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The intestinal barrier has the daunting task of allowing nutrient absorption while

limiting the entry of microbial products into the systemic circulation. HIV

infection disrupts the intestinal barrier and increases intestinal permeability,

leading to microbial product translocation. Convergent evidence has shown

that gut damage and an enhanced level of microbial translocation contribute to

the enhanced immune activation, the risk of non-AIDS comorbidity, and

mortality in people living with HIV (PLWH). Gut biopsy procedures are invasive,

and are not appropriate or feasible in large populations, even though they are the

gold standard for intestinal barrier investigation. Thus, validated biomarkers that

measure the degree of intestinal barrier damage and microbial translocation are

needed in PLWH. Hematological biomarkers represent an objective indication of

specific medical conditions and/or their severity, and should be able to be

measured accurately and reproducibly via easily available and standardized

blood tests. Several plasma biomarkers of intestinal damage, i.e., intestinal fatty

acid-binding protein (I-FABP), zonulin, and regenerating islet-derived protein-3a
(REG3a), and biomarkers of microbial translocation, such as lipopolysaccharide

(LPS) and (1,3)-b-D-Glucan (BDG) have been used as markers of risk for

developing non-AIDS comorbidities in cross sectional analyses and clinical

trials, including those aiming at repair of gut damage. In this review, we

critically discuss the value of different biomarkers for the estimation of gut

permeability levels, paving the way towards developing validated diagnostic

and therapeutic strategies to repair gut epithelial damage and to improve

overall disease outcomes in PLWH.
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Introduction

The introduction and extensive usage of antiretroviral therapy

(ART) for HIV infection has resulted in persistent inhibition of viral

replication, and a dramatic decline in morbidity and mortality in

people living with HIV (PLWH). However, ART does not

comprehensively restore the compromised immune system, and a

chronic state of inflammation persists in PLWH on ART, even after

long-term viral suppression. This chronic inflammation is positively

associated with non-AIDS comorbidities and premature aging (1–5).

The gut epithelial barrier acts as an essential player in

maintaining intestinal homeostasis, and in restricting the entry of

microbes and their pro-inflammatory products through the mucosa

and into the systemic circulation (6–12). The human gut is

inhabited by a microbiota population comprising nearly 100

trillion individual organisms (bacteria, archaea, fungi, and

viruses) (13, 14). Host-microbial mutualism in the intestine

contributes to intestinal homeostasis (11, 13, 15). However, the

gut is one of the earliest targets of HIV, as the virus is known to

induce dramatic alterations to the gut microbiota and the gut

mucosa (16–19). Epithelial damage allows microbial products to

translocate from the gut lumen into the systemic circulation, to

subsequently participate in and contribute to the chronic

inflammatory state present in PLWH (2, 20–22).

A direct method to determine gut integrity is via intestinal

biopsy during endoscopy; however, this is relatively invasive and is

not suitable or appropriate in large populations (23). Another

method to measure gut integrity is to determine the urinary

excretion of a sugar probe or other labeled molecule that is not

usually absorbed by the intestine [such as the lactulose-mannitol

test (24) and the 51Cr-EDTA test (25)], which indirectly reflects

intestinal permeability. However, these tests are time-consuming,

lack standardization, and have relatively limited validity (24, 26).

Plasma or serum biomarkers can easily be identified from blood

samples and are considered to be non-invasive tests for the accurate

diagnosis and prognosis of disease. Several gut damage biomarkers,

including intestinal fatty acid-binding protein (I-FABP), zonulin,

and regenerating islet-derived protein-3a (REG3a) have been

validated as biomarkers of gut damage, as well as markers of

microbial translocation such as lipopolysaccharide (LPS), LPS-

binding protein (LBP), sCD14, (1, 3) b-D-Glucan (BDG). These

markers are mainly used in studies related to colonic inflammation

(and only more recently in HIV studies), where each marker may

have differing values for diagnosis and prognosis (27–32). Herein,

we summarize published information regarding these gut damage

and microbial translocation biomarkers in PLWH, and also discuss

potential therapeutic strategies to potentially improve the integrity

of the intestinal barrier assessed using these biomarkers.
Key factors associated with intestinal
damage in PLWH

Intestinal structural and immunological damage is common in

PLWH, leading to increased gut permeability, microbial
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translocation, and subsequent immune activation (33–36). An

overview of this process is summarized in Figure 1, and the

mechanisms whereby immunological activation is induced by

some microbial products are illustrated in Figure 2. Cumulative

evidence has shown that during HIV infection, the processes of

intestinal crypt hyperproliferation and villous shortening results in

partial villous atrophy during all stages of HIV infection (37–40). Li

et al., reported that in rhesus macaques, simian immunodeficiency

virus (SIV) infection induces massive apoptosis of intestinal

epithelial cells, and this apoptosis is directly related to the

depletion of gut lamina propria CD4+ T-cells (41). A study by

Epple et al., using immunofluorescence visualized increased

apoptosis of duodenal epithelial cells in patients with acute and

chronic HIV infection (42). Another intestinal permeability study

showed higher lactulose-mannitol ratios in HIV-infected patients

compared to uninfected control individuals, indicating that gut

permeability is increased in PLWH (43). Moreover, various other

gut microbial products, such as LPS, 16S rDNA, and BDG, have

now been identified in the circulation of PLWH (2, 21, 29, 44).

Several factors contribute to the gut damage seen in PLWH.

Firstly, HIV may directly induce epithelial apoptosis and thus

directly damage the gut epithelial barrier (45–47). In vitro,

exposure to HIV-1 gp120 (a surface envelope glycoprotein)

impairs mucosal epithelial barrier integrity by reduction of tight

junction (TJ) proteins, resulting in increased epithelial permeability

and microbial translocation (46). Other reports have observed that

the HIV-1 Tat protein (an HIV regulatory protein) may inhibit

proliferation of, and promote apoptosis in intestinal epithelial cells,

in studies using the Caco-2 cell line (45, 47).

Additionally, HIV infection dramatically depletes intestinal

CD4+ T-cells, which plays a prominent role in the mucosal

immunity of the gut barrier (35, 36, 48). The gut-associated

lymphoid tissue (GALT) is deemed to be the largest lymphoid

organ in the human body (49), within which about 70% of CD4+ T-

cells express the C-C chemokine receptor type 5 (CCR5), a vital co-

receptor for HIV entry into cells. In contrast, only 20% of peripheral

blood CD4+ T-cells express CCR5 (16, 17, 50). Therefore, GALT

can be seen to be the primary target and replication site for HIV,

and CD4+ T-cells present in gut tissue are largely depleted after

HIV infection. One subset of CD4+ T-cells, the T helper 17 (Th17)

cell, promotes neutrophil recruitment and secretes antimicrobial

peptides, interleukin 17 (IL-17), and interleukin 22 (IL-22) (36, 51).

The depletion of Th17 cells may thus result in microbial overgrowth

as well as the inhibition of epithelial regeneration (35, 51, 52). One

study in rhesus macaques observed that depletion of mucosal Th17

cells by SIV infection promotes dissemination of gut Salmonella

typhimurium into the peripheral blood (53).

Numerous studies have now shown that HIV infection is

associated with intestinal microbiota dysbiosis, which has been

considered to be the underlying factor in a diverse range of

pathological processes (54–59). Specifically, in PLWH potential

pathogens such as Enterobacteriaceae and Erysipelotrichaceae are

enriched, while “protective” intestinal bacteria such as

Bacteroidaceae, Ruminococcaceae, and Akkermansia muciniphila

(A. muciniphila) are depleted (54, 60). A. muciniphila is a
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symbiont in the intestine and has been observed to thicken the

mucus layer and fortify the integrity of epithelium (60–62).

Bifidobacteria and Lactobacillus are considered to be “beneficial”

microorganisms and, are reduced in PLWH (63), and past clinical

trials have shown that supplementation with Bifidobacteria- and/or

Lactobacillus-rich drugs may reduce levels of C-reactive protein

(CRP), IL-6, and CD4+ T-cell activation in HIV infection (64–67).

Butyrate is a major short-chain fatty acid (SCFA) in the gut, which

serves as an energy source for epithelial cells, and promotes

epithelial barrier integrity (68, 69). HIV infection reduces the

frequency of butyrate-producing bacterial genera (e.g., Roseburia,

Coprococcus, Faecalibacterium prausnitzii, and Eubacterium

rectale) (53, 70, 71). Moreover, multiple past studies have shown

the Proteobacteria phylum to be more abundant in HIV-infected

individuals (55, 72–75), and includes several pathogens, such as

Pseudomonas (56), Desulfovibrio (75), and Shigella (76).

Pseudomonas is known to be capable of impairing host mucus
Frontiers in Immunology 03
production (77, 78), and Shigella has been shown to induce

disruption of tight junctions (76, 79). Additionally, fungal

communities are also significantly altered in PLWH (80). The

abundance of Candida albicans (C. albicans), an opportunistic

pathogen, is increased in the intestines of PLWH (80). Invasion

by C. albicans actively contributes to enterocyte damage, with

consequent cell death (81–83). Clostridium difficile (C. difficile)

-related diarrhea is also common in PLWH (84, 85), and toxins

from C. difficile (TcdA and TcdB) may disrupt intestinal tight

junction integrity, thus promoting intestinal permeability (86–88).

Once the gut barrier is impaired by the collective and

cumulative contributions of the preceding factors, products

originating from both gut epithelial cells and the various gut

microorganisms translocate into the blood. It is thus practicable

and convenient to directly measure these circulating products

(Table 1) in blood as the surrogates of gut damage and

microbial translocation.
FIGURE 1

(A) The microbial translocation caused by HIV infection increases systemic inflammation. HIV infection damages the intestinal barrier and increases
intestinal permeability. The intestinal microorganisms and their products subsequently enter into blood circulation, inducing immune activation and
increasing the systemic inflammatory response. (B) Healthy gut. (C) HIV infected gut. HIV infection damages the intestinal barrier and promotes
intestinal permeability.
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FIGURE 2

Microbial products induce immune activation in PLWH. Macrophages and dendritic cells express pattern recognition receptors (PRRs) on the cell
membrane, which can recognize pathogen-associated molecular patterns (PAMPs) on the surface of microorganisms, including bacterial DNA, LPS,
flagellin, and fungal BDG, and subsequently generate inflammatory responses. LPS-binding protein (LBP) and CD14 deliver LPS to the signaling
receptor complex TLR4/MD2 on the outer member of the cell. The TLR4/MD2/LPS complex activates the NF-kB signaling pathway and the
mitogen-activated protein kinase (MAPK) signaling pathway, causing the synthesis and release of pro-inflammatory cytokines into the blood (such as
IL-6, IL-12, TNF-a, and IL- 1b). Membrane TLR5 recognizes bacterial flagellin and activates NF-kB through MyD88. Bacterial DNA can be recognized
by TLR9 located in the endosome, activating the MyD88-dependent pathway. BDG from fungi is recognized by the C-type lectin receptor Dectin-1
and mediates inflammatory cytokine production by activating Syk-dependent pathways. The downstream signal PKCs from Syk (complex
phosphatase SHP2) leads to the production of reactive oxygen species (ROS) and activates CARD9/Bcl-10/Malt-1 complex, causing the synthesis and
release of pro-inflammatory cytokines into the blood (such as IL-6, IL-10, IL-12).
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Plasma markers of gut damage and
microbial translocation

Biomarkers originating from host gut tissue

I-FABP
I-FABP is a member of the FABP family, has a molecular weight

of approximately 15 kilodaltons (kDa), and plays a key role in the

transportation and metabolism of long-chain fatty acids. It is

specific to and abundant in the epithelial cells of the small

intestine (102). Upon intestinal mucosal injury, I-FABP is

released from epithelial cells into the circulating blood, and levels

of plasma I-FABP have been reported to correlate with the severity

of intestinal disease [e.g., ulcerative colitis, Crohn’s disease (CD),

mesenteric ischemia, coeliac disease], and is considered a marker of

intestinal epithelial cell tight junction disruption and cell death

(103–107).

I-FABP has been shown to be an indicator of intestinal damage

in PLWH. One prospective trial of ART-naïve HIV-infected

individuals observed a remarkable elevation in I-FABP from

baseline to week 96, and this elevation correlates with viral

replication (108). Sustained effective ART significantly reduces
Frontiers in Immunology 04
immune activation and tends to ameliorate peripheral T-cell

immunophenotypic imbalances; however, this positive and

beneficial immunological response to targeted drug therapy is

observed to be insufficient to adequately and comprehensively

restore intestinal permeability and integrity, and plasma I-FABP

levels remain markedly elevated subsequent to ART treatment

(109). In chronic HIV-infected patients, I-FABP is increased to a

much greater degree than in elite controllers and correlates with

nutritional intake and body composition (body mass index, visceral

and subcutaneous adipose tissue distribution) in HIV progressors

(90). As an intestinal epithelial barrier marker, I-FABP may also act

as a predictor of mortality in treated HIV-infected patients. Hunt

et al., reported that, similar to other markers of intestinal barrier

integrity (Zonulin-1) and some inflammatory factors, I-FABP

strongly predicts mortality in treated HIV-infected individuals,

with higher plasma I-FABP levels being associated with higher

soluble CD14 (sCD14) levels, kynurenine-to-tryptophan (K/T)

ratios, IL-6, and D-dimer levels, and lower proximal CD4+ T-cell

counts (110). It is also worth noting that levels of plasma I-FABP

have also been reported to correlate with other non-inflammatory

factors (111–113). Our previous study observed that levels of I-

FABP were affected by circadian rhythm, and plasma levels of I-
frontiersin.org
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TABLE 1 Biomarkers for gut damage and microbial translocation in PLWH.

Biomarker Origin Design Patient information Change in PLWH Mean
value

Country Reference

I-FABP Host! epithelia A single
center
prospective
study

93 ART-treated
participants vs. 52
uninfected controllers

I-FABP is elevated in PLWH
compared to HIV-negative
individuals.

1581 vs.
1010 pg/
mL

Canada (89)

A single
center cross-
sectional
study

149 people with chronic
HIV vs. 10 elite
controllers

I-FABP is elevated in chronic HIV-
infected patients compared to elite
patients

3458 vs.
1947 pg/
mL

USA (90)

A single
center cross-
sectional
study

19 immune non-
responders vs. 20
immune responders

Immune non-responders had
higher levels of I-FABP than
immune responders.

2089 vs.
1279 pg/
mL

Norway (91)

Zonulin Host! epithelia A single
center cross-
sectional
study

57 children with
perinatally HIV infection
vs. 56 HIV− children

Zonulin is elevated in PLWH
compared to HIV-negative
individuals.

10.95 vs.
5.54 ng/
mL

Uganda (92)

A single
center cross-
sectional
study

40 primary HIV+
patients vs. chronic HIV
infected individuals

Zonulin is elevated in primary
HIV-infected patients with high
viral replication, compared to
chronic HIV infected patients.

11.74 vs.
6.41 ng/
mL

Mozambique (93)

REG3a Host! Paneth
cell

A single
center
prospective
study

93 ART-treated
participants vs. 52
uninfected controls

REG3a is elevated in PLWH
compared to HIV-negative
individuals.

2680 vs.
2059 pg/
mL

Canada (28)

A single
center cross-
sectional
study

19 immune non-
responders vs. 20
immune responders

Immune non-responders have
higher levels of REG3a than
immune responders.

7196 vs.
4811 pg/
mL

Norway (91)

Citrulline Host! epithelia A single
center cross-
sectional
study

44 PLWH and 106 HIV-
negative individuals

Citrulline is decreased in PLWH
compared to HIV-negative
individuals.

19 vs. 27
mmol/L

UK (94)

DAO Host! epithelia A single
center
prospective
cohort study

20 patients with
anticancer drug
treatment

DAO was not reported in PLWH,
DAO is elevated in IBD and
anticancer drug treatment.

unavailable Japan (95)

LPS Microorganism!
bacteria

A single
center cross-
sectional
study

33 HIV-infected
individuals vs. 31 HIV-
negative individuals

LPS levels are mildly increased in
acute/early HIV-infected
individuals compared to HIV-
negative individuals.

71 vs. 28
pg/mL

USA (2)

A single
center cross-
sectional
study

24 immune non-
responders vs. 11
immune responders

Compared to immunological
responders, immunological non-
responders had higher LPS levels.

45 vs. 29
pg/ml

Italy (96)

A single
center cross-
sectional
study

14 elite controllers vs. 31
HIV-negative individuals

LPS levels are increased in elite
controllers compared to HIV-
negative individuals.

61 vs. 28
pg/mL

USA (97)

16S rDNA Microorganism!
bacteria

A single
center cross-
sectional
study

19 HIV-infected
individuals vs. 15 HIV-
negative individuals.

16S rDNA levels are increased in
HIV-infected individuals compared
to HIV-negative individuals.

132.5 vs. 5
copies/mL

USA (98)

A single
center
randomized
equivalence
study

48 IRIS individuals vs. 93
non-IRIS individuals

16S rDNA levels are higher in
participants with immune
reconstitution inflammatory
syndrome (IRIS) than that in non-
IRIS patients.

32 vs. 58
copies/mL

USA (99)

(Continued)
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FABP at 16h00 were significantly lower, compared to levels at

08h00 and 04h00 (111). Auinger et al., have demonstrated that I-

FABP expression significantly correlates with fatty acid intake in

food as well as I-FABP gene polymorphisms (112).

Zonulin
Zonulin is a protein with a molecular mass of 47 kDa, is

specifically expressed at the cell surface and secreted by the

intestinal epithelium, and is the only physiological enzyme

discovered thus far that is known to regulate intestinal

permeability via reversibly disassembling the intercellular tight

junctions between intestinal epithelial cells (114–116). Serum

zonulin has been reported to be elevated in inflammatory and

autoimmune disorders [e.g., type 1 diabetes, inflammatory bowel

disease, ankylosing spondylitis (AS), and CD], and its levels

correlate with the opening of tight junctions and increased

intestinal permeability when zonulin production is dysregulated

(117–119). It has also been observed that the synthetic TJ regulator

larazotide (which acts in an inhibitory capacity) blocks zonulin

enzyme activity with excellent efficacy in type 1 diabetes and celiac

disease (118, 120, 121).

The zonulin-driven intestinal cellular immune response has

been validated during in vitro experiments (122). When the small

intestine is exposed to microbes, there is an increase in the secretion

of zonulin from the intestinal lumen. Zonulin disassembles TJs by

separating the zonula occludens-1 protein from the TJ complexes,

decreasing transepithelial electrical resistance (TEER), and

increasing permeability (122). Likewise, plasma zonulin levels are

elevated in PLWH and are associated with monocyte and T-cell

activation (92, 123). Perinatally HIV-infected infants show

increased circulating levels of zonulin despite viral suppression by

treatment with early ART, and these levels are significantly higher
Frontiers in Immunology 06
than in HIV-exposed but uninfected infants at 5 months of age

(124). Compared to chronically HIV-infected patients, plasma

zonulin levels in primary HIV infection (PHI) are significantly

elevated and correlate with high viral replication. Plasma zonulin

also demonstrates the best accuracy to identify PHI among HIV-

infected individuals {AUC=0.85 [95% CI 0.75-0.94]}. Using a cutoff

value of plasma zonulin >8.75 ng/mL, the model identified PHI with

87.7% sensitivity and 69.2% specificity (93).

Additionally, elevated zonulin levels have also been associated

with disease progression in PLWH. Hunt et al., reported that

zonulin has the strong capacity to predict mortality in treated

PLWH who had an AIDS history (110). In perinatally HIV-

infected children with a history of breastfeeding, zonulin is

associated with multiple markers of systemic inflammation,

including CRP, IL-6, and D-dimer (92). Improvement and

amelioration of the intestinal barrier via serum bovine

immunoglobulin significantly reduces circulating levels of I-FABP

and zonulin, and systemic inflammation is also ameliorated (125).

REG3a
REG3a, is a C-type lectin antimicrobial peptide secreted by

Paneth cells in the gut lumen, and helps contain bacterial infection

by binding to peptidoglycans in the cell wall of certain bacteria, and

has the capacity to kill some gram-positive bacteria (126, 127).

REG3a also helps maintain intestinal barrier integrity by reducing

apoptosis of intestinal epithelial cells (128). When the integrity of the

intestinal epithelial barrier is disrupted, REG3a crosses through the

epithelium, translocates to the lamina propria, and subsequently

enters into the systemic circulation (28, 129). Thus, circulating

REG3a levels are considered to be amarker of intestinal permeability.

REG3a has long been proposed as a biomarker of intestinal

epithelial damage in multiple inflammatory diseases in which
TABLE 1 Continued

Biomarker Origin Design Patient information Change in PLWH Mean
value

Country Reference

BDG Microorganism!
fungi

A single
center cross-
sectional
study

53 early HIV+
individuals vs. 42 HIV-
negative individuals

BDG levels are increased in early
HIV-infected individuals compared
to HIV-negative individuals.

67.9 vs.
20.4 pg/
mL

Canada (44)

A single
center cross-
sectional
study

93 chronic HIV+
individuals vs. 53 early
HIV+ individuals

BDG levels in chronic HIV-
infected individuals are higher than
in early HIV-infected patients.

91.86 vs.
68.72 pg/
mL

Canada (44)

A single
center cross-
sectional
study

57 children with
perinatally HIV infection
vs. 59 HIV−exposed but
uninfected children

Compared with HIV-exposed but
uninfected children, children with
perinatally acquired HIV had
higher BDG levels.

199.5 vs.
128,8 pg/
mL

Uganda (92)

Flagellin Microorganism!
bacteria

A single
center cross-
sectional
study

51 PLWH vs. 19 HIV-
negative individuals

Anti-flagellin IgG levels are
elevated in PLWH compared to
HIV-negative individuals.

unavailable Sweden (100)

D-lactate Microorganism!
bacteria

A single
center cross-
sectional
study

29 active stage CD vs. 30
remission stage CD

D-lactate was not reported in
PLWH, D-lactate is elevated in CD
and gastrointestinal failure.

16.08 vs.
11.16 mg/L

China (101)
f

! symbol means “which specifically is”. The biomarkers originate from the host or microorganisms, which specifically are epithelia, bacteria or fungi.
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plasma REG3a levels are significantly elevated, such as CD, celiac

disease, ulcerative colitis, nonalcoholic steatohepatitis, and

gastrointestinal graft-versus-host disease (129–133). Heavy

alcohol consumption is known to disrupt the integrity of the gut

epithelium. Yang et al., used REG3a and Trefoil factor 3 as

biomarkers to assess intestinal damage and microbial

translocation in patients with alcoholic hepatitis, and observed

that circulating levels of these markers are highly elevated, and

differentially correlates with disease severity, sCD14 levels, and IL-6

levels (134). Darnaud et al., studied the mechanism by which

REG3a maintains intestinal homeostasis and affects inflammatory

responses in genetically engineered C57BL/6 mice. The preceding

authors observed that REG3a is a potent reactive oxygen species

(ROS) scavenger that reduces oxidative stress and inflammatory

responses in intestinal epithelial cells, reduces host susceptibility to

colitis, and alters the murine gut microflora composition (inducing

an increase in Clostridium and a decrease in Bacteroides and

Proteus) by reducing ROS levels (135).

Given that REG3a is a reliable marker of intestinal barrier

damage, REG3a has been also used in HIV patients to assess the

degree of gut damage and systemic immune activation. As reported

by Isnard et al., plasma REG3a levels are elevated in untreated and

ART-treated PLWH (including elite controllers), when compared

to HIV-negative individuals. In contrast, plasma REG3a levels are

decreased in PLWH who initiate ART, compared with untreated

patients. REG3a levels also negatively correlate with CD4+ T-cell

counts and CD4+/CD8+ ratios, and positively correlate with HIV

viral load, fungal translocation products, and inflammatory markers

in all PLWH (28). Immune non-responders (INRs) are PLWH who

fail to adequately restore CD4+ T-cell numbers after effective ART

and are known to have irreversibly impaired intestinal mucosal

barrier function. It has been observed that INRs have higher levels

of plasma I-FABP and REG3a, compared to immune responders

(136), and that mucosal CD4+ T-cells positively correlate with I-

FABP and REG3a (91).

Citrulline
Citrulline is a non-essential amino acid synthesized from

glutamine, and plays a role associated with inflammatory disease

(137–142). In several organ exclusion experiments, it has been

observed that most citrulline is synthesized in the intestinal

epithelium, and subsequently enters into the blood circulation;

thus, the intestinal epithelium is the main source of circulating

citrulline under physiological conditions (138, 143–145). When

intestinal epithelial injury occurs, the production of citrulline

decreases, and consequently, in contrast to the trend seen for

other biomarkers, the plasma concentration of citrulline decreases.

Circulating citrulline has been used to estimate the degree of

intestinal injury, and circulating levels negatively correlate with

disease severity in intestinal enteropathies (94, 137, 146, 147).

Crenn et al., analyzed the relationship between plasma citrulline

concentrations and villous atrophy in celiac disease (148). Their

results showed that plasma citrulline concentration is lower in

patients with villous atrophy than in healthy subjects, and

negatively correlates with the severity of villous atrophy. The
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by Diamanti et al., showed that CD patients have a reduced

concentration of plasma citrulline compared to controls, and that

plasma citrulline levels are significantly lower in patients with small

bowel localization of CD than in patients with ileo-colon disease

(149). Nuzzo et al., analyzed plasma citrulline concentrations in

acute mesenteric ischemia (AMI), and plasma citrulline

concentrations were observed to be significantly lower in AMI

patients compared to controls; however, its practicality for the

diagnosis of AMI was found to not be satisfactory, with an area

under the receiver operating curve (AUROC) sensitivity and

specificity of 0.68, 56%, and 84%, respectively (137). Kulu et al.,

also observed similar results, with plasma citrulline concentrations

in AMI patients being lower, and the AUROC sensitivity and

specificity for the diagnosis of AMI were 0.72, 39%, and 100%,

respectively, with the best cut-off value being 15.82 µmol/L (150).

Furthermore, Fragkos et al., used a meta-analytical method to assess

citrulline as a biomarker of gut damage (147), and their results

observed that plasma citrulline negatively correlates with disease

severity in intestinal enteropathies. The preceding authors have

advocated for the use of citrulline as a marker for acute and chronic

intestinal insufficiency. In PLWH, Papadia et al., reported that

median citrulline levels in HIV positive individuals is significantly

lower than that in HIV-negative individuals, and that there are

statistically significant correlations between citrulline and villous

atrophy in HIV positive individuals (94). Thus, citrulline has been

identified as a biomarker for intestinal injury; however, further

studies are warranted in order to validate its accuracy among

different subgroups of PLWH.

Diamine oxidase
Human diamine oxidase (hDAO) is encoded by the amine

oxidase copper containing 1 (AOC1) gene, located on chromosome

7q35 (151). DAO is mainly expressed in the human intestinal

mucosal epithelium, the placenta, and the kidney, and catalyzes

the oxidation of diamines such as histamine, putrescine, and

cadaverine. High activity of this enzyme is found in the mature

upper villus cells of the intestinal mucosa, and the intestine is the

sole source of plasma diamine oxidase (152–156). DAO is normally

present in exceedingly small quantities in the systemic circulation, is

stable in the circulation, and high plasma levels are associated with

poor integrity of the intestinal mucosa (156, 157).

DAO has been used as a serum marker of intestinal injury (156,

157). It has been reported that plasma DAO activity is associated

with the histological and biochemical changes indicative of injury

and recovery in a rat model of intestinal injury (155). DAO activity

has also been observed in some diseases causing intestinal

impairment in humans, including irritable bowel syndrome (IBS)

and inflammatory bowel disease (IBD) (158–161). Meng et al.,

studied the intestinal injury induced by high dose methotrexate in

children with acute lymphoblastic leukemia (158), and they

observed that levels of plasma LPS and DAO at 1h, 24h, and 44h

gradually increased after treatment (158). Zhang et al., reported a

similar tendency in DAO levels in patients with heatstroke (160).

Additionally, Ji and colleagues observed higher DAO activity levels
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in 60 patients with IBS compared to 20 healthy controls, and DAO

activity levels correlated with disease severity (162). It is worth

noting, however, that some investigations observed decreased

plasma DAO levels in some severe instances of intestinal disease,

such as IBD (161, 163), and anticancer drug treatment (95, 164). A

probable reason that may explain these contrasting observations

could be related to the fact that DAO-producing intestinal epithelial

cells were significantly reduced in the latter specific instances (163,

165, 166). Moreover, several factors may affect DAO activity, such

as genetic variability, the pH-value and temperature of the

surrounding milieu, and medication use (167–169). Ayuso et al.,

identified three variants (Thr16Met, Ser332Phe, and His645Asp) of

the AOC1 gene, and reported that individuals carrying the

His645Asp variant displayed lower serum DAO activity as

compared with noncarriers, with a significant gene-dose effect

(168). In vitro experimental results have observed a potent DAO

inhibitory effect (of greater than 90%) associated with chloroquine

and clavulanic acid (167).

It is, therefore, suggested that DAO may be used as a candidate

biomarker to evaluate the extent of intestinal injury when few other

factors may be discernable, especially in the initial stages of

intestinal injury.
Biomarkers originating from gut
microorganisms

LPS, sCD14, and 16S rDNA
Lipopolysaccharide (LPS), a critical component of the cell wall of

gram-negative bacteria, consists of hydrophobic lipids and hydrophilic

sugars, and is soluble in both water and lipids, thus facilitating diffusion

(170, 171). The intestinal barrier prevents microorganisms and their

products, such as LPS, from entering into the systemic circulation (36,

48). In PLWH, however, the disrupted intestinal barrier together with

an increased permeability allows LPS to translocate into the blood

circulation (36). In addition, when the monocyte/macrophage receptor

for LPS, i.e., CD14, binds with circulating LPS, this induces activation

and systemic inflammation (172, 173). CD14 is cleaved and released

upon cell activation. Plasma LPS and sCD14 levels are increased in

PLWH (36), and plasma levels of sCD14 have been generally shown to

positively correlate with circulating LPS levels (174). Thus, circulating

LPS and sCD14 have been frequently utilized as biomarkers of bacterial

translocation, and have been observed to be associated with systemic

immune activation and HIV disease progression (34, 171, 173, 175,

176). Nevertheless, some studies have also reported that LPS either

negatively correlates with or does not correlate with sCD14 at all (177–

179). This ambiguity may relate either to the CD14 genomic

polymorphism (180), multifarious LPSs from different bacteria (181),

a different extent of influence from ART, or opportunistic coinfections

in these patients (177).

Immunohistochemistry results in SIV-infected rhesus

macaques illustrate multifocal compromises and epithelial

breaches in the normally intact epithelial barrier in gut tissues. In

concert with this, quantitative image analysis of microbial

translocation has revealed the emergence of LPS in the gut as well

as parenteral tissue of rhesus macaques (1). Numerous studies have
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shown that levels of LPS and sCD14 are raised in PLWH (2, 34, 96,

175). Brenchley et al., reported that LPS levels are mildly increased

in acute/early HIV-infected individuals, compared to HIV-

uninfected individuals (2). However, significantly higher LPS

levels are observed in chronic HIV-infected individuals, and

sCD14 levels are raised in all cohorts of PLWH (2). LPS levels

have also been associated with increased activation of activated

CD4+ and CD8+ T-cells and plasma Interferon-alpha (IFN-a) levels
(2). Even elite controllers have higher LPS levels than HIV-negative

individuals, and the higher plasma LPS levels are associated with

higher activated CD8+ T-cell counts (97). Furthermore, research by

Marchetti et al., observed that compared with immunological

responders, immunological non-responders, additionally, had

higher LPS levels, which correlates significantly with frequencies

of activated CD4+ and CD8+ T-cells (96).

A robust association has also been observed between clinical

outcomes and levels of sCD14 and LPS (182–184). A study by

Marchetti et al., observed that in a cohort of 379 HIV-infected

individuals, circulating LPS level is a strong predictor of disease

progression, independently of CD4+ T-cell counts and plasma viral

load counts (175). PLWH with higher LPS levels showed a

substantially accelerated disease progression rate, with a median

time to clinical event of 1.5 years, compared with 4 years for patients

with lower LPS levels (175). Jumare and colleagues observed that

compared with uninfected controls, plasma levels of sCD14 were

significantly higher in PLWH, and among PLWH, those with

neurocognitive impairment had significantly higher sCD14 levels

compared with neurocognitively unimpaired individuals (182).

Presence of circulating fragments of microbial DNA is generally

accepted to be valid evidence for bacterial translocation (185, 186).

DNA sequences encoding bacterial ribosomal 16S RNA (16S

rDNA) corresponds to rRNA on bacterial chromosomes, with a

length of about 1542 base pairs (bp) (187). 16S rDNA exists in all

bacterial chromosomal genes, with homologous functions, and the

oldest of these genes (known as “bacterial fossils”) are highly

conserved in structure and function (188). As an important

bacterial product, 16S rDNA of gut origin is highly likely to

translocate into the systemic circulation in the presence of

compromised gut integrity (189). Thus, measurement of 16S

rDNA levels in plasma has the capacity to effectively reflect levels

of microbial translocation (186, 189, 190).

By quantitative PCR (qPCR) determination of 16S rDNA

fragments, Jiang et al., observed that plasma 16S rDNA levels in

HIV-infected individuals are significantly higher than in uninfected

individuals, and correlates with LPS levels (21, 178, 190). Plasma 16S

rDNA level increases with duration of HIV infection (98), and

treatment with ART may reduce, but does not fully eliminate plasma

levels of bacterial 16S rDNA (109). Higher levels of 16S rDNA during

treatment are strongly associated with higher T-cell activation and

lower CD4+ T-cell recovery, regardless of plasma HIV RNA viral load

(21). In the context of non-human primate lentiviral infection, 16S

rDNA levels and CD8+ T-cell activation inversely correlate with the

Th17/regulatory T-cell (Th17/Treg) ratio, suggesting that the extent of

microbial translocation and T-cell activation in progressive HIV

disease is closely related to skewed maturation along the TH17/Treg

axis (191). These findings highlight the importance of microbial
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translocation markers such as LPS and sCD14 in the context of

immunodeficiency and T-cell homeostasis in chronic HIV infection

(2, 21, 192).

Plasma 16S rDNA is strongly associated with persistent

immune activation in HIV disease. Among HIV-Hepatitis C virus

(HCV) co-infected patients, bacterial 16S rDNA levels are notably

higher than in the ART-controlled HIV-positive group, and 16S

rDNA levels have been seen to increase with duration of HIV

infection (98, 193). In HIV-positive patients with neuro-

inflammation, Jaime et al., observed a significant correlation

between plasma concentrations of 16S rDNA and increased

expression of translocated proteins in brain regions with

markedly active microglia, such as the basal ganglia and the

globus pallidus (194). Plasma 16S rDNA concentrations are also

associated with increased white matter tract density (194). One

study by Bossola et al. (195), observed that plasma levels of bacteria-

derived 16S rDNA in whole blood are statistically significantly

associated with higher levels of CRP and IL-6 in patients

undergoing chronic hemodialysis. Furthermore, 16S rDNA may

bind to Toll-like receptors (TLR) and stimulate immune cells (196).

These induce Natural Killer (NK) cell activity and the release of

IFN-g, tumor necrosis factor alpha (TNF-a), and IL-6 from

mononuclear cells (197–200). Similarly, in treated HIV-infected

patients, higher levels of inflammatory markers (IL-6 and TNF-a)
are associated with microbial translocation (16S rDNA, sCD14) and

previous cardiovascular events (201).

BDG
Fungi are also an integral component of the gut microbiome

and is second only to bacterial frequency in terms of numbers of

organisms (80, 202, 203). Similar to translocation of bacterial

products, higher circulating levels of fungal products have also

been found in PLWH (44, 123, 204). As a major component of most

fungal cell walls, (1, 3) b-D-Glucan (BDG) has now been validated

as a fungal translocation biomarker (27, 29), and is contemporarily

used for the clinical diagnosis of invasive fungal infections (IFI)

(205, 206).

Leelahavanichkul et al., tested serum BDG levels in several

murine models of gastrointestinal leakage (including dextran sulfate

solution administration, LPS injection, and cecal ligation and

puncture sepsis), and observed increased levels of the fungal

product, BDG, in the systemic circulation (207). Morris et al.,

first reported that the fungal product, BDG, is present in the

blood of PLWH, and that those individuals with higher plasma

BDG are associated with lower CD4+ T-cell counts, a higher viral

load, and cardiopulmonary comorbidity (208). Subsequently, other

investigators also reported higher BDG levels in PLWH (92, 209–

211). An investigation by Mehraj et al., showed that, in a similar

manner to LPS levels indicating translocation of bacterial products,

plasma BDG levels are elevated in all HIV-positive patients without

IFI, compared with HIV-negative controls (44). The preceding

group prospectively assessed the levels of BDG in early and

chronic HIV infection and observed increasing levels over time,

in absence of treatment (44). Similarly, a cross-sectional study

conducted in Ugandan children showed that compared with
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perinatally had higher plasma BDG levels that correlated with IL-

6 and D-dimer levels (92). A longitudinal investigation in 451

participants who were ART-naïve at baseline showed that BDG

levels had decreased after 48 weeks of ART treatment, and higher

BDG levels are associated with increased risk of non-AIDS events

(209). Hoenigl et al., reported that plasma BDG concentrations are

not affected by plant BDG-rich food, further indicating that

translocated BDG may be deemed as a reliable marker of

intestinal fungal translocation (212). These studies indicate BDG

may function as a potential biomarker to indicate whether to initiate

antifungal prophylaxis in the early stages of HIV infection, or not.

Higher blood BDG levels have also been reported to correlate

with immune activation and risk of developing non-AIDS

comorbidities (27, 29, 44, 213). Among PLWH on ART, higher

plasma BDG levels are associated with higher levels of activated

CD4+ and CD8+ T-cells, and positively correlates with the K/T ratio

(44), which is linked to gut damage and bacterial translocation

during HIV infection (214–216). Weiner et al., reported that higher

BDG levels are associated with the inflammatory cytokines sCD14,

IP-10, D-dimer, and sCD163 (213). A study by Hoenigl et al.,

reported that higher plasma BDG levels were related significantly to

worse neurocognitive performance among HIV-infected

individuals with suppressed viral loads (217). An investigation by

Isnard et al., observed the association between elevated plasma BDG

levels and subclinical coronary atherosclerotic plaques in PLWH.

Interestingly, BDG levels (and not LPS levels) were elevated

significantly in ART-treated PLWH with subclinical coronary

atherosclerosis and correlates with total plaque volume (89).

Bacterial flagellin
Flagellin is a structural protein present on the flagella of most

motile bacteria in the intestine. Flagellin is recognized and bound by

TLR5 on the cell membranes of immune cells, resulting in

activation of these cells (218). Bacterial flagellin acts as a

pathogen-associated molecular pattern (PAMP) with strong

antigenicity, and plays a significant role under conditions of gut

damage, including in inflammatory bowel disease (218–220),

necrotizing enterocolitis (221), and diarrheal diseases (222, 223).

Flagellin is considered to be the major immune antigen in Crohn’s

disease, with bacterial flagellin antibody detected in approximately

half of Crohn’s disease patients (224, 225). Anti-flagellin antibodies

recognize the TLR5 and PATJ (PALS-1-associated tight junction

protein) and induce monocyte activation and increased intestinal

permeability in Crohn’s disease (226). Svärd et al., reported that

circulating flagellin correlates with anti-flagellin levels, and is

associated with activation of monocytes in chronic HIV-1-

infected individuals (227).

Flagellin promotes virus entry into epithelial cells (228), and

enhances HIV-1 induced mucosal immunity in the intestine (229).

In vitro, the flagellin/TLR5 complex has been observed to directly

trigger viral replication in HIV-infected cells (100). Thibault and

colleagues have reported that flagellin, by itself, is able to activate

latent HIV-1 provirus in T-lymphoid cells and provoke virus gene

expression in central memory CD4+ T-cells (230). A study by
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Brichacek et al., showed that flagellin enhances HIV-1 replication,

and activation of CD4+ T-cells in tonsillar tissue ex vivo (231). In

PLWH, elevated levels of anti-flagellin immunoglobulin G (IgG) are

present in ART-naïve HIV infected individuals, as compared to

HIV-negative controls, and after ART treatment, the level of anti-

flagellin IgG decreases (100, 232, 233). The outcomes of these

studies imply that in PLWH, flagellin may accelerate the

depletion of immune cells in the intestinal mucosa, which in turn

worsens the integrity of the intestinal barrier and further

encourages the entry of flagellin into the circulation.

D-lactate
D-lactate (D-LA) is a product released by bacteria residing in

the human gut, and is not known to be produced in other tissues;

thus, the D-LA present in plasma can be assumed to originate from

the gastrointestinal tract (234–237). In other words, plasma D-LA

levels may also be used as a surrogate for the degree of gut

permeability and epithelial damage.

Increased plasmaD-LA and LPS levels have been observed in some

disease models that lead to intestinal mucosal damage. Increased D-LA

levels are associated with diseases which induce severe intestinal injury

(238–240). Cai et al., observed and reported on the correlation between

D-LA and Crohn’s disease activity. Their study found that serumD-LA

levels in patients with active Crohn’s disease and that of those in disease

remission were 16.08 ± 4.8 mg/L and 11.16 ± 3.17 mg/L, respectively.

Serum D-lactate levels were significantly higher in the active phase

compared to the remission phase of Crohn’s disease (241). Teng et al.,

observed that serum D-LA is associated with acute gastrointestinal

injury (AGI) and failure in critically ill patients. D-LA and LPS levels

were observed to be higher in patients in the gastrointestinal

dysfunction (GID) group or the gastrointestinal failure (GIF) group,

than in the healthy control group (101).

Similarly, plasma D-LA can also be used as a marker to predict

the degree of damage to the intestinal barrier in HIV patients, and

D-LA is associated with recovery of CD4+ T-cell counts. HIV-

positive individuals who are immunological non-responders despite

ART are prone to malnutrition and compromised gut barriers,

which further exacerbates chronic immune activation and

inflammation (242). Geng et al., conducted enteral nutritional

intervention in these populations and found that serum D-LA

and LPS levels were significantly lower in PLWH, with good

immune reconstitution after intervention, compared with levels of

these markers pre-intervention. Also, D-LA levels negatively

correlate with the recovery of CD4+ T-cells, and positively

correlate with levels of the inflammatory factor, IL-1b (243).

Plasma biomarkers are widely used to
assess the adequacy of therapeutic
strategies in PLWH

In view of the significant structural and functional changes

caused by HIV infection to the intestinal epithelial barrier,

exploration of methods to potentially restore intestinal barrier

function is emerging as a research priority, in addition to

improvements to ART for PLWH (Table 2).
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Therapeutic strategies that target gut microbial composition to

potentially restore the physiological gut microbiome and gut barrier

integrity have been evaluated in the past. At present, a number of

methods capable of altering and modifying gut microbial

composition have been reported, including supplementation with

probiotics, prebiotics, and synbiotics, fecal microbiota

transplantation (FMT), and antibiotic use; however, it remains a

confounding exercise to coherently interpret the effects and

consequences of these methods on gut microbial composition

because of the heterogeneity of recent studies with respect to

study design, participant ethnicity, HIV status, ART regimen

used, etc. Probiotics and prebiotics are deemed as effective

adjuvant therapeutic strategies for PLWH. D’Ettorre et al.,

conducted a clinical trial of oral probiotics (with an abundance of

Streptococcus salivarius and Bifidobacteria) in ART-treated PLWH

over 48 weeks, and microbial translocation and immune activation

were evaluated by blood sCD14, LBP, and CRP levels. Results

indicated that the activation of CD4+ T-cells and levels of sCD14,

LBP, and CRP were all decreased after probiotic supplementation

(64). A study with ART-naïve HIV-infected individuals showed that

prebiotic supplementation (with an oligosaccharide mixture)

improved bifidobacterial levels, and decreased C. lituseburense/C.

histolyticum levels and sCD14 concentrations in plasma (66).

Moreover, it has been reported that HIV infection induces a

depletion of A. muciniphila in the intestine (60, 249).

Supplementation with A. muciniphila can relieve the

inflammation of chronic colitis (250, 251). Liu et al., assessed

intestinal permeability in A. muciniphila treated mice with bone

fractures by measuring plasma LPS and Fluorescein Isothiocyanate

(FITC)-dextran, and reported that A. muciniphila treatment

decreases LPS and FITC-dextran levels, and increases mRNA

expression of tight junction proteins, including occludin, jam3,

claudin-2, -3, and -15 (252). Hence, elevating the level of A.

muciniphila in the gut appears to be a potentially effective

treatment strategy to foster the integrity of the gut barrier to

some extent. In addition, a recent study by Wang et al., has

shown that an extract of the Chinese traditional medicine,

Painong-San, alleviates colitis by upregulating the expression of

tight junction proteins [claudin-1, occludin, and zonula occludens-

1 (ZO-1)], and increases the abundance of probiotic organisms,

including Lactobacillus, Bifidobacterium, and A. muciniphila in a

murine model (253).

FMT is known to be an effective therapy for recurrent C. difficile

infection through transplantation of fecal microbiota from a healthy

donor into the gastrointestinal tract of a recipient (254–257). A

study by Konturek et al., has shown that the serum level of pro-

inflammatory cytokines (TNF-a, IL-1b, IL-6, IL-8, and IL-12)

decreases significantly post FMT, and the abundance of beneficial

bacterial species such as Lactobacillaceae, Ruminococcaceae,

Desulfovibrionaceae, Sutterellaceae, and Porphyromonodacea

increase after FMT in patients with C. difficile infection (254).

Cheng et al., used serum DAO activity and D-lactate to assess the

gut barrier in a gut-injured piglet model, and observed that serum

DAO activity and D-lactate levels reduced significantly in FMT-

treated piglets. FMT has also been observed to increase the protein

expression of ZO-1 and occludin in the colonic mucosa, and to
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increase the abundance of beneficial bacteria, such as Lactobacillus

and Suc c in i v i b r i o , and dec rea s e the abundance o f

Enterobacteriaceae and Proteobacteria (258). In PLWH, the safety

of FMT was investigated by Vujkovic-Cvijin et al., and they

observed that no serious adverse effects occurred during 24 weeks

of follow-up after one-time FMT, and during the 8 weeks post-

FMT, recipients demonstrate partial engraftment of the donor

microbiota, and no differences in sCD14 levels were observed

(259). In addition, in a pilot FMT study in HIV-infected

individuals, a significant 0.5-fold decrease of I-FABP was

observed in the FMT group, while no statistically significant

decrease in sCD14 and LBP levels was detected. They also

observed that there was a significant increase in the alpha

diversity of the constituent microbiota of the gut microbiome,

and an increase in several members of the Lachnospiraceae
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family, including Anaerostipes spp., Blautia spp., Dorea spp., and

Fusicatenibacter spp. after FMT (245).

The use of antibiotics is a direct method to alter microbial

composition in the gut. Administration of Rifaximin (a

nonabsorbable antibiotic) combined with sulfasalazine (an anti-

inflammatory drug), has been shown to decrease LPS and sCD14 in

SIV-infected pigtailed macaques (260). However, a study by

Tenorio et al., observed that there were no significant changes in

LPS and sCD14 levels in Rifaximin-treated PLWH (261). Moreover,

cotrimoxazole (trimethoprim + sulfamethoxazole) is commonly

used to prevent Pneumocystis jirovecii infection in HIV-infected

patients, and an investigation by Vesterbacka et al., has observed

that levels of LPS and sCD14 show no additional reduction in

PLWH who initiated ART together with cotrimoxazole in over two

years of use (244).
TABLE 2 Potential therapeutic strategies to improve the integrity of the intestinal barrier.

Therapeutic
strategy

Model Design Intervention Change in PLWH Reference

Target gut microbial composition

Probiotics PLWH with
ART
(20 cases)

A longitudinal pilot
study

Arm I: supplementation with
probiotic

The activation of CD4+ T-cells and levels of sCD14,
LBP, and CRP were decreased after probiotic
supplementation.

(64)

Prebiotics ART-naïve
PLWH
(57 cases)

A longitudinal pilot
study

Arm I: supplementation with
prebiotic

Prebiotic improves the gut microbiota composition,
reduces sCD14 level and CD4+ T-cell activation, and
improves NK cell activity.

(66)

Antibiotics PLWH
(26 cases)

A longitudinal pilot
study

Arm I: treatment with
trimethoprim and
sulfamethoxazole (TMP-
SMX)

Concomitant use of ART and TMP-SMX reduces
microbial translocation markers LBP and sCD14

(244)

FMT PLWH with
ART
(30 cases)

A longitudinal
randomized study

Arm I: fecal microbiota
capsules
Arm II: placebo

The alpha diversity of the constituent microbiota of the
gut microbiome increases after FMT.

(245)

Target microbial products and intestinal epithelial

Sevelamer ART-naïve
PLWH
(36 cases)

A longitudinal pilot
study

Arm I: sevelamer carbonate
orally 3 times daily for 8
weeks

Sevelamer does not significantly change markers of
microbial translocation, inflammation, or T-cell
activation.

(246)

Larazotide
acetate

Patients with
CD
(20 cases)

A double-blind,
randomized placebo-
controlled study

Arm I: larazotide acetate
Arm II: placebo

Larazotide acetate significantly reduces intestinal
permeability.

(121)

Target immune activation

Mesalazine UC and/or
HIV infected
patients
(26 cases)

A cross-sectional
study

Arm I: HIV+/UC+
Arm II: HIV+/UC-
Arm III: HIV-/UC+
All patients with UC were
treated
with oral mesalazine.

Plasma levels of sCD14 and I-FABP in HIV-infected
patients with mesalazine-treated UC reduced

(247)

Glucocorticoids PLWH
(101 cases)

An observational
study

Arm I: untreated HIV
patients
Arm II: HIV patients treated
with prednisolone
Arm III: HIV patients treated
with ART
Arm IV: HIV patients treated
with Prednisolone/ART
Arm V: no treatment, elite
controllers

Low-dose prednisolone significantly decreases levels of
sCD14, LBP, and suPAR antigen compared to
untreated patients

(248)
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Improving intestinal epithelial function and reducing the entry

of microbial products into the bloodstream may also be useful.

Sevelamer, a phosphate-lowering drug, has been reported to

decrease circulating LPS levels in subjects with chronic kidney

disease (262, 263), and also decreases LPS levels by 80% and

reduces CRP levels by 78% in subjects on hemodialysis (264). In

a SIV-infected pigtailed macaque model, Kristoff et al., assessed

intestinal damage via plasma LPS and sCD14 levels, and revealed

that sevelamer treatment (2400mg, 3 times per day) reduces LPS,

sCD14, and SIV viral loads, and decreases the frequency of HLA-

DR+CD38+CD8+ T-cells (265). However, Sandler et al., designed a

clinical trial of sevelamer (1600mg, 3 times per day) administration

over 8 weeks, and their results observed an absence of a statistically

significant decrease in LPS and sCD14 levels in ART-naïve HIV-

infected patients (246). Moreover, larazotide acetate (also called

AT-1001), an inhibitor of zonulin, has been shown to inhibit TJ

disassembly and dysfunction caused by endogenous and exogenous

stimuli in intestinal epithelial cells (121, 266–268). In vivo,

larazotide acetate significantly reduces the frequency of

gastrointestinal symptoms, particularly diarrhea in coeliac disease

subjects, and generates a 70% decrease of intestinal permeability

(121). Glutamine is a major amino acid in the human body, and is a

common substrate used by intestinal cells. Multiple lines of

evidence indicate that glutamine regulates the expression of tight

junction proteins (269, 270). The depletion of glutamine results in

enterocyte atrophy and a subsequent increase in permeability of the

intestinal barrier, and supplementation with glutamine has the

potential capacity to promote enterocyte proliferation, fortify

intestinal membrane integrity, and reduce microbial translocation

(269, 271–273).

Immune activation induced by microbial translocation plays a

vital role in gut damage. Microbial products may provoke pro-

inflammatory responses by binding to numerous receptors i.e., the

nucleotide-binding oligomerization domain, as well as multiple

TLRs. These receptors are expressed by a number of immune

cells, including monocytes, macrophages, and dendritic cells.

Once the microbial substrates bind to the receptors, a signaling

cascade is activated, subsequently inducing the secretion of many

inflammatory cytokines, e.g., IL-1b, IL-6, TNF, and type I IFNs (36,

272, 274). Novel approaches targeting microbial products or their

downstream effects, thus attenuating immune activation, may also

be a potentially effective therapeutic strategy. The 5-ASA

preparations (e.g. mesalazine, sulfasalazine) are clinically effective

drugs for the treatment of IBD (which causes intestinal damage),

and act by modulating several gut inflammatory pathways

[including those associated with Peroxisome proliferator-activated

receptor gamma (PPARg), arachidonic acid and leukotriene

biosynthesis, NF-kappaB (NF-kB), and mechanistic target of

rapamycin (mTOR)] (275–279). In an SIV-infected animal

model, Pandrea et al., used LPS and sCD14 to assess the levels of

microbial translocation in SIV-infected pigtailed macaques, and

their results indicate that LPS and sCD14 levels are significantly

reduced in Rifaximin- and sulfasalazine-treated acutely SIV-

infected pigtailed macaques; however, their use induces no

statistically significant reductions in LPS and sCD14 levels in

chronic SIV-infected pigtailed macaques (260). Furthermore,
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rifaximin and sulfasalazine treatment significantly reduces the

levels of CD4+ and CD8+ T-cell activation and improves

hypercoagulation in acute SIV-infected pigtailed macaques (260).

In PLWH, a randomized crossover trial (280) of oral mesalazine for

12 weeks showed that, compared to placebo-treated subjects,

plasma sCD14 levels did not significantly decrease, and there is

no evidence of an effect of mesalazine on CD8+ and CD4+ T-cell

activation, IL-6 levels, D-dimer levels, or the K/T ratio at any time

point. However, an investigation by Michelini et al. (247), observed

that, compared to HIV-infected patients, the plasma levels of

sCD14 were significantly lower in mesalazine treated HIV-

infected patients with ulcerative colitis; however, the levels of I-

FABP were found to not be statistically different.

Furthermore, glucocorticoids (GCs, e.g. dexamethasone,

betamethasone, prednisolone) are therapeutically used for their

anti-inflammatory and immunosuppressive effects in clinical

medicine (281). In vitro experiments indicate that GCs regulate

the intestinal tight junction barrier in the intestinal epithelial Caco-

2 cell line model (282, 283). Fische and colleagues (282) reported

that dexamethasone induces a time- and dose-dependent increase

in transepithelial electrical resistance on Caco-2 cell monolayers,

which is an in vitromodel of the intestinal epithelial barrier, and the

expression of claudin 2 (which is involved in pore formation) was

downregulated, while expression of claudin 4 (which contributes in

the sealing of TJs) was elevated in the dexamethasone treated Caco-

2 cell line. Similarly, prednisone treatment of patients with active

Crohn’s disease demonstrates a significant reduction in intestinal

permeability in the majority of treated individuals, as assessed by

the lactulose-mannitol ratio (284). Nockher et al., reported that

prednisolone suppressed expression and release of sCD14 in vitro

and in vivo (285). An investigation by Kasang et al., in HIV+

patients observed that low-dose prednisolone significantly decreases

levels of sCD14, LBP, and soluble urokinase plasminogen activated

receptor (suPAR) in untreated patients; however, there were no

significant changes in ART-treated patients (248). GCs have also

been reported to decrease LPS-induced inflammatory responses

(286–288), reduce HIV viral loads, and to postpone CD4+ T-cell

loss (289, 290), and the progression to AIDS (291). However, these

therapies remain experimental, and the utilization of GCs must be

reserved for specific circumstances only and should be strictly

controlled, as their use may raise multiple issues, including

adverse effects (292, 293) and the interactions of GCs with

antiretroviral-boosting agents (e.g., ritonavir and cobicistat) that

are currently included in ART regimens (294, 295). The

inflammatory cytokine TNF-a has been reported to increase

epithelial cell shedding and increases intestinal epithelial tight

junction permeability, along with enhancing gut permeability

(283, 296, 297). The TNF-a inhibitors infliximab and

adalimumab have been used in the treatment of IBD, and exert

their effects by inhibiting the TNF pathway, thus decreasing

inflammation and restoring mucosal integrity (298–301). A trial

conducted in 23 patients with active CD showed that gut

permeability, CRP, and the Crohn’s Disease Activity Index

(CDAI) significantly decreased after a single infusion of 5 mg/kg

infliximab (301). High levels of TNF-a have been reported at all

stages of HIV infection, and correlate with high viral load, depletion
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of CD4+ T-cells and poor disease progression (302–304). The

activation of the TNF pathway by TNF-a may facilitate HIV

infection and immune activation through multiple pathways

(305), and therefore a TNF-a inhibitor may be an effective

therapeutic strategy. Nevertheless, only a limited number of

clinical studies have reported on the safety and effectiveness of

TNF-a inhibitors in PLWH. One review by Gallitano et al.,

summarized the use of TNF-a inhibitors in 27 published cases of

patients with HIV/AIDS, and advises that TNF-a inhibitors may

induce improvement in PLWH (306). However, anti-TNF-a
therapy has a risk of inducing opportunistic infections and

comorbid complications, such as infections by Pneumocystis

jirovecii, invasive mycoses, and listeriosis (307), and its use in

HIV infection must be carefully monitored. Further clinical

studies are required to provide definitive data regarding the safety

and effectiveness of TNF-a inhibitors in PLWH.
Conclusion

In PLWH, HIV-related gut damage enhances gut permeability

and promotes microbial translocation, which plays a critical role in

the chronic immune activation seen in these patients. We have

summarized information regarding multiple plasma biomarkers of

gut damage and microbial translocation (Table 1), some of which

have been widely used, to assess potential therapeutic strategies in

PLWH. However, we cannot confidently conclude that the

attenuation of microbial translocation would definitely lead to a

decrease in immune activation. Other than microbial translocation,

chronic immune activation in PLWH may also be driven by other

factors, including persistence of the HIV reservoir, depletion of

regulatory T-cells, and coinfection with other viruses or organisms

(308–310). Furthermore, discordant results exist among different

studies due to their heterogenous study design, and more robust

and concordant evidence is required to validate the role that these

biomarkers may potentially play in the management of PLWH in

clinical settings or during interventions that target repair of the gut

lining. Moreover, the validity of some biomarkers have not been

confidently supported by histological evidence, which is deemed the

gold standard to observe the intestinal barrier. Some factors may

also interfere with the capability and the value of these biomarkers,

such as food intake, genetic differences, medications. Numerous

adjunctive therapeutic strategies, such as probiotic use, FMT, and

antibiotic use have been investigated to optimize the condition of

the gut; however, there remains a dearth of satisfactorily targeted

therapeutic options to accurately and adequately repair the
Frontiers in Immunology 13
structural integrity of the leaky gut in a manner that would

effectively prevent microbial translocation and the consequent

systemic inflammation seen in PLWH. In the future, further

targeted investigations are warranted to develop biomarkers and

possible therapeutic strategies for the leaky gut present in PLWH,

and should include collaborative efforts encompassing

microbiology, clinical care, and pharmacology.
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