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Natural Killer (NK) cells have come a long way since their first description in the

1970’s. The most recent reports of their adaptive-like behavior changed the way

the immune system dichotomy is described. Adaptive NK cells present

characteristics of both the innate and adaptive immune system. This NK cell

subpopulation undergoes a clonal-like expansion in response to an antigen and

secondary encounters with the same antigen result in an increased cytotoxic

response. These characteristics can be of extreme importance in the clinical

setting, especially as adoptive immunotherapies, since NK cells present several

advantages compared other cell types. This review will focus on the discovery

and the path to the current knowledge of the adaptive NK cell population.
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Background

The immune system is classically divided in two branches, the innate and adaptive

immunity according to the cellular characteristics. The innate branch of the immune

system offers a fast but unspecific response against pathogens. The adaptive immune

system recognizes antigens/pathogens and cells are clonally expanded and, in the case of

antigen-specific B-cells, even modified to obtain higher levels of antigen specificity (1–5).

Innate lymphoid cells (ILCs) comprise a variety of common lymphoid progenitor-

derived cells that do not express somatically rearranged antigen-specific receptors and play

important roles in immune homeostasis. One subset of ILCs are Natural Killer (NK) cells

(6–8). In humans, they comprise between 5 to 20% of circulating lymphocytes (9). These

immune cells have very diversified functions that can range from their classic innate anti-

tumor and anti-viral functions, to regulatory roles involved in the modulation of other

immune cells as well as tissue growth promotion (10).

NK cells were first described in the early 1970’s when a significant natural cytotoxicity

to target cells was observed in lymphocytes from unimmunized mice and normal human

lymphoid tissue (10–13). Until then, it was believed that non-T cell-mediated cytotoxicity

was only achieved by antibody-dependent-cell-cytotoxicity (ADCC) or macrophages (14–

16). R. Kiessling et al. were able to exclude a possible involvement of macrophages, T and B
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cells. This was achieved by the combined results observed in

athymic nude mice and inability to identify the aforementioned

cells. A new and unique cell population able to kill mouse tumor

cells was hence recognized. Even though very little was known

about this cell population, this observation opened the door to a

brand-new world in immunology (11). We have come a long way in

our knowledge about NK cells since these days.

In the following sections, this review aims to summarize the

evolution in NK cells knowledge from their discovery to the

detection of their adaptive phenotype.
Natural killer cells biology
and receptors

Natural Killer cells were the first member of the ILC family to be

discovered. They possess a lymphoid developmental origin and a T-

bet-regulated rapid cytokine production activation profile. However,

this activation does not lead, generally, to immunological memory.

Furthermore, NK cells lack clonally rearranging antigen receptors

(17). This was demonstrated in mice, where RAG-1 or RAG-2

disrupted genes did not affect the development of functional NK

cells (18, 19). It is known that NK cells are involved in the immune

response to several pathogens and are also involved in the first line of

defense against tumor cells without prior sensitization (20–23). NK

cells were normally characterized according to their morphology, as

large granular lymphocytes and phenotypically, defined by the

surface expression of the cluster of differentiation (CD)56 and lack

of CD3 (24). Another definition of mature conventional NK cells

relies on exclusion criteria describing NK cells as non-T, non-B

lymphoid cells with the ability to rapidly produce interferon (IFN)

-gamma upon stimulation with pathogens (25).

NK cells are bone marrow derived and can be found in the

peripheral circulation, but are also present in other lymphoid and

non-lymphoid organs (26). Two major distinct populations of

circulating NK cells are recognized according to the surface

expression of CD56 and CD16. It is considered that CD56dimCD16+,

corresponding to approximately 90% of peripheral blood NK cells,

represent a more cytotoxic population while the CD56brightCD16dim/-,

corresponding to the remaining 10%, have a more regulatory role,

being highly involved in the production of cytokines (27–29). There is,

however, a much higher count of NK cells subpopulations when it

comes to the different receptors expressed by these cells. For instance,

in 2009, Milush et al. reported new subpopulations of NK cells based

on the expression of CD7, a marker shared with T and pre-B cells. The

surface expression of this receptor was associated with the co-

expression of other NK cell-associated receptors such as Killer-

Immunoglobulin Receptors (KIRs) or Natural Cytotoxicity receptors

(NCRs) (30). With the help of technological advancement, and the

possibility to simultaneously analyze more than 30 parameters,

Horowitz et al. indicated that at least 30 000 different phenotypes of

conventional peripheral blood NK cells can be present at any given

point (31). The great diversity of NK cells populations among each

individual or patient, comprising different functions and degrees of

maturation, may result in varied responses. The challenge to current
Frontiers in Immunology 02
research is to understand how these different populations can be

exploited in the design of specific therapies.

Different NK cell subpopulations can have different, more or

less specialized, functions and responses. Nonetheless, a very strict

balance between activating and inhibitory receptors regulates all NK

cells. Contrary to what happens with adaptive cells, NK cell

receptors are germline-encoded with no requirements for

recombination and the activation status of NK cells is determined

by the balance between activating or inhibitory signals. A key

regulator of NK cell activation is the constitutively expressed

Major Histocompatibility Complex (MHC) class I. MHC class I

molecules bind to the inhibitory receptors, including members of

the Killer Immunoglobulin-like Receptor (KIR) family and prevent

NK cell activation (32). However, infected, tumor-transformed or

stressed cells, undergo a downregulation or even loss of MHC class I

expression. This will result in a lack of inhibitory, or rather a

prevalence of activating signals, tipping the balance towards the

activation of NK cells (33, 34). This mechanism allows for the

preservation of ‘self’ while engaging in the elimination of the

‘missing-self’ (32).

The activating receptors of NK cells include receptors belonging

to the C-type lectins family and NCRs mentioned above. NCRs (e.g.

NKp30, NKp44, NKp46 and NKp80) arm NK cells with the ability

to effectively kill tumor-transformed cells (35–38). The key role of

NCRs in the elimination of tumor cells is well established and can

be demonstrated, for instance, by an ineffective clearance of certain

tumors in the absence of NKp46 in in vitro and in vivomodels (39–

41). Furthermore, NCRs are also implicated in the control and

clearance of pathogens. For instance, NKp46 is essential to the

elimination of virus and bacteria in vivo. This was demonstrated by

the inability of NKp46-deficient mice to recognize and eliminate

influenza-infected cells expressing NKp46-ligands or as observed by

the reduced activation and IFN-gamma production during the early

stages of Streptococcus pneumoniae infections (42, 43). In regards to

C-type lectins, CD94 forms covalent bonds with members of the

NKG2 family (A, C, D and E) and forms heterodimers expressed by

NK cells and a subset of cytotoxic T lymphocytes (44).

An overview of some inhibitory and activating receptors

expressed at the surface of NK cells is summarized in Table 1.

Besides their ability to recognize and kill tumor and virus-

infected cells, NK cells are also able to interact with other cell types

and orchestrate the adaptive immune response. Most notably, NK

cells are able to modulate Dendritic cells (DCs), macrophages and T

cell (57–59). One particular example of this modulatory capability is

seen, for instance, by the ability of NK cells to edit the maturation of

autologous DCs through NKp30-mediated elimination of aberrant

or immature DCs while sparing fully matured DCs. This results in a

correct DC-priming and subsequent antigen-specific T cell response

(60, 61).
Natural killer cells; innate or adaptive?

By definition, memory or adaptive cells are a population of

long-lived, self-renewing immune cells with the ability of antigen-
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specific recognition and memory formation. For many years,

conventional NK cells were described as short-lived innate

lymphocytes lacking antigen specificity. However, in recent years

this idea has been challenged. Murine studies showed the ability of

NK cells to acquire selective memory. This phenomenon was

demonstrated by hapten-induced contact hypersensitivity and

recall responses in challenged mice, lacking mature T and B cells.

This feature was previously widely accepted as a T cell effect.

Furthermore, this NK cell response persisted for several weeks

and was able to discriminate between different haptens. This

assembles three hallmarks characteristics of adaptive immunity: i)

acquired activity, ii) antigen specificity and iii) long-lived memory

cells (62). The hapten-specific response was further characterized by

Paust et al., while the NK cell memory development in response to

different viruses and possible influence of the host’s genetic

background was also assessed. To elucidate this memory function,

non-infectious virus-like particles containing proteins from

influenza or HIV and UV-inactivated vesicular stomatitis virus

were used. Immunization of naïve Rag1−/− mice and subsequent

adoptive transfer of purified NK cells into naïve Rag2−/−Il2rg−/−

mice resulted in a vigorous and sustained response at challenge 4

weeks later. This response was virus-specific and restricted to

hepatic NK cells isolated from immunized mice, while splenic NK

cells were unresponsive. Furthermore, this NK cell-specificity

persisted for at least 4 months (63). Another study described the

ability of NK cells to develop a memory-like behavior following

cytokine stimulation. The in vitro stimulation consisted of a

combination of interleukin (IL)-12, IL-15 and IL-18. NK cells

were then adoptively transferred to naïve Rag1−/− mice and re-

stimulation with IL-12 and IL-15 or via the engagement of

activating NK cell receptors with antibodies led to a robust IFN-
Frontiers in Immunology 03
gamma secretion. Furthermore, the often termed ‘memory-like’ NK

cells in this experimental setting, produced significantly higher

levels of IFN-gamma which was detected for at least 3 weeks

post-adoptive transfer of pre-activated NK cells (64).
The particular role of Cytomegalovirus

Gumá et al. described the expansion of a population of NK cells

in response to cytomegalovirus (CMV)-infected fibroblasts in 2006

and this set off increasing interest in NK cell function thus

accumulating knowledge over the last decade (21). The NK

relationship with CMV has for long been appreciated by the

observation of the high susceptibility to CMV-infections in both

humans and mice lacking functional NK cells (65–69).

Murine models facilitated the intensive study of the NK cell-

CMV molecular mechanisms. This was largely simplified by the

identification of both receptor and ligand involved in the NK cell

memory formation. The murine NK cell activating receptor Ly49H

recognizes the m157 protein expressed on infected cells (70).

Multiple factors have been identified as essential for the NK cell

memory development during murine CMV (MCMV) infection at

different stages. These include IL-12/STAT4 signaling, IL-18, miR-

155, the Bim protein, the Zbtb32 transcription factor,

recombination-activation genes and mitophagy (71–76). In

MCMV, contrary to Paust et al. hapten-induced contact

hypersensitivity study, adaptive NK cells were found in the liver

but also in the spleen, lung, kidney, blood circulation and other

lymphoid tissues. This population of NK cells underwent an

expansion phase, followed by a contraction phase after resolution

of viral infection and ultimately resulted in the generation of long-
TABLE 1 Human NK cell Activating and Inhibitory Receptor Families.

Family Members Molecular Structure Function

KIR

KIR2DL1 (45)

Immunoglobulin Superfamily

Inhibitory

KIR2DL2 (46) Inhibitory

KIR3DL1 (47) Inhibitory

KIR3DL3 (48) Inhibitory

KIR2DS1 (49) Stimulatory

KIR2DS2 (50) Stimulatory

KIR2DS4 (51) Stimulatory

NCR

NKp30 (35)

Immunoglobulin Superfamily

Stimulatory

NKp46 (37) Stimulatory

NKp80 (52) Co-stimulatory

NKp44 (38) Stimulatory

NKG2 family

CD94/NKG2A (53)

C-type Lectins

Inhibitory

CD94/NKG2C (54) Stimulatory

CD94/NKG2D (55) Stimulatory

CD94/NKG2E (56) Stimulatory
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lived “memory” NK cells that were more protective during a second

encounter with this pathogen (77, 78).

In humans, it is now known that this particular NK cell

behavior is associated to the non-classical MHC class I molecule

HLA-E and its antigenic presentation of human CMV (HCMV)

viral peptide(s) to NKG2C, which is a C-type lectin that covalently

bonds to CD94 (79). In HCMV, conflicting information regarding

the expansion of this cell population was reported. Several studies

described the expansion of NKG2C+ NK cells in other viral

infections. These ranged from HIV, Hantavirus, Chikungunya

virus, Hepatitis B virus and Epstein-Barr virus (80–86).

Interestingly however, the expansion of NKG2C+ NK cells was

almost completely limited to the HCMV seropositive population in

all the studies in which CMV status was assessed. This suggests that

HCMV is the common denominator in the expansion of NKG2C+

NK cells (80, 81, 85, 86). This supported the previous observation of

Gumá et al. that HCMV influences the shaping of the NK cell

receptor repertoire. Furthermore, the expansion of NKG2C+ NK

cells was not seen in the context of other herpesviruses infections.

Thus, HCMV may be unique in its ability to recall NKG2C+ NK

cells responses (66, 87).

The diversity within NK cells may be the result of what has been

described as an ‘arms race’ between NK cells and viruses (88) [74].

CMV infection results in the modulation and downregulation of

MHC class I molecules on the surface of infected cells in an attempt

to escape recognition by T cells (89). In fact, in the case of infected-

cells being eliminated by class I-restricted CD8+ cytotoxic T

lymphocytes (CTLs), pathogens that attenuate class I expression

will become invisible, at least temporarily, to CTLs and therefore,

have a selective advantage. In CMV-infection, this is achieved by

different approaches. For example, the transport of peptides

produced in the cytosol can be affected by the HCMV US6 gene

attacking the TAP complex and preventing class I heterodimers

from binding (90). Other strategies may be related to the retention

or destruction of class I molecules. The US3 gene product binds to

class I molecules sequestering them in the endoplasmic reticulum

(91). Furthermore, US2 and US11 products bind to class I molecules

and redirect the class I heavy chain to the cytosol, reversing the

process by which the chain is inserted in the endoplasmic reticulum

(92). This CTL evasion mechanism can, however, lead to the

engagement of a NK cell response. NK cells are usually prevented

from activation by the engagement of inhibitory receptors by self-

MHC products. Certain viruses are capable of successfully reducing

the surface expression of MHC class I, while controlling NK cell

activation by the expression of class I homologues that will serve as

decoys for NK cells. In the case of CMV, examples of this are UL18

in humans and m144 in mouse. In the particular case of UL18, this

viral homologue binds to inhibitory receptors with higher affinity

than MHC class I (93–95). Furthermore, the HCMV UL40 open

reading frame, contains a segment that is homologous to the HLA-E

binding leader peptide (96). However, the efforts of CMV to

circumvent the immune system go one step even further. HCMV

harbors a unique IL-10 homolog (cmvIL-10) which is able to

compete with human IL-10 for binding sites (97). This viral
Frontiers in Immunology 04
cmvIL10 may facilitate HCMV replication by suppressing or

tampering with inflammatory responses. Furthermore, a study by

Chang et al. showed that the production of cmvIL-10 inhibits the

production of IL-12 and tumor necrosis factor (TNF)-alpha by DCs

in a concentration-dependent manner (98). As IL-12 promotes the

cytotoxic and proliferative capacity of NK cells, cmvIL-10 may

inhibit or delay the activation NK cells both directly and indirectly.

All these mechanisms employed by CMV to evade NK cell-

recognition point to the importance of NK cells in the control

of CMV.

Interestingly however, cmvIL-10 was shown to induce NK cell

activation and the increased NK cell cytotoxicity was triggered by

several activating receptors. cmvIL-10 binds to the IL-10 receptor

(IL-10R). Even though IL10-R is expressed at low levels on NK cells,

the production of a virokine able to activate NK cells by HCMV is

puzzling (99). One may hypothesize that the low level of activation

promotes a pro-inflammatory environment beneficial for HCMV

infection and/or dissemination all the while ensuring that a strong

enough trigger does not result in an effective antiviral response.
Epigenetic profile towards adaptivity

The NK cell population is one of great heterogeneity both in

phenotype and function. CMV was shown to directly influence the

NK cell population and lead to lasting alterations (87, 100).

Furthermore, CMV was also shown to influence the outcome

after hematopoietic stem cell transplantation of acute and chronic

myeloid leukemia patients since CMV reactivation controlled by

CMV-CTLs led to decreased relapses in these patients (101, 102). A

recent study by our group demonstrated that adaptive NK cells have

the ability to recruit T cells when cultured with CMV-infected target

cells (103). However, at the molecular level, the receptor

modulation and NK cell differentiation has not yet been

described. A study by Schlums et al. shed some light on these

questions. The analysis of 196 healthy adults showed that the

CD56dim NK cell population from many donors lacked

expression of the adaptor protein FceRɣ, the tyrosine kinase SYK

and the intracellular adaptor protein EAT-2 (50.4% of HCMV

seropositive donors vs 10.1% of HCVM seronegative donors). They

demonstrated that this effect correlated to HCVM seropositivity

regardless of sex and age of the donor, B cell or myeloid-cell-related

signaling proteins. Furthermore, this was observed only in acute

HCMV infection (de novo or reactivation). The lack of FceRɣ, SYK
and EAT-2 correlated with phenotypic characteristics of adaptive

NK cells, namely, the expression of NKG2C and absence or reduced

expression of NKp30. Deficiency for EAT-2 and FceRɣ was shown

to be the result of hypermethylation in their promoter region (104).

Similar results were observed for SYK by Lee et al. (105). Moreover,

genome-wide analysis of DNA methylation comparing canonical

and adaptive NK cells to T cells were performed. This revealed that

the methylation profile of adaptive NK cells was closely related to

the one of effector T cells. Adaptive NK cells had 2372 differentially

methylated regions (DMRs) compared to canonical NK cells while
frontiersin.org
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only differing in 61 DMRs when compared to CD8+ T cells.

Furthermore, this methylation profile was responsible for the

regulation of the gene expression on adaptive NK cells (104).
Origins of natural killer cell memory

Nagler et al. originally described CD3-CD56dim and CD3-

CD56bright as subpopulations of NK cells in different differentiation

stages, where the CD3-CD56bright mature overtime to the CD3-

CD56dim population (28). The GATA-binding factor 2 (GATA-2)

transcription factor is necessary for hematopoietic stem and

progenitor cell survival and proliferation. Its haploinsufficiency

results in deficiencies in Dendritic, B and NK cells and leads to

clinical symptoms of immunodeficiency, lymphedema and even

myelodysplastic syndrome (106, 107). A more recent analysis and

characterization of symptomatic GATA-2 (+/- or mutation) patients’

showed that persisting NK cells displayed characteristics and

functional properties of adaptive NK cells. Taken this into account,

adaptive NK cells would be able to persist in the absence of their

CD56dim precursors raising questions onto the ontogeny of adaptive

NK cells. Characteristics of persisting NK cells included a decreased

expression of the promyelocytic leukemia zinc finger (PLZF) and T-

box transcription factors (T-bet), maintained Fc receptor expression

and cytotoxic capacity in response to antibody-coated target cells, as

well as, degranulation capacity and IFN-gamma and TNF secretion.

Furthermore, the persistence of this cell population despite the

GATA-2 insufficiency that results in the abolishment of canonical

NK cells demonstrates the considerable increased longevity of

adaptive NK cells (108). Another study provides further evidence

into the longevity of adaptive NK cells and further supports a self-
Frontiers in Immunology 05
renewal hypothesis. Here, paroxysmal nocturnal hemoglobinuria

patients have an X-linked acquired Phosphatidylinositol N-

acetylglucosaminyltransferase subunit A (PIGA) mutation.

PIGA encodes a protein required for the synthesis of

glycosylphophatidylinositol (GPI) anchors. These loss-of-function

mutations occur in hematopoietic stem and progenitor cells, and

result in the production of hematopoietic cells deficient in GPI-

anchored membrane proteins (109). Progression of the disease from a

GPIpos/GPIneg mixed chimerism towards a virtually exclusive GPIneg

lineage can give insight into the development of adaptive NK cells.

Results from 15 patients suggested that CD56dim NK cells may persist

and propagate independently of CD56bright. Furthermore, the

majority of adaptive NK cells where GPIpos, while canonical NK

cells were vastly GPIneg. Consistent with prior studies, GPIpos

adaptive NK cells showed marked reduction in IFN-gamma

production in response to co-stimulation with IL-12 and IL-18

innate cytokines while maintaining degranulation capacity upon

engagement of the low affinity Fc receptor CD16. This indicates

that the described long-lived GPIpos NK cells are functionally

comparable to adaptive NK cells (110). These studies suggest a

peripheral pathway for the maintenance of CD56dim adaptive NK

cells independent of hematopoietic stem and progenitor cells

production and also independent of CD56bright precursor (108,

109). A linear model representation of the developmental pathway

of (adaptive) NK cells is shown in Figure 1.
Importance in health and disease

Natural Killer cells play a role in the most varied biological

processes and are involved in both health and disease. These range
FIGURE 1

Schematic representation of a linear model of NK cell development. In this model it is theorized that, common lymphoid progenitor (CLP) cells
commit into NK cell precursors and mature into CD56bright NK cells. CD56bright NK cells are less differentiated and express high levels of the
inhibitory receptor NKG2A and natural cytotoxicity receptors (NCRs). These cells will give rise to mature CD56dim NK cells which have enhanced
cytotoxic capabilities as seen, for instance, by increased production of cytotoxic granules and CD16 expression. These can subsequently further
differentiate into self-renewing adaptive NK cells expressing high levels of NKG2C and Killer Immunoglobulin-like receptors (KIR) as the result of
specific stimuli, which may include a combination of cytokines or CMV infection.
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from combating infections, cancer, autoimmune disorders and even

in the maintenance of normal pregnancy. NK cells contribute to the

control of viral infections by both, direct cytotoxicity against virally-

infected cells, but also by the production of cytokines that may

control viral replication and regulate an adaptive immune response

(103). They are also involved in the elimination of other types of

infection that include infections caused by intracellular bacteria,

fungi and some protozoa (111). One other important function of

Natural Killer cells is the elimination of tumor cells. In this scenario,

NK cells’ most likely role is the surveillance and elimination of

malignant cells in order to prevent the formation of tumors. In

regards to autoimmune disorders such as lupus erythematosus, NK

cells can play a role in tolerance induction, by decreased numbers

and activity, increased proportion of CD56bright cells and impaired

cytotoxicity (112–114). NKp46, a NCR NK cell’s receptor, has been

involved in the pathophysiology of type 1 diabetes while in

rheumatoid arthritis, a subset of Natural Killer cells is greatly

expanded in patients with inflamed joints (115, 116). NK cells

also play an essential role in the efficacy of some vaccines and

immunotherapies, such as seen as the result of, for instance, the

BCG vaccine (117). NK cells further cooperate in vaccine efficacy

through their interaction with vaccine-induced antibodies with NK

cell-activation properties on top of the virus-neutralizing properties

(118). All this demonstrates the immense possibilities of NK cells in

clinical applications.
Conclusion

If NK cells are believed to be an evolutionary bridge between

innate and adaptive immunity, it is not surprising that they will
Frontiers in Immunology 06
exhibit features of both. Implications of NK cells in such mixed

processes and the recent discovery of their adaptive profile

demonstrates that the exploitation of this cell population and

their use in possible therapeutic approaches can have great

implications in health and disease. For these reasons, further

research in the full range of possible applications of adaptive NK

cells is warranted.
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