosis and increased PD1+

Th17 lymphocytes in TAK than in healthy controls. CD4+ PD1+ T

lymphocytes and PD1+ Th17 lymphocytes did not significantly differ

before or after immunosuppressive therapy in TAK (34). IL-23 helps

to maintain the differentiated Th17 cell population (37). Interestingly,

a previous genome-wide association study of TAK implicated the A

allele in the rs6871626 single-nucleotide polymorphism (SNP) in the

IL12B region as a risk allele for TAK (38). Furthermore, those TAK

who were homozygous or heterozygous for the A allele of rs6871626

had greater vascular damage as indicated by higher scores on the

vasculitis damage index (VDI) and the TAK Damage Score (TADS)

(39). These observations suggest that Th17 lymphocytes, particularly

the PD1+ Th17 subset, might drive vascular fibrosis in TAK.
FIGURE 1

Immune processes resulting in vascular fibrosis in Takayasu arteritis. Mast cells, M1 macrophages, and T lymphocytes infiltrate the arterial wall in TAK.
Activation of Notch-1 with downstream activation of the mammalian target organ of rapamycin complex 1 (mTORC1) is a key mechanism driving the
activation of Th1 and Th17 lymphocytes in the inflamed arterial wall of TAK. Mast cells, PD1+ Th17 lymphocytes (which secrete TGF-b), macrophages
(source of IL-6), and Th17 and Th17.1 lymphocytes (through IL-17 secretion) activate the resting fibroblast population. Th17 lymphocytes also recruit
neutrophils to the inflamed arterial wall resulting in tissue destruction. The activated fibroblast population secretes greater amounts of extracellular
matrix and also releases further TGF-b into the inflamed arterial wall. Over time, the inflammatory M1 macrophage population transitions to an M2
phenotype that further secretes TGF-b. M2 macrophages also secrete glycoprotein non-metastatic melanoma protein B (GPNMB), which also drives
fibroblast activation. Tissue injury and fibrosis in the arterial wall may be reflected by circulating levels of TGF-b; hyaluronic acid (HA); matrix
metalloproteinases (MMP) 2, 3, and 9; tissue inhibitor of metalloproteinase 1 (TIMP-1); and pro-collagen III amino-terminal pro-peptide (PIIINP).
Created with BioRender.com.
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Inhibiting mTORC1 activation on T lymphocytes through

rapamycin, sirolimus, or everolimus might target vascular fibrosis

in TAK (13, 40). The role of T lymphocytes in the vascular fibrosis of

TAK is summarized in Figure 1.
Aortic adventitial fibroblasts as drivers
of fibrosis in TAK

IL-6 drives both vascular inflammation and vascular fibrosis in

TAK. Kong et al. reported the co-localization of IL-6 and IL-6

receptor (IL-6R) with alpha-smooth muscle actin (a-SMA) in the

arterial wall adventitia of TAK. Increased proliferation of human

aortic adventitial fibroblasts (AAFs) was observed upon treatment

in vitro with a combination of IL-6 and IL-6R, coupled with

increased production of a-SMA, collagen 1, collagen 3,

fibronectin, and TGF-b1, mediated through JAK2 acting

downstream mainly through STAT3 and also via AKT (41). Chen

et al. reported that IL-6 co-localized with Atg3 (a marker of

autophagy) and a-SMA in the TAK aortic wall adventitia.

Thereafter, they observed in vitro induction of autophagy in AAF

upon treatment with IL-6 and IL-6R. The fibrotic phenotype of

AAF induced by treatment with IL-6 and IL-6R could be reversed

with the late-phase autophagy inhibitor bafilomycin A1, with

decreased collagen-1 and fibronectin in the culture supernatant.

Addition of JAK1 inhibitors tofacitinib and itacitinib to IL-6 and IL-

6R in vitro reduced LC3-II expression (a marker of autophagy),

autophagosome formation, and production of collagen 1 and

fibronectin in the culture supernatant of AAF, mediated through

STAT3 (42). These experiments identify potential mechanisms for

the observed effectiveness of tocilizumab (12) and tofacitinib (11)

in TAK.

Th17 lymphocytes, particularly the PD1+ Th17 population, had

been associated with TAK (34). Ma et al. further dissected the

potential role of IL-17 in the vascular fibrosis of TAK. They

reported increased cysteine-rich protein 61 (CYR61) expression in

the adventitia of arteries from TAK. Upon stimulating the AAF with

CYR61, increased production of fibronectin, collagen 1, collagen 3,

and TGF-b1 were observed, mediated by aVb1 receptor via ERK1

and ERK2. Treatment of AAF with recombinant human IL-17

stimulated CYR61 secretion. Co-culture of AAF with IL-17 and

CYR-61 markedly enhanced the pro-fibrotic phenotype when

compared with CYR61 alone (43).

A GWAS study identified the A allele in the rs2069837 SNP in the

IL6 region as a risk allele for TAK (44). This SNP repressed

glycoprotein non-metastatic melanoma protein B (GPNMB), which

has anti-inflammatory effects (44, 45). Interestingly, M2 macrophages

that are more prevalent in fibrotic arteries than in inflamed arteries of

TAK secrete GPNMB (46). Dai et al. identified GPNMB co-expression

with collagen 1, fibronectin, TGF-b, matrix metalloproteinase 2

(MMP2), and MMP9 in the adventitial layer of arteries from TAK

than from non-inflammatory controls. In the TAK arterial wall,

GPNMB co-localized with macrophages and fibroblasts. The culture

supernatant of THP-1 macrophages overexpressing GPNMB induced

the expression of collagen 1, fibronectin, TGF-b, MMP2, andMMP9 in

AAF when compared with the culture supernatant from THP-1
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macrophages with a knock-down of GPNMB. After treating AAF

with soluble GPNMB in the culture media, a similar overexpression of

collagen 1, fibronectin, TGF-b, MMP2, and MMP9 with increased

fibroblast proliferation and migration was observed. Opposite effects

were observed after knocking down GPNMB in the AAF. The effect of

GPNMB on AAF was mediated via the aVb1 receptor acting

downstream on AKT and ERK-1/2 pathways. In vitro treatment of

AAF with GPNMB along with leflunomide, tofacitinib, or baricitinib

reduced collagen 1, fibronectin, TGF-b, MMP2, andMMP9 expression

when compared with GPNMB alone. Leflunomide also suppressed

GPNMB production from THP-1 macrophages in vitro. However, in

22 patients with TAK treated with leflunomide and corticosteroids,

inconsistent changes in circulating GBNMB were observed (47). The

role of adventitial fibroblasts in the vascular fibrosis of TAK is

summarized in Figure 1.
Circulating proteins as biomarkers of
fibrosis in TAK

Kong et al. identified, among numerous serum chemokines, an

increase in CCL22 (produced by M2 macrophages) (48) following

immunosuppressive therapy, whereas the levels of IL-16 did not

change following immunosuppressive therapy (49). CCL22 has

been implicated previously in lung fibrosis (50) and IL-16 in

cardiac fibrosis (51). The persistent elevation of these chemokines

in TAK despite immunosuppressive therapy might also contribute

towards vascular fibrosis while inflammation resolves.

Another recent study explored the enhanced liver fibrosis (ELF)

score, a validated circulating biomarker of liver fibrosis derived

from serum levels of hyaluronic acid (HA), tissue inhibitor of

metalloproteinase 1 (TIMP-1), and pro-collagen III amino-

terminal pro-peptide (PIIINP), in 24 patients with TAK. The ELF

score moderately correlated with clinical damage indices VDI and

TADS and strongly correlated with angiographically assessed

vascular damage using the Combined Arteritis Damage Score (52).

MMP2, MMP3, and MMP9 are secreted by fibroblasts during

tissue remodeling, including in the inflamed arterial wall. Some

studies (15) but not others have associated circulating levels of

MMP2, MMP3 (53), and MMP9 with TAK disease activity (54).

Whether MMP2, MMP3, and MMP9 are associated with vascular

fibrosis in TAK remains to be evaluated. Supplementary Table S1

summarizes potential biomarkers for further evaluation of their

association with vascular fibrosis in TAK.
Differences in the pathogenesis of
TAK and GCA—are differences in Th17
subtypes a key feature?

Vascular fibrosis is prominent in affected arteries of TAK but

less so in GCA (2, 4–6). Th17 lymphocytes were initially implicated

in GCA (55). Subsequent reports identified a role for Th17

lymphocytes in TAK (32–34), including an association with active

TAK (32, 34). Th17 lymphocytes attract neutrophils to the arterial
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wall (56). Recently, IL-17 has been implicated in granuloma

formation (57, 58), a pathological feature of both TAK and GCA

(2). Th17.1 lymphocytes implicated in TAK (34) also secrete

interferon-gamma (classically secreted by Th1 lymphocytes) (59),

which also drives granuloma formation (60).

The Th17 population in GCA is corticosteroid-responsive (55).

However, a reduction in Th17 lymphocytes following

immunosuppressive therapy was not observed in TAK (32, 33). The

poor responsiveness of Th17 lymphocytes in TAK could be explained

by the elevated Th17.1 population known to express the drug efflux

protein p-glycoprotein (thereby conferring corticosteroid resistance)

(34, 61). Th17.1 lymphocytes have not yet been described in GCA (61).

Despite elevated tumor necrosis factor-alpha (TNF-a) levels in both

TAK (62) andGCA (63), TNF-a inhibitors (TNFi) are effective in TAK

(10) but not in GCA (64). Blocking TNF-a inhibits p-glycoprotein

expression (65), which might be one of the mechanisms driving the

effectiveness of TNFi in TAK.

PD1+ Th17 lymphocytes secrete TGF-b, which drives arterial

wall fibrosis in TAK (34) along with IL-17 secreted by Th17

lymphocytes. PD1+ Th17 lymphocytes have not yet been

described in GCA. Such differences in Th17 sub-populations

could explain distinct vascular pathology encountered in TAK or

GCA (Figure 2).
Frontiers in Immunology 05
Detection of fibrosis in vivo in
Takayasu arteritis

Computed tomography (CTA), magnetic resonance (MRA), or

conventional angiography helps delineate the arterial tree anatomy

in TAK and other LVV. CTA and MRA also provide information

about arterial wall characteristics, more easily appreciated when

intravenous contrast is administered during angiography (15). Late

gadolinium enhancement of the arterial wall on MRA may indicate

either inflammation or fibrosis (66, 67).

18-Fluorodeoxyglucose (18F-FDG) positron emission tomography

(PET), combined with computed tomography (CT) or more recently

magnetic resonance imaging (MRI) for anatomic localization, is

increasingly being used to visualize metabolic activity in the arterial

wall in TAK (15). A recent paper proposed that concomitant arterial

wall 18F-FDG uptake and wall thickening evident on MRA might

indicate ongoing inflammation, whereas wall thickening without
18F-FDG uptake might indicate vascular fibrosis (68).

68-Gadolinium (68-Ga)-tagged fibroblast activation protein

inhibitor (FAPI)-PET identifies in vivo fibroblast activity in solid

organ tumors or lungs in the context of interstitial lung diseases

(69). A case report described a young female with clinically active

TAK without 18-FDG-PET uptake but with extensive arterial
FIGURE 2

Distinct roles of Th17 lymphocytes in giant cell arteritis and Takayasu arteritis: do they underlie mechanistic differences in vascular fibrosis? In giant
cell arteritis (GCA), Th17 lymphocytes, which are sensitive to corticosteroids, predominantly secrete IL-17, which attracts neutrophils causing
inflammation of the vascular wall. IL-17 also contributes to granuloma formation in the vascular wall. In Takayasu arteritis (TAK), apart from these
roles, Th17.1 lymphocytes also secrete IFN-g (contributing towards granuloma formation) and express p-glycoprotein (contributing towards
corticosteroid resistance). Th17 lymphocytes expressing programmed cell death 1 (PD1) also secrete TGF-b1, which, along with IL-17, contributes
towards vascular fibrosis. Created with BioRender.com.
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uptake using 68-Ga-FAPI-PET (70). It remains to be explored

whether 68-Ga-FAPI-PET can enable the identification of areas of

ongoing arterial fibrosis in TAK.
Prospects to therapeutically target
arterial fibrosis in Takayasu arteritis

mTORC1 activation drives the differentiation to Th1, Th17, and

IL-21+CD4+ T lymphocytes in TAK (27–29). Elevated PD1+ Th17

lymphocytes in TAK serve as a source of TGF-b (34). mTORC1

activation has also been noted in the endothelial cells of TAK but not in

GCA. Purified immunoglobulin G1 (IgG1) from TAK induced

endothelial cell proliferation in vitro through the PI3K/AKT

pathway, inhibited by the mTORC1 inhibitor sirolimus or through a

direct inhibitor of PI3K (71). Sirolimus and everolimus are mTORC1

inhibitors commonly used in clinical practice (40). mTORC1 inhibition

has antifibrotic effects in kidneys affected with antiphospholipid

antibody syndrome (25). mTORC1 inhibition has also been

proposed as a therapeutic modality for pulmonary fibrosis (24).

Therefore, mTORC1 inhibition might ameliorate both inflammation

and fibrosis in TAK. Sirolimus has been anecdotally used in TAK (72).

Leflunomide suppresses M2 macrophages and aortic adventitial

fibroblasts in vitro (21, 47). The JAK inhibitors tofacitinib and

baricitinib also suppressed aortic adventitial fibroblasts in vitro (47).

Sirolimus-coated stents inhibit endothelial proliferation and reduce

re-stenosis after endovascular stenting. A case report described a

patient with TAK with repeated coronary artery stenosis despite a

sirolimus-eluting stent where the addition of systemic corticosteroids

prevented restenosis from occurring with a sirolimus-eluting stent

alone (73). This suggests the potential benefits of combining

immunosuppressive therapy with antifibrotic drugs in TAK.

To explore this concept further, we treated PBMCs from TAK

cultured in vitrowith tacrolimus (a calcineurin inhibitor) and tadalafil (a

phosphodiesterase 5 inhibitor that increases intracellular levels of cyclic

guanosine monophosphate, thereby suppressing canonical and non-

canonical signaling pathways downstream to TGF-b). Upon stimulation

of the PBMCs with anti-CD3/CD28, treatment with tacrolimus and

tadalafil significantly reduced the levels of IL-6, IL-17A, IL-1b, and IL-10
in the culture supernatant than tacrolimus alone (34). IL-6 (41, 42) and

IL-17 (43) activate aortic adventitial fibroblasts in TAK. IL-10 (74) and

IL-1b (75) have been associated with organ fibrosis in clinical and pre-

clinical models. The synergistic effect of tacrolimus and tadalafil on

various cytokines involved in fibrosis in vitro on cultured PBMCs from

TAK (34) suggests the potential to explore a combination of

immunosuppressive and antifibrotic therapies in TAK. Given that no

clinical trial of an immunosuppressive agent in TAKhasmet its primary

endpoint, future trials should consider combining DMARDs with

antifibrotic drugs.
Conclusion

Excessive vascular fibrosis characterizes TAK. Th17 lymphocyte

populations, M2 macrophages, and mast cells drive aortic

adventitial fibroblast activation leading to arterial wall fibrosis.
Frontiers in Immunology 06
In vitro experiments suggest the potential to target arterial wall

fibrosis in TAK with leflunomide, tofacitinib, baricitinib, or

mTORC1 inhibitors. Since arterial wall inflammation begets

fibrosis, a strategy of combining immunosuppressive agents with

antifibrotic drugs merits exploration in future clinical trials of TAK.
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