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Combination of single-nucleus
and bulk RNA-seq reveals the
molecular mechanism of
thalamus haemorrhage-induced
central poststroke pain

Tianfeng Huang1,2†, Yinggang Xiao1,2†, Yang Zhang1,2,
Yali Ge1,2 and Ju Gao1,2*

1Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College,
Yangzhou University, Yangzhou, Jiangsu, China, 2Yangzhou Key Laboratory of Anesthesiology,
Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
Central poststroke pain (CPSP) induced by thalamic haemorrhage (TH) can be

continuous or intermittent and is accompanied by paresthesia, which seriously

affects patient quality of life. Advanced insights into CPSP mechanisms and

therapeutic strategies require a deeper understanding of the molecular

processes of the thalamus. Here, using single-nucleus RNA sequencing

(snRNA-seq), we sequenced the transcriptomes of 32332 brain cells, which

revealed a total of four major cell types within the four thalamic samples from

mice. Compared with the control group, the experimental group possessed the

higher sensitivity to mechanical, thermal, and cold stimuli, and increased

microglia numbers and decreased neuron numbers. We analysed a collection

of differentially expressed genes and neuronal marker genes obtained from bulk

RNA sequencing (bulk RNA-seq) data and found that Apoe, Abca1, and Hexb

were key genes verified by immunofluorescence (IF). Immune infiltration analysis

found that these key genes were closely related to macrophages, T cells, related

chemokines, immune stimulators and receptors. Gene Ontology (GO)

enrichment analysis also showed that the key genes were enriched in

biological processes such as protein export from nucleus and protein

sumoylation. In summary, using large-scale snRNA-seq, we have defined the

transcriptional and cellular diversity in the brain after TH. Our identification of

discrete cell types and differentially expressed genes within the thalamus can

facilitate the development of new CPSP therapeutics.
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thalamic haemorrhage, central poststroke pain, single-nucleus RNA sequencing,
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1 Introduction

Currently, stroke is one of the most prevalent diseases

threatening human life and health worldwide, with a very high

disability rate and a high mortality rate; its treatment cost is high,

and it places a heavy burden on people’s lives (1). The prevalence of

stroke in China is on the rise. global burden of disease study (GBD;

http://ghdx.healthdata.org/) data showed that the prevalence of

hemorrhagic stroke in China in 2019 was 306/100,000 (age-

standardized prevalence 215/100,000). According to the China

Health Statistical Yearbook 2019 (http://www.nhcgov.cn/), the

crude death rate of stroke in China in 2018 was 160 per 100,000

for rural residents and 129 per 100,000 for urban residents. There

are two types of stroke: ischaemic stroke and haemorrhagic stroke.

Although ischaemic stroke is more common than haemorrhagic

stroke, haemorrhagic stroke has a higher mortality and disability

rate than ischaemic stroke. Central poststroke pain (CPSP) is a

neuropathic pain syndrome caused by damage to the spinothalamic

pathway after stroke, which usually occurs within 6 months after

haemorrhagic or ischaemic stroke (2). CPSP can be continuous or

intermittent and is accompanied by paresthesia, and long-term pain

can also lead to emotional changes such as anxiety and depression

in patients, which further aggravate pain and seriously affect the

quality of life of patients (3, 4). Thalamic haemorrhage is the main

cause of CPSP, and the sites of thalamic haemorrhage with a high

incidence of CPSP mainly include the ventral posterolateral/ventral

posteromedial nuclei of the thalamus (VPL/VPM) (5, 6).

As research has progressed and more evidence has been

collected, many theories concerning the pathogenesis of CPSP

have emerged, mainly including the disinhibition theory, central

sensitization, neuroplasticity, changes in spinothalamic conduction

pathways, infiltration of inflammatory cells, and activation of glial

cells (5, 7–9). An increasing number of studies have shown that the

dynamic changes in gene regulation at the injury site after thalamic

haemorrhage may be a key factor leading to the occurrence of CPSP.

For example, after thalamic haemorrhage, m6A-modified RNA

demethylase FTO stabilizes TLR mRNA in neurons, leading to an

increase in the expression levels of the TLR4 protein and causing

central sensitization, which is involved in the occurrence and

development of CPSP (10). In addition to neurons, other cell

types in the brain also play an important role in the regulation of

CPSP. After thalamic haemorrhage, both microglia and astrocytes

are stimulated and activated by the injury, and the nonreceptor

tyrosine kinase Fgr expressed in microglial cells mediates the

development of CPSP by activating the NF-kB signalling pathway

and causing CNS inflammation (11). In short, the mechanism of

CPSP is intricate, and thus far, CPSP is still difficult to cure.

Clinically, drugs for the treatment of CPSP are usually addictive

or not very effective, and long-term use of several CPSP drugs may

cause serious side effects (12). Therefore, it is necessary to further

explore the underlying mechanisms of CPSP occurrence and

development at the molecular and cellular levels.

Several bulk RNA-sequencing (bulk RNA-seq) studies using

brain tissue have shown that cerebral haemorrhage can lead to

changes in multiple genes (13, 14). However, bulk RNA-seq
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technology can only provide the overall transcriptional level

change, which is the analysis of thousands or even millions of

large samples of cells, the average result of a large number of cell

sequencing analyses, or the reflection of a dominant number of cell

data, all of which mask important information and ignore the

heterogeneity between cells or cell subtypes. This method is not

conducive to the understanding and research of cellular

biodiversity, so more accurate sequencing methods are needed. In

recent years, single-cell RNA sequencing (scRNA-seq) and single-

nucleus RNA sequencing (snRNA-seq) have been used to obtain the

transcriptional expression profile of certain cell types at the

molecular level. Through functional analysis, this gene expression

information can be linked with cell function, and the use of spatial

mapping can locate cells in a certain tissue or organ and finally

obtain a map of different types of cells (15, 16). Therefore, using

scRNA-seq and snRNA-seq, especially snRNA-seq, on brain tissue

is becoming increasingly widespread in neuroscience research,

mainly because brain tissue cells are not easy to separate (16, 17).

However, to date, there has been no research on the distribution of

cell types in thalamic tissue and the changes in the transcriptome in

a single cell after the occurrence of CPSP caused by thalamic

haemorrhage. Therefore, to understand the cellular and molecular

mechanisms of CPSP caused by thalamic haemorrhage in detail and

provide a theoretical basis for the clinical treatment of CPSP, the

snRNA-seq research method is essential.

In this study, for the first time, we used snRNA-seq and bulk

RNA-seq to measure mRNA expression in the thalami of thalamic

haemorrhage model mice. Through differential gene analysis and

cell cluster analysis, the specific cells and their key genes that affect

the progression of thalamic haemorrhage were identified, and the

intercellular interaction in thalamic haemorrhage was revealed for

the first time. We further explored the underlying mechanism of

CPSP occurrence and development at the molecular and

cellular levels.
2 Materials and methods

2.1 Animals

Adult C57BL6 mice (age, ~7-8 weeks, weight, ~25-30 g) were

purchased from Beijing Weitong Lihua Experimental Animal

Technical Co., Ltd., and kept under a 12-h light/dark cycle in the

same colony room, with controlled temperature (23 ± 1°C) and

humidity (50 ± 5%). By a random number table, the animals were

assigned into the following two groups: (1) NS (n = 15): mice that

received normal saline (NS). (2) COL (n = 15): mice that received

collagenase IV (Coll IV). The brain tissue of every three mice in the

same group constituted one sample, three samples were selected

from each of the two groups for bulk RNA-seq, and snRNA-seq was

performed for the remaining two samples in each groups. The

research protocol and animal experiments were approved by the

Animal Care and Use Committee of Wuhan Servicebio

Biotechnology Co., Ltd. (Wuhan, China; approval no. 2022045).
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2.2 Thalamic haemorrhage−induced
CPSP model

Modelling was performed according to our previous article (18).

Isoflurane was administered to anaesthetize the mice, which were

then placed in a stereotactic frame. Using a glass micropipette, Coll

IV (0.01 U/10 nl, dissolved in saline solution; Sigma−Aldrich;

Merck KGaA) was injected into the right VPM and VPL nuclei of

the thalamus. The NC group was injected with 10 nl of sterile

physiological saline. Following administration, the glass

micropipette was held in position for 10 min to enable the Coll

IV to fully disperse, and then the glass micropipette was slowly

removed. Then, iodophor and sterile saline were used to sterilize the

surgical area, which was later stitched with a wound clip.
2.3 Behavioural tests

This experiment used pain behaviour tests to measure the

sensitivity of mice to mechanical, thermal, and cold stimuli.

Testing was performed every hour. First, the mechanical

sensitivity test was conducted by placing the mouse in a plexiglass

chamber with an elevated grid floor and stimulating the hind limbs

with two calibrated von Frey filaments (calibration values of 0.07

and 0.4 g, Stoelting, USA) to record the number of paw withdrawals

as the response frequency [(number of withdrawals/10 trials) ×

100% = response frequency]. Then, the thermal sensitivity test was

performed using the same method, and a Model 336 analgesia

metre measured the response time of mice to harmful heat

stimulation. Each test was repeated 5 times with a 5-minute

interval, and the cut-off time was set at 20 seconds to avoid tissue

damage. Finally, the cold sensitivity test was conducted by placing

the mouse on a plate with temperature monitoring in a plexiglass

chamber and recording the response time of the mouse to harmful

cold stimulation. The cut-off time was set at 20 seconds to avoid

tissue damage.
2.4 Date collection

Seven days after the intervention, injured thalamic tissue was

collected for sequencing. Wuhan Servicebio Biotechnology Co., Ltd.

performed bulk transcriptome sequencing, and Hangzhou

Lianchuan Biotechnology Co., Ltd. conducted snRNA-seq using

four randomly analysed samples from twelve mice.
2.5 Single nucleus preparation

Brain tissue (0.1-0.3 g) from each group was washed with 1x

PBS (Thermo Fisher, USA), minced and homogenized in a glass

homogenizer containing 3 mL of Buffer A (250 mM sucrose

(Sangong, China), 10 mg/mL bovine serum albumin (BSA,

Thermo Fisher), 5 mM MgCl2 (Sinopharm, China), 0.12 U/mL
RNasin (Promega, USA), 0.06 U/mL SUPERasenTM RNase
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Inhibitor (Thermo Fisher), 1x Protease Inhibitor (CST, USA), and

mixed 10 times with both large and small pestles on ice. The

mixture was filtered through a 100 µm cell sieve filter, and the filter

was washed twice with 1750 mL of Buffer A. After the addition of

Triton X-100 (Thermo Fisher), a nonionic surfactant with a

concentration of 0.5%, the mixture was further homogenized with

a pestle and mixed 50 times. After the mixture passed through a 35

µm cell sieve membrane, the following steps were performed in

sequence: the mixture was centrifuged at 500 g at 4°C for 5 min, the

supernatant was discarded, and the pellet was resuspended in 1 mL

of citric acid solution (0.25 M sucrose (Sangong), 25 mM citric acid

(Sigma), 1 µg/mL of Hoechst 33342 (Thermo Fisher)), the mixture

was centrifuged at 500 g at 4°C for 5 min, the supernatant was

discarded, the pellet was resuspended in 1 mL Buffer B, and the

mixture was centrifuged at 3000 g at 4°C for 5 min, the supernatant

was discarded, and the pellet was resuspended in 200 µL Buffer B

(320 mM sucrose (Sangon), 10 mg/mL BSA (Thermo Fisher), 3 mM

CaCl2 (Sinopharm), 2 mM MgAc2 (Sinopharm), 10 mM Tris-HCl

(Sigma), 0.1 mM EDTA (Sigma, USA), 1 mM DTT (Invitrogen,

USA), 1 mM DTT (Invitrogen), 0.12U/mL RNasin (Promega),

0.06U/mL SUPERasenTM RNase Inhibitor (Thermo Fisher),

1xProtease Inhibitor (CST)), and centrifuged at 20000 × g for

3 min at 4°C. Finally, the pellet was stained with trypan blue

(Thermo Fisher) and the nuclei were counted by CountStar.
2.6 snRNA-seq and data processing

Single nuclei were run on a 10× Chromium system (10 ×

Genomics) and then subjected to library preparation by LC

Sciences, following the recommended protocol for the Chromium

Single Cell 30 Reagent Kit (v2, Chemistry). Libraries were run on

the HiSeq4000 instrument for Illumina sequencing. Sequencing

results were demultiplexed and converted to FASTQ format using

Illumina bcl2fastq software (v2.20). Sample demultiplexing,

barcode processing and single-cell 3’ gene counting were

performed using a 10× Cell Ranger package (v1.2.0; 10 ×

Genomics). Reads were aligned to the mm10 reference assembly

(v1.2.0; 10 × Genomics). The snRNA-seq data (Cellranger_result)

contained 4 samples (C1, C2, M1, M2).

The expression profile was read using the Seurat package, and

the low expression genes were screened out (nFeature_RNA > 50 &

percent.mt < 5). Normalization, homogenization, principal

component analysis (PCA) and uniform manifold approximation

and projection (UMAP) analysis were successively carried out on

the data. The optimal number of principal components (PCs) was

observed by ElbowPlot, and the position relationship between each

cluster was obtained by T-distributed stochastic neighbour

embedding (tSNE) analysis. The cluster of cells that were

important to the occurrence of the disease was annotated by the

celldex package (19). Finally, we extracted the marker genes of each

cell subtype from the single-cell expression profile by the

FindAllMarkers function with the parameter (logfc.threshold =

1). With the criteria of p_val_adj ≤ 0.05 and |avg_log2FC| ≥ 1,

the genes were screened as unique marker genes in each

cell subtype.
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2.7 Ligand−receptor interaction analysis

CellChat, a tool that enables quantitative inference and analysis

of intercellular communication networks from single-cell data, uses

network analysis and pattern recognition methods to predict the

main signal inputs and outputs of cells and how these cells and

signals result in specific functions (20). In this analysis,

standardized single-cell expression profiles were used as input

data, and cell subtypes obtained from single-cell analysis were

used as cell information which was visualized as a network graph.

Cell-related interactions were analysed, and the intensity (weights)

and frequency (counts) of interactions between cells were used to

quantify the closeness of interactions to observe the activity degree

and influence of each type of cell in the disease.
2.8 Key gene identification

We used RNA-seq data to further identify the key genes

involved in thalamic haemorrhage among the candidate genes.

Differential analysis was carried out in the two groups of samples

by the limma package (21) to identify differentially expressed genes

in the two groups of samples, and the screening criteria of

differentially expressed genes was |LogFC| > 0.585 and p <0.05.

Then, the differentially expressed genes and candidate genes

(neurons) were intersected to explore potential key genes. The R

package clusterProfiler was used to comprehensively explore the

functional correlation of these key genes. GO and KEGG were used

for the evaluation of relevant functional categories. GO and KEGG

enriched pathways with both p values and q-values less than 0.05

were considered significant pathways.
2.9 Immune infiltration assay

The immune microenvironment is mainly composed of

immune-related fibroblasts, immune cells, extracellular matrix,

various growth factors, inflammatory factors and special

physicochemical characteristics (22, 23). It substantially affects the

diagnosis, survival outcome and clinical severity of many diseases.

The CIBERSORT method is a widely used method for evaluating

immune cell types in microenvironments (24). Based on the

principle of support vector regression, deconvolution analysis was

performed on the expression matrix of immune cell subtypes in this

method. The expression matrix contains 547 biomarkers that

distinguish 25 mouse immune cell phenotypes, including T cells,

B cells, plasma cells, and myeloid cell subsets. In this study, the

CIBERSORT algorithm was used to analyse the sample data, which

was used to infer the relative proportion of 25 kinds of

immunoinfiltrating cells, and Spearman correlation analysis was

conducted to examine the correlations between gene expression and

immune cell type. The sum of all estimated immune cell type scores

in each sample was equal to 1, and the difference in immune cell

content was tested by t-test. The correlations between these key

genes and different immune factors were then validated using the

TISIDB database (http://cis.hku.hk/TISIDB/) (25).
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2.10 Gene set enrichment analysis

GSEA uses a predefined gene set to sort the genes according to

the degree of differential expression in the two sample groups and

then evaluates whether the preset gene set is enriched at the top or

bottom of the sorting table (26). In this study, GSEA was used to

compare the differences in signalling pathways between the high

expression group and the low expression group and to explore the

molecular mechanism of key genes in the two sample groups. The

number of permutations was set to 1000, and the permutation type

was set to phenotype. In addition, we performed reverse prediction

of related miRNAs via the TargetScanMouse database (https://

www.targetscan.org/mmu_72/) and visualization via Cytoscape

(v3.9.1) for the key genes (27, 28).
2.11 Genome-wide association studies

The Gene Atlas database (http://geneatlas.roslin.ed.ac.uk/) is a large

database that documents associations between hundreds of traits and

millions of variants using the UK Biobank cohort (29). These

associations were calculated using 452,264 UK individuals in the UK

Biobank database, covering a total of 778 phenotypes and 30 million

loci. According to trait and region information or gene options in the

Gene Atlas database, the thalamic haemorrhage phenotypes were

searched to determine the chromosomal pathogenic sites of the key

genes associated with thalamic haemorrhage.
2.12 Regulatory network analysis of
key genes

In this study, the R package “RcisTarget” was used to predict

transcription factors (30). All calculations performed by RcisTarget

are based on motifs. The normalized enrichment score (NES) of a

motif depends on the total number of motifs in the database. In

addition to the motifs annotated by the source data, further

annotation files were inferred based on motif similarity and gene

sequences. The first step in estimating the overexpression of each

motif across a gene set is to calculate the area under the curve

(AUC) for each motif-motif-set pair (31). This calculation was

performed based on the recovery curve calculation of the gene set

versus motif ordering. The NES of each motif was calculated based

on the AUC distribution of all motifs in the gene set. We used

MM9-500 bp-upgrade-10species.mc9NR for the gene-motif

rankings database.
2.13 Immunofluorescence of key genes

After animals were deeply anesthetized with isoflurane, they

were perfused with 100-300 ml of 4% paraformaldehyde in 0.1 M

phosphate buffer (pH 7.4). The brain was harvested, postfixed at

4°C for 24 h, and cryoprotected in 30% sucrose overnight. The

tissues were sectioned at the thickness of 30 mm on a cryostat. After

being blocked with PBS containing 5% goat serum and 0.3% Triton
frontiersin.org
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X-100 for 1 h at 37°C, the sections were incubated overnight at 4°C

with rabbit anti-Apoe(CST, 1:100, catalog number: 49285) or rabbit

anti-Abca1(Novus Biologicals, USA 1:200, catalog number: NB48-

105) or rabbit anti-Hexb(Thermo Fisher, 1:100, catalog number:

PA5-101082). The sections were then incubated with goat anti-

rabbit IgG conjugated with Cy2 (Jackson ImmunoResearch, USA,

1:500, catalog number:111-225-144) for 1 h at room temperature.

Control experiments included omission of the primary antiserum

and substitution of normal rabbit serum for the primary antiserum.

The sections were finally mounted using VectaMount permanent

mounting medium (Vector Laboratories, USA) or Vectashield plus

40, 6-diamidino-2-phenylindole (DAPI) mounting medium

(Vector Laboratories). All images were observed using a Leica

DMI4000 fluorescence microscope and captured with a

DFC365FX camera (Leica, Germany). Positive cells were

calculated manually.
2.14 Statistical analysis

R language software (v4.0) was used for statistical analysis of

our data. Behavioral and IF results were analyzed using two

independent sample t-tests. All statistical tests were two-sided,

and P < 0.05 was considered statistically significant.
3 Results

3.1 Thalamic haemorrhage-induced CPSP

The mice with thalamus haemorrhage displayed persistent and

intense mechanical pain abnormalities, thermal hyperalgesia, and

abnormal cold pain on the contralateral side of their bodies. When

Coll IV was microinjected, there was a significant increase in the

frequency of claw retraction on the contralateral side in response to

0.07 g and 0.4 g von Frey wires, along with a significant decrease in

the latency of claw retraction in response to thermal and cold

stimulation. These pain hypersensitivity reactions occurred 1 day

after microinjection and lasted for at least 7 days. In contrast,

microinjection of saline did not significantly alter the retraction

frequency and latency of the contralateral basal claw. Coll IV and

saline microinjections did not affect the frequency or latency of

ipsilateral basal claw retraction (Supplementary Figure 1).
3.2 Single-cell level analysis of cell ranger
result data

snRNA-seq data (GSE227003) contained 4 samples (C1, C2,

M1, M2). Primary assessment with 10× Cell Ranger for the NS

group (C1, C2) reported 9681 and 10438 cell barcodes with 3026

and 2233 median genes per cell sequenced to 45.4% and 47.8%

sequencing saturation with 40780 and 37953 mean reads per cell,

respectively. Primary assessment with this software for the COL

group (M1, M2) reported 5943 and 6270 cell barcodes with 3270
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and 3460 median genes per cell sequenced to 53.3% and 46.7%

sequencing saturation with 67365 and 63897 mean reads per cell.

The main details of the sequencing are shown in Figures 1A, B.

In this analysis, the data samples were initially screened through

nFeature_RNA and nCount_RNA, and the 10 genes with the

highest standard deviation are displayed (Figure 1C). We

performed PCA dimensionality reduction analysis on 20 of the

genes and found that they had different scoring values in different

dimensions (Figure 1D). However, PCA dimension reduction

analysis among samples found that the overall difference between

samples was not obvious, and the optimal PC number observed by

ElbowPlot was 15 (Figures 1E, F). Finally, the tSNE algorithm was

used to cluster cells, and all cells were clustered into 29 cell

subsets (Figure 1G).
3.3 Annotation of cell subpopulations from
snRNA-seq data

In this study, each subtype was annotated by the R package

SingleR, and 29 clusters were annotated into the 4 cell categories of

neurons, oligodendrocytes, astrocytes and microglia (Figure 2A).

The number of immune cells and microglia increased in the COL

group (Figure 2B). Finally, we extracted the marker genes unique to

each cell subtype from the single-cell data through the

FindAllMarkers function (Appendix 1).
3.4 Cell-to-cell communication analysis

We used the software package CellChat to analyse the

ligand−receptor relationships in the single-cell expression profile.

Next, we found complex pairs of interactions between these cell

subtypes (Figure 3A). Finally, we statistically found that cells such as

neurons and astrocytes have more potential interactions with other

cells (Figure 3B). Therefore, neuron marker genes were ultimately

selected as the candidate gene set.
3.5 Screening of key genes related to
cell communication

RNA-seq data were analysed by the limma package, and a total

of 416 differentially expressed genes were obtained, of which 367

were upregulated and 49 were downregulated (Figures 4A, B).

Three key genes, Apoe, Abca1 and Hexb, were identified after the

intersection of differentially expressed genes and the candidate

neuron marker gene set (Figure 4C). The expression of these

three key genes in the four cell types is shown in Figure 4D. We

further performed pathway analysis on the three genes

(Supplementary Figure 2). GO enrichment analysis showed that

these key genes were mainly enriched in the lipid localization

pathway. KEGG enrichment analysis revealed that these key

genes were mainly enriched in pathways such as cholesterol

metabolism pathway.
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3.6 Analyses of the immune
microenvironment

Through the analysis of the relationship between key genes and

immune infiltration in the RNA-seq dataset, the effect of key genes on

the progression of thalamic haemorrhage was explored. The immune

cell content of each sample is shown (Figure 5A), and there are

several significant correlations between the key genes and the levels of

immune infiltration (Figure 5B). In addition, compared with the NS

sample, the COL sample had a significantly higher M0 macrophage

level (Figure 5C). After exploring the relationship between the key

genes and immune cells, it was found that each key genes was highly
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correlated with immune cells. Abca1 was positively correlated with

immature dendritic cells (DCs) and M1 macrophages and negatively

correlated with eosinophils and Th17 cells (Figure 5D). Apoe was

positively correlated with M0 macrophages and CD4+ follicular T

cells and negatively correlated with CD8+ naive T cells and plasma

cells (Figure 5E). Hexb was positively correlated with CD4+ follicular

T cells and immature DCs and negatively correlated with Th17 cells

andmonocytes (Figure 5F). These correlations were verified using the

TISIDB database and suggest that the key genes are mainly related to

immunosuppressants, chemokines, immunostimulants, receptors

and major histocompatibility complex (MHC) proteins

(Supplementary Figure 3).
A B

FIGURE 2

Annotation of cells. (A) Cell annotation of 29 clusters. Twenty-nine clusters were annotated into 4 cell types. (B) Differences in the proportions of
the 4 types of cells in the two sample groups.
A B

D E F G

C

FIGURE 1

Characterization of thalamic haemorrhage by snRNA-seq. (A) The left figure shows the relationship between cell sequencing depth and
mitochondrial content, the right figure shows the relationship between sequencing depth and gene quantity, and the two are positively correlated.
(B) Single-cell quality control, showing cell count, gene count, and sequencing depth per sample. (C) Variance plots of genes and traits with
significant differences between cells. (D) PCA presentation. (E) Distribution of PCs. Dots represent cells, and colours represent samples. (F) Variance
ranking plot for each PC. (G) According to the important components available in PCA, cells are divided into 29 clusters by the tSNE algorithm.
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3.7 CPSP key genes signalling pathway
enrichment analysis

Next, we studied the specific signalling pathways enriched in the

three key genes and explored the underlying molecular mechanisms

by which these key genes affect disease progression. The GSEA

results showed that the highly expressed Apoe gene was enriched in
Frontiers in Immunology 07
the biological processes protein export from nucleus and protein

sumoylation, the cellular component promyelocytic leukaemia

(PML) body and the molecular function ligase activity

(Figure 6A). The highly expressed Abca1 gene was enriched in

the biological processes iron ion homeostasis, protein export from

nucleus, and protein sumoylation and the cellular component PML

body (Figure 6B). The highly expressed with Hexb gene was
A B

DC

FIGURE 4

Screening of key genes in thalamic haemorrhage. (A) Volcano plot of differentially expressed genes by RNA-seq. Pink indicates upregulation of gene
expression, and blue indicates downregulation of gene expression. (B) Venn diagram of differentially expressed genes and neuron markers. (C) Key
gene t-SNE dimensionality reduction analysis. (D) Expression profiles of key genes in single cells.
A B

FIGURE 3

CellChat evaluates cell communication. (A) The cell interaction network between 4 types of cells. The edge width indicates the probability and
strength of communication between cells. (B) Comparison of the total number of interactions in the communication network between the 4 types
of cells, decreasing from left to right, the strongest being neurons.
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enriched in the biological processes iron ion homeostasis, protein

export from nucleus, protein sumoylation and response to gamma

radiation (Figure 6C).
3.8 Analysis of key gene-related
transcription regulation

We applied the three key genes to the candidate gene set in this

analysis and found that they are regulated by common mechanisms

such as multiple transcription factors. Therefore, enrichment

analysis was performed on these transcription factors using

cumulative recovery curves (Supplementary Figures 4A, B). The

motif annotation with the highest AUC was jaspar:MA1091.1, and
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the three key genes were enriched in this motif, namely, Abca1,

Apoe and Hexb, and the normalized enrichment score (NES) was

7.32. In addition, we displayed all the enriched motifs and

corresponding transcription factors of the key genes. The three

key genes were reverse predicted by the TargetScanMouse database

and yielded 99 miRNAs and a total of 103 mRNA−miRNA

relationship pairs, which were visualized using Cytoscape

(Supplementary Figure 4C).
3.9 GWAS analysis of the key genes

Next, we analysed the GWAS data of the disease to confirm the

pathogenic regions of the 3 key genes. As shown in Figure 7A, the
A B C

FIGURE 6

Significantly enriched GSEA pathways for key genes. (A) Apoe. (B) Abca1. (C) Hexb. The upper part of the abscissa indicates high expression, and the
lower part indicates low expression.
A B

D E F

C

FIGURE 5

Immune infiltration in thalamic haemorrhage. (A) Relative percentages of 25 immune cell subsets. (B) Pearson correlation between 25 kinds of
immune cells. Blue indicates a positive correlation, and red indicates a positive correlation. (C) The difference in immune cell content between
control and disease samples, with control samples in blue and disease samples in red. (D–F) Pearson correlation between key genes Abca1, Apoe
and Hexb and immune cells, positive correlation on the right and negative correlation on the left.
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Q-Q chart shows significant disease-associated single nucleotide

polymorphism (SNP) loci identified by GWAS data. The key SNP

sites distributed in the enrichment area were found by using the

precise location identified by GWAS data (Figure 7B). The

pathogenic region of SNPs corresponding to Apoe, Abca1 and

Hexb is shown, in which Apoe is located in the pathogenic region of

chromosome 19, Abca1 is located in the pathogenic region

of chromosome 9, and Hexb is located in the pathogenic region

of chromosome 5 (Figures 7C–E). The significant SNP loci

corresponding to the 3 genes are shown in Appendix 2.
3.10 Correlation analysis between key
genes and disease regulatory genes

We obtained the genes associated with thalamic haemorrhage

through the GeneCards database (https://www.genecards.org/)

(32). We analysed the expression levels of the three key genes and

the thalamic haemorrhage-related genes and found that the

expression levels of Cp, Notch3, and Plat were different between
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the two groups of samples (Supplementary Figure 5A). Among

them, Apoe was significantly negatively correlated with Krit1

(Pearson r=-0.85), and Hexb was significantly positively

correlated with Cst3 (Pearson r=0.99) (Supplementary Figure 5B).
3.11 Apoe, Abca1 and Hebx are increased
after CPSP

We examined whether Apoe, Abca1 and Hebx are altered in

thalamus. The number of Apoe labeled cells in this thalamic region

on day 7 post-Coll IV microinjection was increased by 5.29-fold as

compared with that after saline microinjection (Figures 8A1-A3).

The number of Abca11 labeled cells in this thalamic region on day 7

post-Coll IV microinjection was increased by 3.43-fold as compared

with that after saline microinjection (Figures 8B1-B3). The number

of Hexb labeled cells in this thalamic region on day 7 post-Coll IV

microinjection was increased by 8.68-fold as compared with that

after saline microinjection (Figures 8C1-C3).
A B

D

E

C

FIGURE 7

Overview of key genes analysed by GWAS. (A) Q-Q diagram. GWAS data can identify SNP sites with significant associations. (B) Manhattan map
representing meta-GWAS results. (C–E) Chromosomal pathogenic regions of key genes.
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4 Discussion

Our study collected thalamic tissue from 15 normal mice and 15

CPSP model mice for snRNA-seq and bulk RNA-seq, which

significantly expanded the newly emerging and referential thalamic

cell atlas and provided insights into the relationship between the

thalamus and the occurrence and development of CPSP disease. By

combining sn/bulk RNA-seq data with cell communication and

transcription factor regulation analysis, we provide a detailed

overview of the thalamic cell library and related molecular tags. We

quantified each cell and highlighted the specific characteristics of

CPSP thalamic cells. In each cell and subtype, we identified specific

marker genes, and further screened, verified, and analysed the key

neuronal genes with the richest cell communication in the

development of CPSP. Our results begin to reveal the molecular

basis of the pathophysiology of CPSP and the cellular response.

As the most important cell for brain function, neurons transmit

signals and exchange information to other cells through synapses and

cell membranes and are the cells with the most frequent cell

communication among all brain cells (33, 34). Astrocytes, the most

abundant cells in the brain, are neuroepithelial-derived cells that, by

forming the blood−brain barrier, providing nutritional support to

neurons and forming tripartite synapses with neurons, play an

important role in regulating neurovascular function necessary for

brain activity (35, 36). Microglia, as macrophages that colonize the

central nervous system, play an important role in the immune

response and reduce brain tissue damage by mediating
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inflammation, immune surveillance, polarization, and phagocytosis

of cellular debris (37–39). Our snRNA-seq data and cellular

interaction network results also support the above point. Thalamic

haemorrhage leads to changes in the cell composition ratio, a

significant decrease in the number of neurons and astrocytes, and

an increase in the number of microglia, which play a role in clearing

damaged tissue and promoting functional recovery.

Neurons are the key cells involved in cell communication during

thalamic haemorrhage (TH) and neuralgia, and their function is tied

to their molecular composition. ApoE is an important component of

lipoproteins in the peripheral and central nervous systems and

participates in the regulation of lipid transport, lipid metabolism

and cholesterol balance in the body. Abnormal lipid metabolism and

elevated lipid levels caused by the abnormal expression of ApoE are

closely related to the occurrence and progression of cerebral

haemorrhage (40–42). Abca1 is a key player in the reverse

cholesterol transport pathway, and its expression affects

neuroinflammation and neuronal degeneration and death (43–45).

Hexb is an essential component of the assembly of hexosaminidases

involved in lysosomal glycolipid degradation/processing and has been

implicated in motor neuron disease and gangliosidosis (46–48). We

have proven for the first time that Apoe, Abca1 and Hexb are the key

genes expressed by neurons that affect the development of CPSP.

We also found that they are closely related to the level of

immune cell infiltration, play an important role in the immune

microenvironment and are closely related to the transport of

proteins from the nucleus to the cytoplasm. Previous studies have
A1 A2 A3

B1 B2 B3

C1 C2 C3

FIGURE 8

IF result of the key genes. (A) Apoe/DAPI. (B) Abca1/DAPI. (C) Hexb/DAPI. The pictures from left to right are the sham operation group, the control
group and the number of positive cells. All images were taken at 20×magnification. Scale bar=50 mm. *P < 0.05 versus Sham group.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1174008
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2023.1174008
demonstrated that the three key genes have significant effects on

immune function, which supports our hypothesis that immune

infiltration may be a crucial pathway for these key genes to mediate

CPSP. For instance, APOE has been shown to affect the progression

of Alzheimer’s disease through immune regulation. Its high

expression has been linked to the activation of cytotoxic T

lymphocyte (CTL) responses and inhibition of cancer growth (49,

50). Moreover, studies have revealed that mice with ABCA1 loss or

decreased expression are more susceptible to worsened vascular

endothelial injury, stroke, cerebral ischemia reperfusion injury, and

neurological diseases such as Alzheimer’s disease (51–53). Hexb has

also been found to affect the immune function of microglia and

astrocytes in Sandhoff disease model mice and schizophrenia

patients (54–56).

In addition, they also affect known thalamic haemorrhage-

regulating genes. We constructed a map of the significant SNP sites

of Apoe, Abca1 and Hexb, the miRNA−mRNA regulatory network

and the motif binding domain and made a relatively complete

annotation of the CPSP pathogenesis involving these key genes.

This study has some limitations. First, the source of sequencing

samples was mice rather than human patients, which cannot perfectly

reflect the clinical characteristics of CPSP, and there may be differences

in the molecular characteristics. Second, we lacked animal experiments

that verified the identified key genes and their mechanisms. In future

research, we will focus on proving the correlation between Apoe,

Abca1 and Hexb and CPSP and further explore their upstream and

downstream pathways and signaling targets in neurons.

In summary, we identified three key immune-associated genes,

namely, Apoe, Abca1, and Hexb, which can be used as potential

genetic biomarkers for CPSP prediction and treatment.

Additionally, we provided insights into the mechanisms of CPSP

development at the transcriptome level and performed

corresponding miRNA and SNP site predictions.
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SUPPLEMENTARY FIGURE 1

Thalamic haemorrhage produces pain hypersensitivity. The microinjection of
collagenase IV (Coll IV) into the ventral posterior medial nuclei and ventral

posterior lateral nuclei resulted in an increased frequency of paw withdrawal
in response to 0.07 g (A) and 0.4 g (B) von Frey filaments and a decreased

latency of paw withdrawal in response to thermal (C) and cold (D) stimuli on

the contralateral side. There were no observed alterations in paw withdrawal
frequencies (E, F) and latency (G) on the ipsilateral side. n = 10 mice per

group. *P < 0.05 versus the saline-treated group at the corresponding
time points.

SUPPLEMENTARY FIGURE 2

Biology function Enrichment analysis of key genes. The left is the GO analysis,

and the right is the KEGG analysis.

SUPPLEMENTARY FIGURE 3

Pearson correlation heatmap of key genes and immune factors. (A–E)
represent chemokines, immunoinhibitors, immunostimulators, MHCs, and
receptors, respectively.

SUPPLEMENTARY FIGURE 4

Motif transcriptional regulation analysis. (A) The distribution of AUC values of

the enriched motifs, which was calculated from the recovery curves of key
gene-pair motif rankings. (B) Three motifs with higher AUC. In the figure, the

red line is the mean value of each motif recovery curve, the green line is the
mean ± SD, and the blue line is the current motif recovery curve. (C) The
miRNA network of key genes; blue indicates mRNA, and orange
indicates miRNA.

SUPPLEMENTARY FIGURE 5

Analysis of regulatory genes in thalamic haemorrhage disease. (A) Differences
in the expression of disease-regulated genes. Blue indicates control patients,
and pink indicates disease patients. (B) Pearson correlation analysis of key

genes and disease genes. Blue indicates a negative correlation, and red
indicates a positive correlation.

APPENDIX 1

Marker genes specific to cell subtypes.

APPENDIX 2

Significant SNP sites of key genes.
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