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Identifying hub genes and
common biological pathways
between COVID-19 and benign
prostatic hyperplasia by machine
learning algorithms

Hang Zhou1†, Mingming Xu1†, Ping Hu2†, Yuezheng Li1,
Congzhe Ren1, Muwei Li1, Yang Pan1, Shangren Wang1

and Xiaoqiang Liu1*

1Department of Urology, Tianjin Medical University General Hospital, Tianjin, China, 2Department of
Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
Background: COVID-19, a serious respiratory disease that has the potential to

affect numerous organs, is a serious threat to the health of people around the

world. The objective of this article is to investigate the potential biological targets

and mechanisms by which SARS-CoV-2 affects benign prostatic hyperplasia

(BPH) and related symptoms.

Methods: We downloaded the COVID-19 datasets (GSE157103 and GSE166253)

and the BPH datasets (GSE7307 and GSE132714) from the Gene Expression

Omnibus (GEO) database. In GSE157103 and GSE7307, differentially expressed

genes (DEGs) were found using the “Limma” package, and the intersection was

utilized to obtain common DEGs. Further analyses followed, including those

using Protein-Protein Interaction (PPI), Gene Ontology (GO) function

enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes

(KEGG). Potential hub genes were screened using three machine learning

methods, and they were later verified using GSE132714 and GSE166253. The

CIBERSORT analysis and the identification of transcription factors, miRNAs, and

drugs as candidates were among the subsequent analyses.

Results: We identified 97 common DEGs from GSE157103 and GSE7307.

According to the GO and KEGG analyses, the primary gene enrichment

pathways were immune-related pathways. Machine learning methods were

used to identify five hub genes (BIRC5, DNAJC4, DTL, LILRB2, and NDC80).

They had good diagnostic properties in the training sets and were validated in the

validation sets. According to CIBERSORT analysis, hub genes were closely related

to CD4memory activated of T cells, T cells regulatory and NK cells activated. The

top 10 drug candidates (lucanthone, phytoestrogens, etoposide, dasatinib,

piroxicam, pyrvinium, rapamycin, niclosamide, genistein, and testosterone) will

also be evaluated by the P value, which is expected to be helpful for the

treatment of COVID-19-infected patients with BPH.
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Conclusion:Our findings reveal common signaling pathways, possible biological

targets, and promising small molecule drugs for BPH and COVID-19. This is

crucial to understand the potential common pathogenic and susceptibility

pathways between them.
KEYWORDS
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1 Introduction

An infectious disease, COVID-19, caused by the SARS

Coronavirus 2 (SARS-CoV-2), poses a major danger to worldwide

public health (1, 2). The most common symptom of COVID-19 is

pneumonia, with severe cases frequently developing life-threatening

acute respiratory distress syndrome and respiratory failure, along

with fever, sore throat, difficulty breathing and coughing (1, 3).

Symptoms can worsen and lead to respiratory failure, which is

potentially fatal and affects the heart, liver, neurological system, and

kidneys (4–7). The percentage of patients with COVID-19 who

develop gastrointestinal symptoms such as nausea, diarrhea,

bloating, and bleeding ranges from 3% to 40.7% (8). With the

advent of vaccines (9–11) and antiviral drugs (12, 13), the spread

and fatality rate of COVID-19 have decreased, but with the advent

of new variations such as Delta and Omicron, it continues to pose

dangers and difficulties to global health (14, 15).

In older men, benign prostatic hyperplasia (BPH), which

causes benign prostate enlargement due to uncontrolled expansion

of epithelial and fibromuscular tissue in the migratory zone of the

urinary tract and urethral region, is a frequent disorder (16, 17).

Lower urinary tract symptoms (LUTS) are common in older men

and include frequent urination, inadequate urine flow, delayed

urine flow, and nocturia, all of which have a negative influence on

quality of life (17). According to a meta-analysis, the lifetime

prevalence of BPH is 26.2% (18). Previous research suggests that

elderly men may have a higher risk of developing BPH.

Older men appear to have more severe cases of COVID-19 and

are more likely to infect SARS-CoV-2 (19). Many patients with

COVID-19 have experienced serious urinary problems (20, 21).

LUTS may be one of the symptoms of COVID-19, and SARS-

CoV-2 virus infection may aggravate symptoms in elderly

patients with BPH (22, 23). There has not yet been any

pertinent research on the possible mode of action between

COVID-19 and the symptoms of BPH. To provide novel

assistance for the diagnosis and treatment of disorders that

have both COVID-19 and BPH, it is necessary to investigate

potential hub genes and molecular pathways.

By comparing gene expression across disease groups and

healthy tissues, it is now possible to explore the potential

pathophysiology of many diseases, thanks to the rapid advance

of gene sequencing technologies and bioinformatics analytic
02
techniques. In addition to logistic regression with the least

absolute shrinkage and selection operator (LASSO) (24),

machine learning techniques such as support vector machine

recursive feature elimination (SVM-RFE) (25) and random forest

(RF) algorithms (26) are frequently used to accurately identify

diagnostic indicators and prediction models. Several studies have

been conducted to date to find hub genes and possible biomarkers

using different machine learning methods (27, 28).

We attempted to discover common differentially expressed

genes (DEGs) in this work by integrating the analysis of the

COVID-19 dataset (GSE157103) with the BPH dataset

(GSE7307). To identify probable pathways, we used the

functional enrichment analysis of gene ontology (GO) and the

Kyoto Encyclopedia of Genes and Genomes (KEGG). We also

constructed protein-protein interactions (PPI) networks. After

that, we used three different machine learning algorithms to

find relevant biomarkers and examine their diagnostic value

in patients with COVID-19 and BPH. For validation, we

additionally used the data sets GSE166253 and GSE132714.

The CIBERSORT tool was also applied to calculate the

proportion of COVID-19 immune cell infiltration. Finally, we

predicted transcription factors (TFs), miRNAs, and small

molecule drugs.
2 Materials and methods

2.1 Data acquisition

Four datasets, including two COVID-19 datasets and two BPH

datasets, were retrieved from the Gene Expression Omnibus (GEO)

database. The training set used GSE157103, which contains 100

samples from COVID-19 patients and 26 samples from controls, as

it has a sample size that is significantly larger than GSE166253. The

other dataset, GSE166253, which included 10 samples each of

COVID-19 patients and healthy individuals, served as a

validation set. Because the control sample of GSE132714 is too

small, we did not consider it the training set. A BPH dataset,

GSE7307, which consists of 7 BPH patients and 12 healthy controls,

was used as the training dataset, and another BPH dataset,

GSE132714, which consists of 12 BPH patients and 4 healthy

controls, was used as a verification set.
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2.2 Identification of common DEGs

We applied false discovery rate (FDR) to adjust the P-value.

With adj. P < 0.05 and |log2FC| > 0.263 for GSE157103 and adj. P <

0.05 and |log2FC| > 1 for GSE7307, the DEGs were found using the

“Limma” R package (29). Heatmaps and volcano plots were created

using the “pheatmap” and “ggplot2” tools. Common DEGs of

COVID-19 and BPH were obtained through the Venn diagram.
2.3 Functional and pathway
enrichment analysis

We analyzed the KEGG and GO enrichment items of common

DEGs using the “ClusterProfiler” package (30). GO analysis included

three subcategories: molecular function (MF), biological process (BP),

and cellular component (CC). Additionally, to select relevant pathways,

we employed an adjusted statistical threshold criterion of P < 0.05.
2.4 Construction of PPI networks

We created PPI networks to demonstrate protein interactions,

which are critical to understanding the physiology of cellular

physiology in health and disease at the protein level. We used

STRING (https://www.string-db.org/) (version 11.5) to create PPI

networks that hide unconnected nodes (31). Subsequently,

Cytoscape (version 3.9.1) was utilized for visual display.
2.5 Using three machine learning
algorithms to identify hub genes

The three most common machine learning algorithms used for

disease identification and prediction are the RF algorithm, LASSO

regression, and SVM-RFE technique. They can help us find the hub

genes. The dimensional significance values were determined using the

diminishing accuracy approach (Gini coefficient method) using a

random forest model (32). The best random forest tree count was

500, and disease-specific genes were identified in the top 15 for

significance value. After that, LASSO regression analysis using

putative pivotal genes was conducted using the “glmnet” R package

to find significant combinations of predicted genes that are consistently

connected with COVID-19 (33). In this study, we used the cv.glmnet

function here to select the optimal l value by ten-fold cross-validation.

Based on the output, we obtain two l values: lambda.min=0.01010184

and lambda.1se=0.0212634. We used the value of 0.01010184 to get the

coefficients of the final LASSO model, because it makes the cross-

validation error minimal. The “e1071” package was applied to perform

the SVM-RFE algorithm to find important genes (34). A supervised

learning model, called the SVM-RFE, accurately categorizes data points

by maximizing the separation between two hyperplanes. The final step

was intersecting the possible genes identified by the RF, SVM-RFE, and

LASSO algorithms. The overlapping genes were then used as hub genes

and displayed by the Venn diagram.
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2.6 Evaluation of expression levels and
diagnostic value of hub genes

In the COVID-19 training set (GSE157103), analyses of hub

genes expression were conducted. The ROC curves were then

plotted using GraphPad Prism 9, and to evaluate the prediction

effectiveness, the area under the curve (AUC) was best evaluated.

The results were then validated using the validation set GSE166253.

These genes were strongly predictive for the diagnosis of COVID-

19, according to AUC > 0.6 and P < 0.05. ROC curves were

developed using the BPH training set (GSE7307) and the

validation set (GSE132714) to examine the diagnostic efficacy of

hub genes for BPH.
2.7 Immune cell infiltration analysis

To explore the extent of different immune cell infiltration, the

CIBERSORT algorithm was utilized to categorize and count the 22

categories of immune cells in the COVID-19 and control groups

(35). Ultimately, the link between genes and immune infiltration

was discovered using Spearman’s correlation analysis (36).
2.8 Prediction of transcription factors (RFs),
MiRNAs and small-molecule drugs

We searched the ChEA database for transcription factor (TF)-

gene interactions using the NetworkAnalyst platform

(www.networkanalyst.ca) (37). Similarly, we used this platform to

search the Tarbase database (version 8.0) for miRNA-gene

interactions (38). The results were then visualized using

Cytoscape. DSigDB is a gene set database that is linked to

medications/compounds. The Enrichr platform (https://

maayanlab.cloud/Enrichr/) was applied to access the DSigDB

database (39), and small molecule drugs were predicted by

entering the names of hub genes.
2.9 Identification of disease association

The DisGeNet database is one of the most extensive databases

of human disease-related genes and variations (40). To discover

associated diseases and chronic health conditions, we used the

DisGeNET database in the NetworkAnalyst platform.
3 Results

3.1 Identification of common DEGs

In order to demonstrate the entire analysis process, we created a

flow chart (Figure 1). In the GSE157103, we identified 4917 DEGs,

including 2924 up-regulated genes and 1993 down-regulated genes

(Figure 2A). In GSE7307, we identified 827 DEGs, including 419
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https://www.string-db.org/
http://www.networkanalyst.ca
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://doi.org/10.3389/fimmu.2023.1172724
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1172724
up-regulated genes and 408 down-regulated genes (Figure 2B).

Heatmaps were interpreted for DEGs in COVID-19 and BPH,

respectively (Figure S1). According to the Venn diagram, 97

common DEGs were discovered in both the GSE157103 and the

GSE7307 (Figure 2C).
3.2 Functional and pathway
enrichment analysis

GO analysis indicated significantly enriched pathways,

including BP, CC, and MF (Figures 3A, B). Significant pathways

in the BP category were the immune response-regulating signaling

pathway, activation of the immune response, and the immune

response regulating cell surface receptor signaling pathway. The

main terms in the CC category are the secretory granule lumen, the

cytoplasmic vesicle lumen, and the vesicle lumen. Furthermore, in

the MF category, the main terms of statistical significance were

enzyme activity inhibitor, amide binding, and peptide binding.

KEGG analysis revealed the B cell receptor signaling pathway,

inflammatory bowel disease, the MAPK signaling pathway, and

cytotoxicity mediated by natural killer cells (Figures 3C, D). Our
Frontiers in Immunology 04
findings showed that these common DEGs are linked to

inflammation and immune cells.
3.3 Construction of PPI network

A PPI network of 97 common DEGs was generated using the

STRING online site to find protein interactions and visualized using

Cytoscape software (Figure 4).
3.4 Using three machine learning
algorithms to identify hub genes

First, we used the RF algorithm to narrow the range to 97 DEGs.

Recursive random forest classification was performed for all

possible values of 1-97 variables, and the average error rate of the

model was assessed for all chosen variables, as shown in Figure 5A.

Secondly, we examined the link between model error and the

number of decision trees. Finally, we chose the top 15 genes in

terms of importance (SLC15A3, DTL, NDC80, NEK2, TBC1D22A,

KANSL3, CENPN, RPL18A, DNAJC4, LDLR, KIAA1958, BIRC5,
FIGURE 1

The general work flow chart of this study.
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LILRB2, DUSP5, FCGR3A) as the likely genes for further

investigation (Figure 5B).

The SVMmodel based on 11 signature genes got the best accuracy

(0.976) and the lowest error rate (0.024) (Figures 5C, D). Therefore, 11

genes, including S100A4, DTL, LILRB2, AMD1, BIRC5, NDC80,

GPR34, DNAJC4, NFAM1, CCR4, and NR4A1, were potential

genes. Using LASSO regression analysis, 23 common specific genes

were finally found, including GPR34, DTL, SERPINF1, NEK2, NR4A1,

S100A4, CFD, LDLR, NDC80, BLK, NOMO3, SLC15A3, NFAM1,

AMD1, PRSS33, BIRC5, LILRB2, CD300A, CCR4, SLC22A1, FOLR2,

SLC25A25, and DNAJC4 (Figure 5E). Finally, according to the results

of the intersection of the analysis of three machine learning methods,

five hub genes (BIRC5, DNAJC4, DTL, LILRB2, and NDC80) were

identified using a Venn diagram (Figure 5F).
3.5 Evaluation of expression levels and
diagnostic value of hub genes

First, we compared the expression levels offive genes in COVID-19

and controls, finding that the expression of BIRC5, DTL, and NDC80
Frontiers in Immunology 05
increased in COVID-19 while DNAJC4 and LILRB2 decreased

(Figure 6A). Subsequently, ROC analysis was performed on the BPH

and COVID-19 training sets. The area under the curve (AUC) value for

all five genes in GSE7307 was greater than 0.714, as was the AUC value

for all five genes in GSE157103 (Figures 6B, C). ROC analysis of the

COVID-19 validation set (GSE166253) showed that the AUC area of

five genes was greater than 0.670 (Figure S2). ROC analysis of the BPH

validation set (GSE132714) showed that only four hub genes had AUC

areas greater than 0.6, while BIRC5 had an AUC area of 0.542 (Figure

S3). The results of the ROC analysis concluded that these hub genes

have excellent diagnostic properties for COVID-19 and BPH. In

addition, co-expression networks of five hub genes were constructed

through gene co-expression network analysis, and gene correlation

heatmaps were also built (Figures 6D, E).
3.6 Immune cell infiltration analysis

Ten different types of immune cells were significantly different

between COVID-19 and controls according to the CIBERSORT

analysis of GSE157103. Five of them are associated with T cells: T
B

C

A

FIGURE 2

The volcano plots show DEGs of (A) COVID-19 (GSE157103) and (B) BPH (GSE7307) and (C) the Venn diagram of common DEGs.
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FIGURE 4

COVID-19 and BPH common DEGs in the PPI network.
B

C D

A

FIGURE 3

GO and KEGG functional enrichment analysis of the common DEGs between COVID-19 and BPH. (A) The bar plot of GO enrichment analysis. (B) The circle
diagram of the GO enrichment analysis. (C) The bar plot of KEGG enrichment analysis. (D) The loop graph of the KEGG enrichment analysis.
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cells gamma delta, T cells CD4 naive, T cells CD4 memory activated, T

cells follicular helper, and T cells regulatory (Tregs) (Figure 7A). First,

BIRC5, DTL, LILRB2, and NDC80 showed positive correlations with

CD4memory activated T cells by the correlation analysis of 5 hub genes

and immune cells, but DNAJC4 showed negative correlations with CD4

memory activated T cells. Nevertheless, we found that BIRC5, DTL,

LILRB2, andNDC80 had a negative correlation with activated Tregs and

NK cells, but DNAJC4 had a positive correlation with them (Figure 7B).
Frontiers in Immunology 07
3.7 Prediction of key TFs, MiRNAs, and
small-molecule drugs

TFs and miRNAs are two different categories of gene expression

regulators. A total of 79 TFs and 5 hub genes were included in the

regulatory network of TFs and hub genes that we first examined.

The top 10 TFs were ranked according to the betweenes, and the top

10 TFs were SPI1, POU5F1, MYBL2, PDX1, CREB1, CREM, MYC,
B

C D

E

F

A

FIGURE 5

Using Random Forest (RF) to screen characteristic genes from common DEGs: (A) The random forest trees; (B) The importance rankings of features.
(C, D) The SVM model with the highest accuracy and lowest error rate was established on 11 characteristic genes. (E) The establishment of LASSO
model. (F) The Venn diagram of hub genes identified by three machine algorithms.
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KDM5B, E2F4, and MYCN (Figure S4). 130 miRNAs and 5 genes in

total were engaged in the study of the gene-miRNA regulation

network (Figure S5). The above regulatory network suggests a

strong correlation between hub genes, TFs and miRNAs.

The DSigDB database was applied to predict small molecule

drugs for five hub genes, and the top ten drugs by p-value were

lucanthone, phytoestrogens, etoposide, dasatinib, piroxicam,

pyrvinium, rapamycin, niclosamide, genistein, and testosterone

(Table 1). These identified small molecule compounds may be

potential therapeutics for COVID-19 and BPH.
3.8 Identification of disease association

According to previous studies, various diseases are interrelated,

and there are common genes (41). We filtered the top ten closely

related diseases by importing 97 DEGs into the DisGeNet database

and classified them by degree, including liver cirrhosis,
Frontiers in Immunology 08
schizophrenia, autosomal recessive predisposition, prostatic

neoplasms, hypertensive disease, recurrent respiratory infections,

diabetes mellitus, asthma, colonic neoplasms and adult T-cell

lymphoma/leukemia (Figure 8).
4 Discussion

Many investigations have been conducted since the COVID-19

pandemic to support the theory that many diseases may be

correlated with COVID-19 (42–46). As indicated, many male

patients were found to have LUTS during COVID-19 clinical

therapy of COVID-19, which may be related to BPH.

Nevertheless, as of now, we don’t know enough about COVID-19

and BPH. This study sought to identify crucial genes and biological

mechanisms that connect COVID-19 to BPH. Using the COVID-19

dataset (GSE157103) and the BPH dataset (GSE7307), we were able

to identify 97 common DEGs. We carried out a functional
B

C

D
E

A

FIGURE 6

Expression levels and diagnostic significance of hub genes. (A) Expression levels in the COVID-19 set (GSE157103). (B) ROC curves in GSE157103.
(C) ROC curves in GSE7307. (D) Constructing co-expression network of hub genes in COVID-19. (E) Heatmap of the hub genes in COVID-19.
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enrichment analysis using KEGG and GO analyses. Five genes

(BIRC5, DNAJC4, DTL, LILRB2, and NDC80) were then identified

as possible hub genes by three machine learning methods (LASSSO

regression, SVM-RFE, and RF).

Using DEGs enrichment analysis, we can better understand the

precise mechanisms of action and the regulatory function of genes

in the human body. According to KEGG data, these genes seem to

be abundant in pathways related to inflammation and infection,
Frontiers in Immunology 09
including the B-cell receptor signaling pathway, inflammatory

bowel disease, and cytotoxicity mediated by natural killer cells.

The role of B cells in immunity to SARS-CoV-2 infection and

vaccination has been demonstrated in several studies, and the type

of SARS-CoV-2 exposure has distinct effects on the formation of B

cell receptors (47–50). Russell et al. thought that the spleens of

COVID-19 patients had higher levels of some components of the B

cell signaling pathway (51). Following SARS-CoV-2 infection, NK
TABLE 1 Drug candidates (top ten) identified by gene-drug interaction analysis.

Name P-value Combined Score

lucanthone 1.17E-05 1604.544241

phytoestrogens 5.61E-05 2829.762918

etoposide 5.61E-05 2829.762918

dasatinib 1.51E-04 515.4745901

piroxicam 1.97E-04 455.7848279

pyrvinium 2.07E-04 1250.437687

rapamycin 0.001482212 350.0839021

niclosamide 0.00172901 315.690249

genistein 0.002117354 141.1556855

testosterone 0.002198304 138.3730945
B

A

FIGURE 7

Immunity infiltration analysis based on the CIBERSORT algorithm. (A) Box plot of 22 types of immunity infiltrating cells in the COVID-19 and controls.
(B) The correlation between five hub genes and immune cells.
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cell-mediated cytotoxicity can be reduced as a result of mechanisms

that result in a marked reduction in CD16/56+ NK cells and may be

related to the severity of the illness or by up-regulation of an

inhibitory receptor that regulates NK cell-mediated cytotoxicity

(52). Creatinine may boost NK cell-mediated cytotoxic actions to

treat individuals with mild to moderate COVID-19, according to

recent randomized controlled research (53). Wang et al. confirmed

that COVID-19 can cause testicular cell senescence via the MAPK

signaling route in addition to inflammation-related pathways and

that cellular senescence interacts synergistically with the MAPK

pathway to further impair the regular synthesis of cholesterol and

androgens (54). It is well recognized that androgens and BPH are

closely related (55). High estrogen may cause bladder overactivity

by activating the RhoA/ROCK pathway, and altered estrogen/

androgen ratios are associated with BPH (56). Estrogen has a

pro-inflammatory effect on the prostate, and in men, the

combined effects of inflammation, dyslipidemia, and a sex steroid

environment can have an impact on the start and progression of

BPH (57). A study showed worse prognosis and mortality in SARS-

CoV-2 infected men with low testosterone levels (58). This implies

that sex steroid hormones represent a significant relationship
Frontiers in Immunology 10
between COVID-19 and BPH and require more investigation.

These common DEGs may also contribute to some chronic

inflammatory conditions, like inflammatory bowel disease (IBD),

and research points to a potential co-regulatory link between IBD

and COVID-19 (59). Altered levels of the enzyme angiotensin

converting enzyme 2 (ACE2) may be a co-pathogenic factor in

COVID-19 and IBD. If immunotherapy is given to patients with

IBD, it may increase the chance of SARS-CoV-2 infection (60).

Therefore, further studies are needed for patients with both IBD and

COVID-19.

The results of GO analysis showed that the immunological

response was the main pathway of the BPs of these common DEGs.

The symptoms of SARS-CoV-2 infection are exacerbated by the

activation of inflammatory responses, particularly interferon

responses (61); when interferon expression is ineffective, SARS-

CoV-2 replicates widely, triggering an inflammatory response. This

is the case in some people with severe COVID-19 who have delayed

or no induction of interferon-I and -III (62). CCs of common DEGs

that are primarily concentrated in the secretory granule lumen, the

vesicle lumen, and the cytoplasmic vesicle lumen, all of which have

been linked to immune cell activity. MFs of common DEGs focus
FIGURE 8

Gene-disease association network shows diseases associated with DEGs.
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on enzyme inhibitor activity. Recent investigations have discovered

that the co-expression of ACE2 and TMPRSS2 in an organ is crucial

for viral infection of that organ (63). It is vital to further examine

whether the virus affects these organs when ACE2 and TMPRSS2

are co-expressed in other organs such as the testes and prostate (64).

One of the essential components of the ACE2/Ang-(1-7)/Mas

system, ACE2 is closely related to SARS-CoV-2 infection (64). By

reducing Ang-II inflammation and proliferation, it has anti-

inflammatory actions. Additionally, Ang (1–7) can reduce

inflammation by blocking the NF-B pathway and cytokines (65).

Inhibition of ACE2 caused by SARS-CoV-2 infection may activate

pro-inflammatory pathways and increase cytokine production,

resulting in an inflammatory response in the prostate and

worsening of BPH.

In addition, we performed a gene-disease analysis in which there

were chronic diseases, including hypertension and diabetes.

Angiotensin-converting enzyme inhibitors (ACEI) can reduce

excessive inflammation and increase intracellular antiviral

responses, while in patients with COVID-19, hypertension inhibits

viral clearance and worsens excessive airway inflammation (66). High

blood sugar levels may raise the risk of mortality from COVID-19 in

diabetics (67). There are also prostatic neoplasms, colonic neoplasms,

and T-cell lymphoma/leukemia. A previous study (42) showed that

COVID-19 is associated with various tumors, including breast

cancer, malignant lymphoma, lymphocytic disorders, and leukemia,

which is consistent with our findings. Patients with tumors may be

more likely to pass away due to their deteriorating health from the

SARS-CoV-2 infection.

We screened five hub genes (BIRC5, DNAJC4, DTL, LILRB2,

and NDC80) using three machine learning algorithms, and the

other four genes had good diagnostic properties in both the training

and validation sets, with the exception of BIRC5, which had an

AUC of only 0.542 in the validation set GSE132714 of BPH. We

speculated that this may be because the sample size of GSE132714 is

too small and further studies are still needed in the future. The

apoptosis inhibitory protein family member Survivin can be

encoded by BIRC5. According to Beding et al. (68), BIRC5 is

highly expressed in 16 different malignancies, including prostate

cancer (Pca), and may be used as a diagnostic marker for a number

of tumor types. High expression of BIRC5 has been associated with

a worse prognosis, tumor stage, and response to therapy in survival

and clinicopathology studies. In patients with non-small cell lung

cancer with COVID-19, BIRC5, a member of the inhibitor of

apoptosis (IAP) gene family, may be a target gene with important

predictive significance (69). Chronic inflammation, which has been

associated with the formation and progression of Pca, is related to

both precancerous and malignant Pca. Myeloid cells, macrophages,

and lymphocyte recruitment and growth in the prostate gland can

promote DNA double-strand breaks and androgen receptor

activation in prostate epithelial cells, accelerating tumor

development (70). The proteins encoded by DTL participate in

several processes, such as translesion production, control of the G2/

M transition of the mitotic cell cycle, and protein ubiquitination.

Prior research has shown that DTL may function as a biomarker for

COVID-19 (71). LILRB2, a Class I MHC antigen receptor, is

implicated in the suppression of immunological responses and
Frontiers in Immunology 11
the development of tolerance. The decrease of LILRB2 in

peripheral blood mononuclear cells (PBMC) suggests that LILRB2

may be a new target to overcome immune evasion and improve

vaccination strategies (72). NDC80 is necessary for normal

chromosomal segregation, a process closely related to mitosis, and

serves to organize and regulate microtubule-kinetochore

interactions (73). Aneuploidy development, which is linked to

tumors, would result from overexpression of NDC80 because it

would interfere with microtubule dynamics and chromosomal

segregation in mitosis (74). The cell cycle and cell proliferation in

Pca are tightly correlated with the NDC80-related gene Spindle pole

body component 25 (SPC25) (75, 76). Previous studies have shown

that glucocorticoids can act by modulating DNAJC4. In the

treatment of COVID-19, a previous study demonstrated that

glucocorticoids can accelerate recovery times and lower

hospitalizations (77). Therefore, we hypothesize that DNAJC4

may be an important biological target for glucocorticoids in the

treatment of COVID-19 and its complications. The identification of

these molecular markers can open up new possibilities for the

identification and care of BPH patients who have COVID-

19 infections.

It is well known that the development of COVID-19 is highly

correlated with immune cell performance. Important components of

the adaptive immune system that are crucial in preventing the majority

of viral infections are B cells, CD4 T cells, and CD8 T cells (78).

Substantial drop in total T cell, CD8 or CD4 T cell counts, especially in

the sickest COVID-19 patients (79). Chronic inflammation and

immunological dysregulation contribute to the progression of BPH,

and in vitro research has shown that the administration of

dihydrotestosterone, which inhibits CD4 T cells’ production of

pro-inflammatory cytokines, has an immunomodulatory effect

(55). In COVID-19, Tregs may have negative consequences by

directly promoting inflammation in the most severe phases of the

disease and blocking antiviral T-cell responses (80). A new

strategy for the treatment and prevention of BPH in clinical

practice may be offered by the use of Tregs as cells to reduce

inflammation in BPH through CD39 (81). In severe COVID-19,

NK cells have impaired antifibrotic function, which may be

connected to the development of fibrotic lung disease. NK cells

are active against SARS-CoV-2 but perform poorly when COVID-

19 is severe (82). Based on the results of our immune infiltration

analysis, five hub genes are closely associated with several of the

immune cells above and may play key roles in the pathogenesis of

BPH and COVID-19. Five hub genes were differentially expressed

in COVID-19 patients compared to controls, and they were

associated with the activation of regulatory T cells, NK cells,

and CD4 memory T cells. Immune infiltration analyses

revealed that these three immune cells were differentially

expressed in the COVID-19 group and controls. Therefore, we

speculate that the five hub genes may influence these three

immune cells, which in turn may change the immunological

state and inflammatory response.

MiRNAs (83) can regulate target genes and have a significant

impact on a variety of biological processes. TFs are proteins that

bind to certain DNA sequences to control transcription and gene

expression. By binding to particular gene sequences, TFs can
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perform a crucial function (84). We identified multiple potential

drugs that can influence patients with BPH infected with COVID-19.

It has been demonstrated that testosterone reduces symptoms

through upregulating anti-inflammatory cytokines, downregulating

pro-inflammatory cytokines, and changing immunological function

(85). Rat prostate weight and testosterone levels can both be

decreased by phytoestrogens, according to an animal experiment

(86). Phytoestrogens may also have anti-COVID-19 actions and

inhibit the adhesion of SARS-CoV-2 to host cells (87). Etoposide

causes prostate hyperplasia cells to undergo apoptosis (88).

Etoposide, in the meantime, may be used as a salvage therapy to

treat the cytokine storm of COVID-19 (89). Rapamycin is a common

antifungal drug that may play a role in benign prostatic hyperplasia in

rats by affecting autophagy (90). Numerous studies have shown the

significance of rapamycin in the prevention and treatment of

COVID-19 because it is a mTOR inhibitor and the mTOR

pathway plays a significant role in the development and replication

of SARS-CoV-2 (91). Genistein may play a role in BPH by inhibiting

a1-adrenergic, non-adrenergic, and neurogenic human prostate

smooth muscle contraction and stromal cell growth (92).

Additionally, genistein may have significant antiviral effects as a

strong protease inhibitor of SARS-CoV-2 (93). The predicted

drugs mentioned above in COVID-19 with BPH still require

more research.

In conclusion, our study has several advantages. First, we are

the first to screen DEGs and investigate common biological

functions using the COVID-19 and BPH datasets from open

databases. Second, we used three machine learning methods to

search for hub genes, and two datasets were used to confirm the

diagnosis accuracy of hub genes. Also, we investigated the

association between hub genes and immune cells using the

CIBERSORT approach. Finally, we also predicted how gene

transcription levels would be regulated and potential small-

molecule medicines. Despite the fact that our study is

convincing, it has several limitations. Our work did not use in

vivo or in vitro validation experiments; instead, it merely used

data from public databases to conduct investigations to find

prospective biomarkers. Second, more research needs to be done

on the molecular mechanism by which COVID-19 is connected

to BPH. In the future, we will conduct more studies to

demonstrate the potential role of these hub genes in COVID-

19 and BPH.
5 Conclusion

Bioinformatics research of the COVID-19 and BPH

databases revealed the biological relationship between COVID-

19 and BPH. This study also provided some information on the

pathogenesis of COVID-19 and BPH, which confirms the

function of inflammation-related pathways and immune cells.

Additionally, this study provides prospective small-molecule

drugs for therapeutic use. This is crucial to understand the

potential common pathogenic and susceptibility pathways

between them.
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40. Piñero J, Ramıŕez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F,
et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic
Acids Res (2020) 48:D845–d55. doi: 10.1093/nar/gkz1021

41. Mahmud SMH, Al-Mustanjid M, Akter F, Rahman MS, Ahmed K, Rahman MH,
et al. Bioinformatics and system biology approach to identify the influences of SARS-CoV-
2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease
patients. Briefings Bioinf (2021) 22(5):bbab115. doi: 10.1093/bib/bbab115

42. Yan C, Niu Y, Wang X. Blood transcriptome analysis revealed the crosstalk
between COVID-19 and HIV. Front Immunol (2022) 13:1008653. doi: 10.3389/
fimmu.2022.1008653

43. Lu L, Liu LP, Gui R, Dong H, Su YR, Zhou XH, et al. Discovering common
pathogenetic processes between COVID-19 and sepsis by bioinformatics and system
biology approach. Front Immunol (2022) 13:975848. doi: 10.3389/fimmu.2022.975848

44. Rahman MR, Islam T, Shahjaman M, Islam MR, Lombardo SD, Bramanti P,
et al. Discovering common pathogenetic processes between COVID-19 and diabetes
mellitus by differential gene expression pattern analysis. Briefings Bioinf (2021) 22(6):
bbab262. doi: 10.1093/bib/bbab262

45. Zhang F, Yu C, Xu W, Li X, Feng J, Shi H, et al. Identification of critical genes
and molecular pathways in COVID-19 myocarditis and constructing gene regulatory
networks by bioinformatic analysis. PloS One (2022) 17:e0269386. doi: 10.1371/
journal.pone.0269386

46. Chen Q, Xia S, Sui H, Shi X, Huang B, Wang T. Identification of hub genes
associated with COVID-19 and idiopathic pulmonary fibrosis by integrated bioinformatics
analysis. PloS One (2022) 17:e0262737. doi: 10.1371/journal.pone.0262737

47. Kotagiri P, Mescia F, Rae WM, Bergamaschi L, Tuong ZK, Turner L, et al. B cell
receptor repertoire kinetics after SARS-CoV-2 infection and vaccination. Cell Rep
(2022) 38:110393. doi: 10.1016/j.celrep.2022.110393

48. Lin K, Zhou Y, Ai J, Wang YA, Zhang S, Qiu C, et al. B cell receptor signatures
associated with strong and poor SARS-CoV-2 vaccine responses. Emerg Microbes infect
(2022) 11:452–64. doi: 10.1080/22221751.2022.2030197

49. WenW, Su W, Tang H, Le W, Zhang X, Zheng Y, et al. Immune cell profiling of
COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discovery
(2020) 6:31. doi: 10.1038/s41421-020-0168-9
frontiersin.org

https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1038/s41586-020-2739-1
https://doi.org/10.7554/eLife.60408
https://doi.org/10.1038/s41591-022-01689-3
https://doi.org/10.1038/s41575-022-00607-9
https://doi.org/10.1038/s41575-022-00607-9
https://doi.org/10.1016/j.tcm.2022.04.004
https://doi.org/10.1007/s40620-022-01296-y
https://doi.org/10.1111/jgh.15323
https://doi.org/10.1007/s10787-021-00847-2
https://doi.org/10.1056/NEJMoa2034577
https://doi.org/10.1016/s0140-6736(20)32623-4
https://doi.org/10.1093/cid/ciac180
https://doi.org/10.1016/j.phrs.2020.104859
https://doi.org/10.1016/j.phrs.2020.104859
https://doi.org/10.1056/NEJMoa2119451
https://doi.org/10.1136/bmj-2021-069761
https://doi.org/10.1038/ijir.2008.55
https://doi.org/10.1111/bju.15229
https://doi.org/10.1038/s41598-017-06628-8
https://doi.org/10.1002/jmv.25757
https://doi.org/10.2174/1389201023666220307102147
https://doi.org/10.1016/j.eururo.2020.03.029
https://doi.org/10.1016/j.eururo.2020.03.029
https://doi.org/10.1111/ijcp.14110
https://doi.org/10.1002/jmv.26883
https://doi.org/10.1186/s12874-021-01234-9
https://doi.org/10.1158/1078-0432.Ccr-19-4207
https://doi.org/10.1186/s12859-016-0900-5
https://doi.org/10.1186/s12859-016-0900-5
https://doi.org/10.1155/2022/2639470
https://doi.org/10.1155/2022/1878766
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1002/sim.7803
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1155/2014/795624
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1007/s00262-018-2150-z
https://doi.org/10.1093/bioinformatics/btq466
https://doi.org/10.1093/bioinformatics/btq466
https://doi.org/10.1093/nar/gkn809
https://doi.org/10.3389/fimmu.2022.860676
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1093/bib/bbab115
https://doi.org/10.3389/fimmu.2022.1008653
https://doi.org/10.3389/fimmu.2022.1008653
https://doi.org/10.3389/fimmu.2022.975848
https://doi.org/10.1093/bib/bbab262
https://doi.org/10.1371/journal.pone.0269386
https://doi.org/10.1371/journal.pone.0269386
https://doi.org/10.1371/journal.pone.0262737
https://doi.org/10.1016/j.celrep.2022.110393
https://doi.org/10.1080/22221751.2022.2030197
https://doi.org/10.1038/s41421-020-0168-9
https://doi.org/10.3389/fimmu.2023.1172724
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1172724
50. Funakoshi Y, Ohji G, Yakushijin K, Ebisawa K, Arakawa Y, Saegusa J, et al.
Massive surge of mRNA expression of clonal b-cell receptor in patients with COVID-
19. Heliyon (2021) 7:e07748. doi: 10.1016/j.heliyon.2021.e07748

51. Russell CD, Valanciute A, Gachanja NN, Stephen J, Penrice-Randal R,
Armstrong SD, et al. Tissue proteomic analysis identifies mechanisms and stages of
immunopathology in fatal COVID-19. Am J Respir Cell Mol Biol (2022) 66:196–205.
doi: 10.1165/rcmb.2021-0358OC

52. Bouayad A. Innate immune evasion by SARS-CoV-2: comparison with SARS-
CoV. Rev Med Virol (2020) 30:1–9. doi: 10.1002/rmv.2135

53. Jayanthi CR, Swain AK, Ganga RT, Halnor D, Avhad A, Khan MS, et al. Efficacy
and safety of inosine pranobex in COVID-19 patients: a multicenter phase 3
randomized double-blind, placebo-controlled trial. Advanced Ther (2022) 2200159.
doi: 10.1002/adtp.202200159

54. Wang Z, Ma Y, Chen Z, Yang R, Liu Q, Pan J, et al. COVID-19 inhibits
spermatogenesis in the testes by inducing cellular senescence. Front Genet (2022)
13:981471. doi: 10.3389/fgene.2022.981471

55. Vignozzi L, Cellai I, Santi R, Lombardelli L, Morelli A, Comeglio P, et al.
Antiinflammatory effect of androgen receptor activation in human benign prostatic
hyperplasia cells. J Endocrinol (2012) 214:31–43. doi: 10.1530/joe-12-0142

56. Chavalmane AK, Comeglio P, Morelli A, Filippi S, Fibbi B, Vignozzi L, et al. Sex
steroid receptors in male human bladder: expression and biological function. J sexual
Med (2010) 7:2698–713. doi: 10.1111/j.1743-6109.2010.01811.x

57. Vignozzi L, Rastrelli G, Corona G, Gacci M, Forti G, Maggi M. Benign prostatic
hyperplasia: a new metabolic disease? J endocrinological Invest (2014) 37:313–22.
doi: 10.1007/s40618-014-0051-3

58. Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, et al.
Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia
patients. Andrology (2021) 9:88–98. doi: 10.1111/andr.12821

59. Tao SS, Wang XY, Yang XK, Liu YC, Fu ZY, Zhang LZ, et al. COVID-19 and
inflammatory bowel disease crosstalk: from emerging association to clinical proposal. J
Med Virol (2022) 94:5640–52. doi: 10.1002/jmv.28067

60. Neurath MF. COVID-19 and immunomodulation in IBD. Gut (2020) 69:1335–
42. doi: 10.1136/gutjnl-2020-321269

61. Lowery SA, Sariol A, Perlman S. Innate immune and inflammatory responses to
SARS-CoV-2: implications for COVID-19. Cell Host Microbe (2021) 29:1052–62.
doi: 10.1016/j.chom.2021.05.004

62. Galani IE, Rovina N, Lampropoulou V, Triantafyllia V, Manioudaki M, Pavlos
E, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III
interferon patterns and flu comparison. Nat Immunol (2021) 22:32–40. doi: 10.1038/
s41590-020-00840-x

63. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S,
et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a
clinically proven protease inhibitor. Cell (2020) 181:271–80.e8. doi: 10.1016/
j.cell.2020.02.052

64. Haghpanah A, Masjedi F, Salehipour M, Hosseinpour A, Roozbeh J, Dehghani
A. Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and
exacerbation of its related symptoms?: a systematic review. Prostate Cancer prostatic
Dis (2022) 25:27–38. doi: 10.1038/s41391-021-00388-3

65. Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19
cytokine storm: the anger of inflammation. Cytokine (2020) 133:155151. doi: 10.1016/
j.cyto.2020.155151

66. Trump S, Lukassen S, AnkerMS, Chua RL, Liebig J, Thürmann L, et al. Hypertension
delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-
19. Nat Biotechnol (2021) 39:705–16. doi: 10.1038/s41587-020-00796-1

67. Hartmann-Boyce J, Rees K, Perring JC, Kerneis SA, Morris EM, Goyder C, et al.
Risks of and from SARS-CoV-2 infection and COVID-19 in people with diabetes: a
systematic review of reviews. Diabetes Care (2021) 44:2790–811. doi: 10.2337/dc21-0930

68. Fäldt Beding A, Larsson P, Helou K, Einbeigi Z, Parris TZ. Pan-cancer analysis
identifies BIRC5 as a prognostic biomarker. BMC Cancer (2022) 22:322. doi: 10.1186/
s12885-022-09371-0

69. Zhuang Z, Chen Q, Zhong X, Chen H, Yu R, Tang Y. Ginsenoside Rg3, a
promising agent for NSCLC patients in the pandemic: a large-scale data mining and
systemic biological analysis. J ginseng Res (2022) 47(2):291–301. doi: 10.1016/
j.jgr.2022.09.006

70. de Bono JS, Guo C, Gurel B, De Marzo AM, Sfanos KS, Mani RS, et al. Prostate
carcinogenesis: inflammatory storms. Nat Rev Cancer (2020) 20:455–69. doi: 10.1038/
s41568-020-0267-9

71. Auwul MR, Rahman MR, Gov E, Shahjaman M, Moni MA. Bioinformatics and
machine learning approach identifies potential drug targets and pathways in COVID-
19. Briefings Bioinf (2021) 22(5):bbab120. doi: 10.1093/bib/bbab120
Frontiers in Immunology 14
72. He Y, Sun M, Xu Y, Hu C, Wang Y, Zhang Y, et al. Weighted gene co-expression
network-based identification of genetic effect of mRNA vaccination and previous
infection on SARS-CoV-2 infection. Cell Immunol (2023) 385:104689. doi: 10.1016/
j.cellimm.2023.104689

73. Powers AF, Franck AD, Gestaut DR, Cooper J, Gracyzk B, Wei RR, et al. The
Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule
tips via biased diffusion. Cell (2009) 136:865–75. doi: 10.1016/j.cell.2008.12.045

74. Tang NH, Toda T. MAPping the Ndc80 loop in cancer: a possible link between
Ndc80/Hec1 overproduction and cancer formation. BioEssays (2015) 37:248–56.
doi: 10.1002/bies.201400175

75. Cui F, Tang H, Tan J, Hu J. Spindle pole body component 25 regulates stemness
of prostate cancer cells. Aging (2018) 10:3273–82. doi: 10.18632/aging.101631

76. Cui F, Hu J, Fan Y, Tan J, Tang H. Knockdown of spindle pole body component
25 homolog inhibits cell proliferation and cycle progression in prostate cancer. Oncol
Lett (2018) 15:5712–20. doi: 10.3892/ol.2018.8003

77. Yu LM, Bafadhel M, Dorward J, Hayward G, Saville BR, Gbinigie O, et al.
Inhaled budesonide for COVID-19 in people at high risk of complications in the
community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive
platform trial. Lancet (London England) (2021) 398:843–55. doi: 10.1016/s0140-6736
(21)01744-x

78. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell
(2021) 184:861–80. doi: 10.1016/j.cell.2021.01.007

79. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional
exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front
Immunol (2020) 11:827. doi: 10.3389/fimmu.2020.00827

80. Galván-Peña S, Leon J, Chowdhary K, Michelson DA, Vijaykumar B, Yang L,
et al. Profound treg perturbations correlate with COVID-19 severity. Proc Natl Acad Sci
United States America (2021) 118(37):e2111315118. doi: 10.1073/pnas.2111315118

81. Jin X, Lin T, Yang G, Cai H, Tang B, Liao X, et al. Use of tregs as a cell-based
therapy via CD39 for benign prostate hyperplasia with inflammation. J Cell Mol Med
(2020) 24:5082–96. doi: 10.1111/jcmm.15137

82. Krämer B, Knoll R, Bonaguro L, ToVinh M, Raabe J, Astaburuaga-Garcıá R,
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