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Organoids are stem cell-derived, self-organizing, 3D structures. Compared to

the conventional 2D cell culture method, 3D cultured organoids contain a variety

of cell types that can form functional “micro-organs” and can be used to simulate

the occurrence process and physiological pathological state of organ tissues

more effectively. Nanomaterials (NMs) are becoming indispensable in the

development of novel organoids. Understanding the application of

nanomaterials in organoid construction can, therefore, provide researchers

with ideas for the development of novel organoids. Here, we discuss the

application status of NMs in various organoid culture systems and the research

direction of NMs combined with organoids in the biomedical field.
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1 Introduction

Organoids are 3D structures grown from stem cells that consist of self-organizing

organ-specific cell types shaped by cell classification and spatially constrained cell lines (1).

These stem cells may be embryonic stem cells (iPSc) derived or adult stem cells (aSCs).

During development, organoid formation recapitulates two primary processes of self-

organization: cell classification and spatially restricted cell line typing. Human organoids

reproduce developmental patterns, thereby replicating the structure and physiology of

specific tissue types, making it possible to accurately study human disease and supplant

animal experiments.

James Rheinwald and Howard Green first described the long-term culture of normal

human epidermal cells in 1975 by combining freshly isolated keratinocytes with multi-

mouse 3T3 fibroblasts and isolating keratinocytes without viable fibroblasts (2). However,

this method of cell culture resembles two-dimensional plane culture. In 2009, Hans Clevers

et al., successfully inoculated adult Lgr5(+) intestinal stem cells from mouse intestines in

matrigel and added Wnt pathway agonist R-spondin, TGF-b inhibitor Noggin, epidermal
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growth factor, and other stem cell growth factors to cultivate a

three-dimensional structure with crypt-like and villiform-like

epithelial regions (small-intestinal organoids) (3). Accordingly, it

comprised the first organoid to meet the modern definition,

ushering in a “new era” in the development of organoid

technology. Since then, numerous organoids have emerged,

including those of the brain (4), stomach (5), colon (3), liver (6),

kidney (7), heart (8), pancreas (9), prostate (10), and numerous

other tissues and organs, as well as organoids of various cancerous

tissues (11–13). Increased interest in tissue engineering, disease

modeling, precision medicine, drug screening, and immunotherapy

has resulted from the development of organoid culture (14). The

rapid development of organoid technology has introduced novel

concepts to the study of a variety of diseases. Using the intraductal

transplant organoid (IGO) model, Tuveson et al., developed

classical subtypes of pancreatic ductal adenocarcinoma (PDAC)

in order to study subtype-dependent therapies that provide a deeper

understanding of the genetic and epigenetic dynamics of PDAC

(15). Park et al., utilized human colon organoids to evaluate the

toxicity induced by SiO2 and TiO2 nanoparticles and to increase

the expression of the apoptosis marker Bax/Bcl-2. This study

demonstrated a difference in toxicity between 2D models and 3D

organoid cultures, highlighting the significance of organoids in drug

screening (16). In addition, the organ-on-a-chip, which combines

microfluidics and organoid technology, enables precise regulation

of the organoid microenvironment as well as precise simulation of

multi tissue crosstalk with low heterogeneity (17).

As an emerging 3D physiological model, organoids possess the

potential to change the methodology of research in the medical

field. However, due to technical limitations, at present, various

organoids still have quite a few defects (18). For example, we still

cannot very precisely control organoid size, shape, proportion of

cellular composition (6). More importantly, researchers cannot

control the growth and function of organoids matching (19),

which produce internal tissue necrosis after growing to a certain

scale. The key to addressing these issues is the development of

culture systems. The application of nanomaterials brings new ideas

to solve these problems. Nanomaterials are a kind of materials
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ranging from 1-100 nm (20). Nanomaterials are materials between

1–100 nm in size (20). The use of nanomaterials has altered

numerous fields, such as medicine, agriculture, manufacturing,

electronic technology (21–23), and their unique optical, magnetic,

and electrical properties render them irreplaceable in terms of their

application potential. Accordingly, nanomaterials play an

increasingly vital role in the field of biomedicine, and also

significantly enhance and expand the research value of organoids

(24). Mo et al. developed electro spun nanofibers prepared based on

P (LLA-CL) copolymer and cultured smooth muscle cell (SMCs)

and endothelial cells (ECS) as scaffolds and showed that these cells

proliferated well on the nanofibrous scaffolds (25). This study

suggests that the nanoscale culture environment will have an

impact on the behavior and function of cells. In addition,

nanomaterials may promote angiogenic effects in culture systems

(26), which is helpful for addressing the problem of imbalance in

organoid growth and function. Therefore, we have sufficient reasons

to conclude that the application of nanomaterials constructed

culture system has a positive effect on 3D culture of organoids.

The relationship between nanomaterials and organoids has

been discussed in many excellent reviews (27–31). However, no

review has yet been published that focuses on how nanomaterials

are extensively involved in organoid construction. Consequently,

this review will focus on the application status and future prospects

of nanomaterials in the field of organoids, as well as the state of the

frontier research for the combined application of organoids and

nanomaterials in biomedicine (Figure 1).
2 Use nanomaterials to assist in
the construction of organoid 3D
culture systems

The advancement of nanomaterial technology has inspired the

creation of new organoids, and nanomaterials can aid in the

construction of organoids in numerous ways. Organoids are

created using two types of stem cells: (1) pluripotent embryonic
FIGURE 1

Research directions in the development of NMs and organoids. NMs, nanomaterials; PDT, photodynamic therapy.
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stem cells (ES), and their synthetic induced pluripotent stem cell

(iPS) counterparts, and (2) adult organ-restricted stem cells (aSCs)

(32). Conventional organoid culture systems also necessitate 3D

solid extracellular matrices containing laminin, collagen, and other

growth factors. To encourage organoid differentiation, it is also

necessary to add growth-stimulating factors. Different organoids

require distinct construction steps and the addition of a growth

stimulant. In addition to conventional organoids based on a 3D

solid external matrix, various novel organoid-building techniques

have been developed in recent years (33). For example,

Wiedenmann et al., designed a microwell chip to generate defined

3D aggregates of pancreatic progenitor cells derived from human

induced pluripotent stem cells (hiPSCs) and then induced their

differentiation into pancreatic duct-like organoids (34).

Additionally, Ferreira et al., developed saliva-secreting organoids/

microglands using a novel scaffold/substrate-free culture system

known as magnetic 3D suspension (M3DL), which assembles and

levitates magnetized primary SG-derived cells (SGDCs) so that they

can generate their own extracellular matrix (35). Thus,

nanomaterials have not only been utilized in conventional

methods based on a 3D solid outer matrix, but they also play a

significant role in a few novel organoid culture strategies.

Accordingly, this review summarizes the key role of

nanomaterials in organoid construction with respect to the

aforementioned factors.
2.1 The use of nanomaterials to alter the
properties of the extracellular matrix

Most existing organoid 3D culture systems were developed

primarily on the basis of Matrigel (33). Matrigel, a substance

secreted by Engelbreth-Holm-Swarm mouse sarcoma cells (36)

contains laminin, type IV collagen, and heparin sulfate

proteoglycan 6,7, which promotes cell adhesion, survival,

andorganoid formation (37). As a traditional organoid culture

system, Matrigel seem to gradually fail to meet the needs of

researchers to develop better organoids. Many kinds of hydrogel

replacement materials are being used for the development of

organoids (38).

Using the properties of nanomaterials, it is possible to modify

certain properties of matrix gum in order to create the desired

organoid model. For instance, in the study by Bao et al., carbon

nanotubes (CNTs) were used to regulate extracellular matrix

(ECM) viscosity and intracellular energy metabolism. In addition,

CNTs reduced the hardness of the extracellular matrix by reducing

elasticity and increasing viscosity. Moreover, carbon nanotubes

modified the metabolic profile of intestinal organoids and

increased mitochondrial activity, respiration, and nutrient

absorption. These synergistic mechanisms promote the

proliferation and differentiation of intestinal organoids. This hints

at the possibility of CNTs as biomaterials for intestinal tissue

engineering (39). Purwada et al., introduced a B-cell follicular

organoid composed of nanocomposite biomaterials, on which

researchers continuously provided an extracellular matrix (ECM)

and intercellular signals to naïve B cells, thereby accelerating the
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induction of germinal center (GC) response. The silicate

nanoparticles complexed with gelatin utilized in this study

comprised ultrathin nanomaterials with a high level of anisotropy

and functionality. These nanoparticles have great potential in

regenerative medicine and drug delivery (40). Luo et al.,

synthesized bone-forming peptide-1 (BFP-1)-loaded mesoporous

silica nanoparticles (pep@MSNs) incorporating adhesion peptides

that contained arginine-glycine-aspartate (RGD) domains, which

modified alginate hydrogel (RA) system (pep@MSNs-RA) to

promote the activity and sequential stimulation of bone

differentiation in human mesenchymal stem cells (hMSCs). This

ensured enhanced hMSC survival and proliferation in adhesion

peptide-modified hydrogels. After the phase of proliferation, BFP-1

then induced bone differentiation of hMSCs derived from pep@

MSNs. Additionally, BFP-1was self-captured by an additional

cellular peptide cross-linking network formed by receptor-bound

ligands (RGDs) on the cell surface, resulting in long-term sustained

bone stimulation of hMSCs. The results demonstrated that

independent and sequential stimulation of the proliferation and

bone differentiation stages synergistically increased hMSC survival,

amplification, and osteogenesis compared to stimulation alone or

simultaneously (41). Thus, nanomaterials can create new matrigel

culture systems and novel organoid models.
2.2 Develop novel microwells with
nanomaterials to culture organoids

Low throughput (approximately 4 organoids per square

millimeter) and poor repeatability are disadvantages of

conventional matrigel-based organoids. Microwells are widely

used to capture single cells and are simple to fabricate, convenient

to operate, and high-throughput (42).

Thus, additional optimization is required in terms of scale,

morphogenetic stability, and compatibility with high-throughput

phenotypic analysis. Accordingly, organoid technology based on

micropores was developed (43). Shin et al., utilized a microporous

array-based 3D culture system with a polycaprolactone (PCL)

nanofiber bottom and a polyethylene glycol (PEG) hydrogel wall

for efficient bioengineering of human salivary gland organoids that

can readily generate uniformly sized 3D organoids. In comparison

to Matrigel and nanofiber scaffold cultures, the results

demonstrated greater efficacy. The novel aspects of this study

were the engineering of nanofibers into a microporous structure

and the use of human cells under non-animal and serum-free

culture conditions, neither of which have been previously

reported (44).

Kim et al., proposed an elliptical microporous array of

nanofibers, dubbed the NOVA micropore array, with high AR

and high pore density, which was not only capable of collecting cells

in microwells with high cell seeding efficiency but also of producing

multiple living and functional spheroids in a uniform and stable

manner. Not only were human hepatocellular carcinoma (HepG2)

cell spheroids cultured on the NOVA microwell array uniform in

size and shape, but their viability was also enhanced. This facilitated

the scalable production of a variety of living and functional
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spheroids and even organoids (45). Park et al., developed a process

for fabricating nanofiber concave microvias (NCMs) with tunable

size and shape. The use of a series of hemispherical convex

electrolyte solution droplets as grounding collectors for

electrospinning significantly improved the NCM’s degree of

freedom in terms of size, shape, and curvature. Accordingly,

researchers demonstrated the formation of spheroids from the

human hepatoma cell line (HepG2) in NCM. Additionally,

HepG2 cells were able to form spheroids that were homogeneous

and of controlled size as a result of NCM (46). Thus, nanomaterials

can be used to create novel micropores and thus generate novel

o rgano id mode l s , in t roduc ing a nove l concep t fo r

organoid development.
2.3 Nanomaterials participate in the
magnetic levitation culture of organoids

In 2010, Souza et al., reported a three-dimensional tissue culture

based on cell magnetic levitation. In this study researchers injected

magnetic iron oxide and gold nanoparticles into cancer cells and

then magnetically suspended the cells in a liquid, thus performing

cell culture (47). This is the first time that magnetic levitation

technology has been utilized in the field of cell culture. In

comparison to conventional culture methods, magnetic levitation

culture allows for the manipulation of the geometry of cell masses

and the clustering of multiple cell types in co-culture. Accordingly,

Haisler et al., developed a comprehensive magnetic levitation

method for 3D cell culture (48). Magnetic nanoparticle

components consisting of gold nanoparticles, iron oxides, and cell

adhesion peptide sequences were delivered to 2D cultured cells to

make these cells magnetic, and then magnetism was used to control

the cells, suspend the cells at the gas-liquid plane and generate

extracellular matrix, and finally construct a 3D model. In general,

magnetic levitation 3D tissue culture conforms to this culture

method. Moreover, using magnetic levitation, Tseng et al., created

3D models, which were successfully used to construct adipose tissue

organoids (fat globules) that preserve the heterogeneity of their

constituent cell types in vitro. Correspondingly, researchers

demonstrated the ability to assemble fat globules from diverse cell

types, including adult stem cells (ASCs), endothelial cells, and white

blood cells, which regenerate tissue. These fat globules mimicked

the organogenesis of white adipose tissue (WAT) and were capable

of forming vascular-like endothelial structures with lumens and

monocular adipocyte differentiation. This established the

foundation for high-throughput WAT culture and analysis (49).

In addition, Tseng et al., used a similar technique to create an

organized three-dimensional (3D) bronchiolechial co-culture by

layering cells sequentially to mimic natural tissue structures. The

3D co-culture model was assembled from four human cell types in

bronchioles: endothelial cells, smooth muscle cells (SMCs),

fibroblasts, and epithelial cells (EpiCs). Accordingly, this

comprised the first attempt to combine these specialized cell types

into an organized bronchiolechial co-culture. Magnetic levitation

has been validated as a method for rapidly organizing 3D co-

cultures, maintaining phenotype, and inducing extracellular matrix
Frontiers in Immunology 04
formation (50). Under magnetic levitation, Gaitán-Salvatella et al.,

were able to create 3D spheres of human fetal osteoblasts (hFOB) in

their research. After 14 days of culture, the cell viability of 3D hFOB

spheroids indicates that they are still viable. ALP assay, qPCR

expression of Col1, ALP, and Itg-b1 molecules, and calcium

deposition of alizarin red all demonstrated high levels of

biological activity in 3D hFOB spheroids. In the presence of

matrix deposition, SEM images allowed the morphological

analysis of spheroids resembling 3D microtissues. These findings

demonstrate that magnetic levitation culture can produce three-

dimensionally stable osteoblast spheroids, and that the engineering

application of bone tissue surgical regeneration in three-

dimensional construction has a vast potential (Figure 2) (51).

Bumpers et al., created for the first time nanomagnetic

suspension 3D cultures of breast cancer (BC) and cancer (CRC)

cells using carbon-coated cobalt magnetic nanoparticles, in which

the suspended BC and CRC cells form microprotrusions.

Suspension cultures have a high level of viability and persist for

an extended period. In suspended 3D tumor spheres and xenografts

of CRC and BC cells, the authors found that N-cadherin and

epidermal growth factor receptor activity were highly expressed.

Consequently, nanomagnetic levitation 3D cultures tend to form

stable BC and CRCmicrotissues, which may be more applicable to a

variety of applications in drug testing or regenerative medicine (52).

Thus, in the current strategy for organoid magnetic levitation

culture, nanomaterials are typically used to impart magnetic

properties to cells, which are then suspended in the culture

system by magnetic force, thereby enhancing the culture activity

and maneuverability of cells.
2.4 Make bioreactors from nanomaterials
and use them for organoid culture

Conventional techniques for organoid preparation are

frequently reproducible and require expensive equipment. The

bioreactor is a technical method that improves organoid

reproducibility and homogeneity, and it can also promote

organoid maturation (53). In recent years, there have also been

reports of the use of nanomaterials in the construction of

bioreactors for the production of novel organoids. Aalders et al.,

for instance, described a test method that permits the generation of

functional cardiac micro-organs comprised of co-cultured

cardiomyocytes and cardiac fibroblasts. Nanoparticles of

hydrophobic fumed silica powder are used to encapsulate cells

suspended in a drop of the medium. Nanoparticles treated with the

hydrophobic chemical hexamethyldisilane (nHMDS) resulted in

the formation of microbial reactors. These microenvironments were

referred to as “liquid marbles” because they promoted cell

coalescence and 3D aggregation. In addition, the nHMDS

housing then facilitated optimal gas exchange between the liquid

contained within and the surrounding environment. This microbial

reactor was smaller and, therefore, suitable for higher throughput

applications, making it an ideal co-culturing technique. Thus, the

researchers demonstrated that the co-culture of cardiac fibroblasts

and cardiomyocytes could be a valuable tool for simulating heart
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disease in vitro and evaluating cellular interactions to decipher

disease mechanisms (54).

Brevini et al., described a protocol that permits the extraction of

functional, pancreatic small organs from skin biopsies. The cells

were suspended in a drop of medium and encased in hydrophobic

polytetrafluoroethylene (PTFE) powder granules to create a “liquid

marbles” microbial reactor that promoted cell coalescence and

three-dimensional aggregation. In addition, the PTFE housing

allowed for optimal gas exchange between the liquid inside and

the surrounding environment. Additionally, it can reduce the size of

experiments to work in smaller volumes, making it suitable for

high-throughput applications (55). In these bioreactors,

nanomaterials serve as encapsulation vessels, isolating the

reaction system from the surrounding environment. Accordingly,

new organoid culture techniques have great potential if other

nanomaterial applications can be developed in bioreactors.
2.5 Nanoparticles involved in 3D
bioprinting of organoids

Bioprinting is the use of computer-aided technology to pattern the

printingof biological andnon-livingmaterials throughdesignated 2Dor

3D tissues in order to create bioengineered structures (56). The

technology of 3D bioprinting is an extension of the technology of

organoid culture. Inkjet bioprinting, extrusion bioprinting, and light-

assisted bioprinting are common printing techniques (57). For instance,

Urkasemsin et al., reported the use ofmagnetic 3D bioprinting (M3DB)

to generate salivary adenoid epithelial organoids from stem cells. The
Frontiers in Immunology 05
neuronal network of these organoids responded to salivary nerve

stimulants. This biological structure was created using a NanoShuttle-

PL™ solution containing gold, iron oxide, and polyl-lysine (58). Bowser

et al., utilizedmagnetic nanoparticles to create spinal cord spheroids in a

three-dimensional hydrogel construct using magnetic bioprinting. The

resulting structure exhibited local cell-cell interactions and long-distance

projections thatmimicked in vivo structures.Magnetic nanoparticles for

spheroid formationprovidebatch-to-batchconsistency insize andshape

and reduce the need for skilled experimenters to place cultures precisely.

This combined approach is a first step toward developing simple

methods for integrating spheroids, hydrogel culture, and bioprinting

as an alternative to more complex and costly procedures (59). In the

study by Li et al., the researchers first 3D-printed a tubular composite

scaffold capable of reconstructing bile duct function with real-timeMRI

imaging properties. Subsequently, then used ultra-small

ultraparamagnetic iron oxide (USPIO) nanoparticles dispersed in

gelatin methacryloyl (GelMA) as contrast agents to monitor the repair

of lesion sites and degeneration of bile ducts in real-time MRI (60). In

addition, bioinks combining the excellent shear-thinning properties of

nanofiber cellulose (NFC) and the rapid crosslinking ability of sodium

alginate were used for 3D bioprinting of human cartilage tissue and cells

in the study by Markstedt et al (61).
2.6 Nanomaterials can give organoids
more functions

To date, no organoids have accurately represented their

corresponding human organs. The development of new
B C

D E

F

A

FIGURE 2

Application of magnetic levitation system in organoids. (A) Schematic of magnetic levitation technique. A confluent flask of hFOB cells was
incubated with NanoShuttle overnight to allow for cell membrane-binding of the magnetic nanoparticles. The next day, the cells were seeded onto
96-well plate placed atop a magnetic drive of 96 neodymium magnets, the magnetic field influencing the hFOB cells to form an air-liquid interface
and guide them to aggregate within hours of levitation to form the 3D Spheroid. (B) Optical micrograph of 2D tissue culture plate. (C) 3D hFOB
spheroid after 3 h of magnetic levitation culture. (D) 3D hFOB spheroid after 24 h of magnetic levitation culture. (E) Fluorescence micrograph of 3D
hFOB spheroid after 24 h of magnetic levitation culture. (F) Morphology of the 3D hFOB spheroid obtained by SEM with the presence of osteogenic
factors incubated for 14 days under magnetic levitation system. FOB: fetal osteoblasts. Adapted with permission from (51), copyright 2021, Frontiers
Media S.A.
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nanomaterials enables the creation of organoid culture systems that

resemble human organs more closely. Adding nanomaterials to

organoids or developing organoids using the properties of

nanomaterials can increase the functionality of organoids,

paving the way for future research. Zhang et al., for instance,

incorporated Ti3C2TxMXene nanomaterials into Matrix in order

to regulate Matrigel’s properties and demonstrated adequate

biocompatibility. Ti3C2TxMXene Matrix (MXene Matrigel)

controlled the development of cochlear organoids (cochlear

tissue) by promoting the formation and maturation of organoid

hair cells. In addition, the regenerated hair cells in MXene Matrix

exhibited superior electrophysiological properties to those of

Matrigel-regenerated hair cells. MXene Matrigel promotes

hair cell differentiation by enhancing the mycin (mTOR)

signaling pathway, whereas mTOR signaling inhibits hair cell

differentiation. MXene Matrix also promotes synaptic formation

efficiency and the establishment of innervation between

regenerative hair cells grown from cochlear modiolus and helical

ganglion neurons (SGNs) in co-culture systems. Accordingly, this

method overcomes several limitations of the Matrigel-dependent

culture system and significantly accelerates the application of

nanomaterials in organoid development and hearing loss research
Frontiers in Immunology 06
(Figure 3) (62). Additionally, electrospinning was used by Beldjilali-

Labro et al., to obtain poly(ϵ-caprolactone) nanofiber sheets, which
were coated or uncoated with gold nanoparticles as a potential

substrate for electrical stimulation. The differentiation of C2C12

cells was then measured over a seven-day period by the expression

of specific genes and the confocal microscopy analysis of the

arrangement and length of myotubes. It was demonstrated that

multi-scale biological constructs possessed variable mechanical

properties, supported skeletal muscle at different developmental

stages, and improved the parallel orientation of the muscle tube

with a variation of less than 15°. These scaffolds exhibited sustained

myogenic differentiation by promoting the regeneration of skeletal

muscle tissue (63). Moreover, Bao et al., investigated the beneficial

effect of carbon nanotubes (CNTs) with different graphene layers

and surface modifications on 3D models of intestinal organoids and

demonstrated that CNTs promote the growth of intestinal

organoids. Carbon nanotubes modify the metabolic profile of

intestinal organoids and increase mitochondrial activity,

respiration, and absorption of nutrients. These mechanisms

promote the proliferation and differentiation of intestinal

organoids through a synergistic effect. Thus, these results indicate

that CNT has the potential to be used in intestinal tissue
B

C

D E

A

FIGURE 3

Ti3C2TxMXene-Matrigel hydrogel potentiated hair cells formation of Cochlea organoids. (A) Schematic diagram of the preparation of Ti3C2TxMXene-
Matrigel. Appropriate amount of Ti3C2TxMXene solution was mixed with Matrigel, and the incorporating hydrogel was solidified at 37°C. (B)
Representative TEM (bar: 200 nm) or SEM (50 mm) image of the Ti3C2TxMXene nanosheets. (C) Overview of the generation of cochlea hair cells
through the differentiation of Cochlea organoids. (D) BF and green fluorescent (Atoh1-GFP) images of Cochlea-Orgs after 20 days of differentiation
in the differentiationmedium. (E) Confocal images of DAPI (blue), early hair cell marker Atoh1-GFP, and phalloidin (red) (bar:100 mm). TEM,
transmission electron microscope; SEM, scanning electron microscope; BF, bright field; GFP, green fluorescent protein; DAPI: 4’,6-diamidino-2-
phenylindole. Adapted with permission from (62), copyright 2022, Wiley-VCH GmbH.
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engineering (38). The main applications mentioned in this section

are summarized in Table 1.

3 The combined application of
organoids and nanomaterials provides
new strategies for disease research

As an emerging physiological model, organoids are applied

increasingly in more and more research. Compared with traditional

2D models, organoids based on 3D culture technology and self-

organization have characteristics that are closer to the original

physiological morphology of organs. Organs are more suitable for

research in organ development, drug research and development,
Frontiers in Immunology 07
and tumor treatment. In addition, organoids developed by patients’

own cells are expected to undergo autologous transplantation (64),

avoiding the limitations of medical ethics. Using the patient’s own

tumor cell culture organoids can provide personalized drug

screening for patients, achieving precise medical treatment.

Nanomaterial technology, as a rapidly changing research field, has

been widely applied in various aspects of biomedicine. The chemical

and physical properties of substances under nanostructures will

undergo significant changes, and many therapeutic strategies have

been developed. For example, the excellent optical properties of

some nanomaterials have shown great application prospects in

photothermal therapy (PTT) for cancer (65). The joint

application between nanomaterials and organoids has also

attracted the attention of researchers. Organoids can serve as
TABLE 1 Nanomaterials applied to assist in the construction of organoid 3D culture systems.

Methods Nanomaterials Organoid
type Functions References

3D
hydrogels

CNTs
Mice
intestinal
organoid

1. CNTs reduce the hardness of the extracellular matrix; 2. CNTs induce an
increase in mitochondrial activity, accelerated cellular respiration and
nutrient absorption.

(38)

SiNP with 25–30 nm in diameter and
1 nm in thickness;obtained from
Southern Clay Products Inc., USA

Mice B cell
follicle
organoid

SiNP increase the stability of the hydrogel system Making it closer to the
stiffness of lymphatic tissue.

(39)

BFP-1 laden MSNs (pep@MSNs)
Human bone
organoid

pep@MSNs release BFP-1 to induce osteo-differentiation after cell spreading
and expansion.

(40)

microwell
array

Nanofibrous concave microwells
(NCMs)

NA
Modify the properties of cell spheroids by controlling the shape of
nanofibrous concave microwells.

(45)

Nanofibrous scaffolds

Human
parotid
epithelial
organoid

Increas efficiency of acinar-like organoid formation. (43)

Nanofibrous

Human
hepatocellular
carcinoma
organoid

Enable microwell to possess both a high aspect ratio and a high well density (44)

Magnetic
levitation
culture

Nanoshuttles (NS), consisting of gold,
iron oxide, and poly-l-lysine;
NanoShuttle (NS, Nano3D
Biosciences, Houston, TX).

Murine
adipose tissue
organoids

By electrostatic attachment to the cell membrane, the cells are magnetized.
When cells are resuspended in medium, they can be suspended from any
stiff substrate by clumping them to the air liquid interface with a magnet
placed above the culture vessel.

(48)

NanoShuttle solution of magnetic
nanoparticles (NanoShuttleTM-PL)

Human fetal
osteoblast
organoids

Electrostatically attach to the cell membranes and endowed the cells with
magnetic properties

(50)

A nanoparticle assembly consisting of
poly-L-lysine (PLL),* magnetic iron
oxide (MIO; Fe3O4, magnetite), and
gold nanoparticles

Human
bronchiole
organoid

Biocompatible nanoparticles are taken up by cells and render them
magnetic, allowing them to be magnetically manipulated

(49)

C-Co nanoparticles
Breast cancer
organoid

This nanomaterial can be used for internalization by cancer cells to achieve
nanomagnetic suspension, and form three-dimensional cancer microtissues.

(51)

Nanoshuttle (Greiner Bio-One,
Monroe, NC)

Rat spinal
cord organoid

Imparting magnetic properties to cells (58)

Hydrophobic fumed silica powder
nanoparticles

Human
cardiac
organoid

The nanoparticles assit forming "liquid marbles" structures reducing the
scale of the experiment. Thus, this technic enables higherthroughput
applications

(53)

(Continued)
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models to verify the efficacy of targeted drugs based on

nanomaterials and conduct drug screening; In addition, some

nanoparticles can be used for live cell imaging and phenotypic

analysis in organ like models; In photodynamic and photothermal

therapy, researchers have developed many photosensitizers based

on nanomaterials and tested them in organoids; The excellent

properties of nanomaterials can also be used to develop

electrochemical biosensors, which have been tested in organoid

models in some studies. This article will discuss the joint application

of organoids and nanomaterials in these aspects.
3.1 Drug screening

The 2D monolayer culture technique lacks a substance-signal

connection within the organ; consequently, diseased cell types may

lack disease-related input signals. In particular, the biological

structure of organs, endogenous signaling, and cell-cell

interactions may have a direct impact on the pathogenesis of

disease. Therefore, 3D-cultured organoids that more closely

resemble the physiological state of the human body have emerged

as a model for drug testing. The majority of organoid-screenable

drugs are chemotherapy drugs, small molecule-targeted drugs, and

antibody drugs, among others. For instance, Zhang et al., conducted

high-throughput drug screening on organoids derived from 40

patients with hepatocellular carcinoma (HCC) and determined

that bortezomib (BTZ) was a highly cytotoxic small molecule

against HCC. Using the flash nanocomposite/nanoprecipitation

method, the researchers designed and manufactured sustained-

release BTZ nanoparticles (BTZ-NP). BTZ-NP formulations

demonstrated sustained BTZ release for 30 days. This BTZ-NP

formulation was found to be highly effective at reducing tumor size

and enhancing in vivo survival in three HCC animal models,

including when administered via hepatic arteries (66). Kim et al.,

incorporated gold nanoparticles modified with hyaluronic acid
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(HA-AuNP) into a muscle bundle-based biohybrid robot that

advances in response to electrical stimulation. HA-AuNP was

incorporated into the fasciculus in order to increase its

propulsion. Due to enhanced differentiation of HA-AuNPs and

enhanced fascicular conductivity, the movement of the

manufactured biohybrid robot was, therefore, enhanced.

Moreover, the addition of positive and negative inotropic drugs

produced dramatic motor changes in the manufactured biohybrid

robot. Combining neural tissues such as motor neuron organoids

and brain organoids, the proposed biohybrid robot demonstrated

the potential to screen drugs for neuromuscular diseases (67). Le

Joncour et al., described a protocol to obtain a hemo-cerebrospinal

fluid barrier (BBTB) mimic by cultivating endothelial cells in

contact with astrocytes on inserts at specific cell densities. In

addition to evaluating tumor cell targeting in the same assay, this

BBTB mimic can be used for quantitative and confocal imaging of

nanoparticles crossing the endothelial and astrocyte barriers. In

addition, the researchers demonstrated that the obtained data can

be used to predict the behavior of nanoparticles in animal models

used for preclinical research. This in vitro model can be adapted to

other neurodegenerative diseases for determining the efficacy of

new therapeutic molecules by BBBs and/or supplementation of

brain organoids to assess drug efficacy directly (68).
3.2 Live cell imaging

Live-cell imaging refers to live-cell research utilizing time-lapse

imaging technology; using live-cell imaging technology, the

dynamic life processes involved in the target can be studied, and

dynamic processes such as enzyme activity, signal transduction,

protein and receptor transport, and membrane recycling process

(endocytosis and exocytosis) can be detected. With the aid of live-

cell imaging technology, scientists can observe the internal structure

and physiological processes of cells in real-time or over time,
TABLE 1 Continued

Methods Nanomaterials Organoid
type Functions References

Bioreactor
NanoShuttle™-PL solution (Nano3D

Biosciences, cat. no. 005-NS).

Human
salivary gland
organoid

Support cell proliferation and metabolism (57)

Hydrophobic polytetrafluoroethylene
(PTFE) powder particles

Human
pancreatic
Mini-
organoids

Support cell proliferation and metabolism (54)

3D
bioprinting

Nanofibrillated cellulose (NFC)
Human
cartilage
organoid

This nanomaterial composes a novel bioink with alginate. The novel bioink
provids stability for 3D bioprinting of living cells at room temperature and
atmospheric pressure.

(60)

NanoShuttle™-PL

Human
secretory
epithelial
organoid

support cell proliferation and metabolism (57)

Ultrasmall superparamagnetic iron
oxide (USPIO) nanoparticles

Human bile
duct organoid

Serve as the contrast agent to monitor the repair of the lesion site and the
degradation of the bile duct in real time by magnetic resonance imaging
(MRI)

(59)
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thereby enhancing their understanding of cell operation processes.

Liu et al., for instance, described in vitro luminescence methods for

the detection of albumin, a marker of hepatocyte fate, and live-cell

labeling with antibody (Ab) and rosean caproic acid (RBHA)-

conjugated upconverted nanoparticles (UCNP). They used a

“disconnect” strategy: In the presence of albumin, the transfer of

energy to the quencher still inhibited the luminescence of the

nanoparticles. Correspondingly, luminescence was restored

following the albumin-antibody interaction under near-infrared

light. UCNPs-Ab-RBHA (UCAR) nanoprobes have a broad

detection range for albumin in a variety of biological samples.

When applied to hepatic ductal organoid media, UCAR monitors

hepatocyte differentiation in real-time by detecting secreted

albumin. In addition, UCAR can image cytoalbumin in cells,

organoids, and tissues in real-time. Accordingly, UCAR detected

a decrease in albumin in liver tissue and serum in a CCl4-induced

model of liver damage. Consequently, biocompatible nanoprobes

with excellent stability and sensitivity are available for quantifying

and imaging proteins in complex biological environments

(Figures 4 A–C) (69). Balyasnikova et al., showed that fluorescent

indocyanine lipids (ICL: DiD, DiI) formulated in polyethylene

glycolated lipid nanoparticles (PLN) penetrate and accumulate

efficiently in basement membrane (GBM). In vitro studies have
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demonstrated that PLN-formulated ICLs penetrate GBM spheroids

and organoids more efficiently than liposomal ICLs. In the

intracranial GBM model, more than 82% of the extravascular

regions of tumors in the PLN group were fluorescence positive

for ICL fluorescence 1 h after systemic injection, compared to 13%

in the liposome group. In addition, PLN-formulated ICL

accumulated in 95% of tumor myeloid suppressors and

macrophages, 70% of tumor regulatory T cells, 50% of tumor-

associated microglia, and 65% of non-immune cells 48 h after

injection. Thus, the PLN-formulated ICLs were superior to

pegylated liposomal doxorubicin and fluorescent dextran

extravasation, and they accumulate in aggressive tumor margins

and brain invaders more effectively. In contrast to liposomes, which

are stable in vitro and in vivo in serum, PLN degraded prior to

entering tumors, which may explain the disparity in their

extravasation efficiency. These findings suggest an excellent

opportunity to enhance therapeutic cargo delivery for invasive

GBM (71).

Xie et al., developed a fluorescent probe for COX-2 imaging

using a single-step procedure from rofecoxib. Using this novel

strategy, six rofecoxib analogs were designed in total. Several

analogs retained the relative COX-2-targeting activity of rofecoxib

and also exhibited attractive fluorescent properties, which are
B

C

D

E

A

FIGURE 4

NMs for cell imaging and biosensor in organoids. (A) The schematic diagram of UCAR synthesis process from NaYF4:Yb3+/Er3+@NaYF4 (UCNPs).
(B) The schematic illustration of albumin imaging in organoids using UCAR. (C) Ductal organoids and hepatocyte organoids were incubated with
UCAR (red) for 3 h, followed by fixation and DAPI (blue) staining, and imaged by two-photon microscope under 980 nm excitation (bar: 50 mm).
(D) Schematic representation of enzymatic reaction that allows detection of glutamate at the microelectrode, and graphical view showing PPD layer
acting as a diffusion barrier to biomolecule species. H2O2 can reach the electrode while larger molecules are rejected. (E) Immunostaining images of
hESC‐derived cortical dorsal forebrain organoids with strong expression of the glutamatergic marker, vGlut (red) and ventral forebrain organoids
with expression of GABAergic neuronal marker, GAD67 (green). UCAR: upconversion nanoparticles, antibody, and rose bengal hexanoic acid; PPD,
polypropylene diene monomer; hESC, human embryonic stem cell; GAD67, glutamate decarboxylase 67 kDa isoform. Adapted with permission from
(69), copyright 2022, Wiley-VCH GmbH and (70), copyright 2018, Multidisciplinary Digital Publishing Institute.
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studied experimentally and theoretically. Compared to Raw 264.7

cells expressing low levels of COX-2 and celecoxib-treated HeLa

cells, the most potent analog 2a1, demonstrated strong COX-2

fluorescence imaging in HeLa cells overexpressing COX-2. Using

brighter fluorescence in tissue sections or 3D organoids, 2a1 was

able to differentiate between human cancer tissue and adjacent

tissue. These findings demonstrate the potential of 2a1 as a near-

infrared fluorescent COX-2 probe for clinical cancer imaging in

humans (72). McCarthy et al., evaluated the ablation potential of

CD44-targeted polymer nanoparticles utilizing hyaluronic acid

(HA) as a targeting agent and coating it onto hybrid donor-

acceptor polymer particles (HDAPPs) to form HA-HDAPPs

using tumor organoid technology. In addition, only the

photothermal polymer poly[4,4-bis(2-ethylhexyl)-cyclopente[2,1-

b; Nanoparticles composed of 3,4-b’] was capable of producing

nanoparticles composed of dithiophene-2,6-diyl-alt-2, 1,3-

benzoselenodiazole-4,7-diyl] (PCPDTBSe) coated with HA to

form HA-BSe NP. Monitoring nanoparticle transport in 3D

organoids revealed a uniform diffusion of untargeted HDAPP

compared to nanoparticle-matrix interaction-induced attenuated

diffusion of HA-HDAPP. Calculating the diffusion curve suggests

that HA-HDAPPs transport may be explained by diffusion alone,

suggesting nanoparticle/cell-matrix interactions. In addition,

photothermal activation revealed that only HA-BSe-NPs

significantly reduced the viability of tumor cells in organoids.

Although CD44-targeted therapy has limited transport of

diagnostic nanoparticles, their targeted retention provides

increased heat for enhanced photothermal ablation in 3D, thereby

facilitating the evaluation of nanoparticle therapies prior to in vivo

testing (73). Fang et al. designed the near-infrared small molecule

fluorescent probe HD-Br with low toxicity and photostability for

super-resolution imaging of lysosomes. Thus, while labeling

lysosomes using the properties of the probe, lysosomal and

mitochondrial interactions could be dynamically tracked. Due to

the optimal near-infrared excitation and emission wavelengths of

the probe, 3D imaging of liver organoids and imaging of

Caenorhabditis elegans have been performed (74).
3.3 Photodynamic therapy

Photodynamic therapy (PDT) is a promising cancer treatment

technology that employs a photosensitizer to irradiate a specific

wavelength of light with targeted oxidative killing effects on

diseased tissues to treat cancer while minimizing damage to

normal tissues (75, 76). Nanomaterials have been commonly used

to construct photosensitizer delivery systems and target transport to

lesions; accordingly, certain nanomaterials can be used for PDT due

to their exceptional fluorescence properties (77). On the contrary,

organoids comprise an excellent PDT test bed. Therefore, the

combined application of the two can provide researchers with the

opportunity to develop new PDTs. By electroporating black

phosphorus quantum dots (BPQD) into exosome carriers (EXO),

Liu et al., were able to develop a photothermal agent that was highly

effective. The resulting BPQDs@EXO nanospheres (BE) exhibited
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good biocompatibility, long cycle times, and excellent tumor

targeting ability, thereby demonstrating remarkable photothermal

therapy (PTT) efficiency via efficient tumor ablation in vivo (78). Li

et al., described a nanoassembled structure based on black

phosphorus (BP) nanosheets and composed of cisplatin, BP,

polydopamine (PDA), and hyaluronic acid (HA) for controlling

cisplatin delivery, referred to as CBPH. In order to create CBPH, the

surface of BP was double-modified by PDA and HA, which

increased the stability, tumor-targeting ability, and photothermal

efficiency of BP. Cisplatin is released in response to internal and

external stimuli within the tumor microenvironment. In vitro

experiments demonstrated that CBPH-treated 4 T1 cells exhibited

an increased intracellular content of Pt and Pt-DNA adducts, which

improved upon exposure to NIR light, resulting in potent antitumor

effects via a synergistic mechanism (79). According to 2D

monolayer and 3D organoid studies, the combination of CBPH

and NIR phototreatment significantly inhibited the migration,

invasion, and regenerative capacity of 4 T1 cells. This novel BP-

based nanoassembly with controlled cisplatin tumor delivery and

breast cancer metastasis inhibition broadened the application of BP

in biomedical fields, thus holding great potential for future

advancement (79).

Iqbal et al. used titanium dioxide-adsorbed Fe(iii) to create

magnetic Fe-TiO(2) nanocomposites (NC), which played a role in

achieving T(1)-weighted MRI contrast enhancement and enhancing

the well-known photodynamic therapeutic efficacy of TiO(2)

nanoparticles. Interestingly, the proposed NC demonstrated T(1)

MRI contrast agent properties comparable to those of commercially

available contrast agents. Moreover, the cytotoxicity induced by

NCs in conventional methods is negligible and demonstrates

significant support for the proliferation of intestinal organoids. It

is anticipated that this research will serve as a guide for the

development of additional biocompatible magnetic titanium

dioxide-based nanosystems with multifaceted properties for

biomedical applications (80). Obaid et al., described a (Cet, anti-

EGFR mAb) photoimmune nanoconjugate (PIN) as well as in vitro

and in vivo models of stroma-rich dyspancreatic ductal

adenocarcinoma (PDAC) utilizing patient-derived pancreatic

cancer-associated fibroblasts (PCAFs). In dystopic connective

tissue proliferative tumors, Cet-PINs effectively penetrated blood

vessels up to 470 mm, and photodynamic activation resulted in

parenchymal tumor necrosis, which was not observed in T47D

tumors (low EGFR) or when non-targeted constructs were utilized

in both tumor types. Photodynamic activation of the Cet needle in

dysproliferative tumors resulted in collagen photoregulation and a

1.5-fold decrease in collagen density, indicating that PDP may also

be able to inhibit connective tissue formation. In addition, the in

vivo safety of photodynamically activated Cet-PINs is significantly

enhanced in comparison to non-targeted constructs. This is the first

study to demonstrate the actual value of NIR-activated PIN-

molecule targeting. This combined PIN platform and

heterologous cell model paves the way for a wider range of

multiplex combination therapies to synergistically control

fibroproliferative tumor progression and extend PDAC patient

survival (81).
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3.4 New electrochemical biosensors

In electrochemical biosensors, the sensitivity of electroanalytical

methods and the inherent bioselectivity of the biological component

are combined. The biological component in the sensor recognizes

its analyte, leading to a catalytic or binding event that ultimately

generates an electrical signal monitored by the transducer that is

proportional to the analyte concentration. Nanomaterials have

exceptional chemical, physical, electrocatalytic, and other

properties, in addition to their unique quantum size effects and

surface effects, which are anticipated to further improve the

performance of electrochemical sensing. Due to their stability,

speed, accuracy, and low cost, nano-electrochemical biosensors

have attracted a great deal of interest in the field of biomedicine

and have made significant progress (82). In recent years, there has

been an abundance of nanomaterial-based electrochemical sensors

designed to detect specific physiological indicators of organoids for

future research. For instance, Nasr et al., have developed a method

to functionalize borosilicate glass capillaries with nanostructured

textures as electrochemical biosensors to detect the release of

glutamate by brain organoids produced by human embryonic

stem cells (hESCs) that mimic different brain regions. For the

oxidation of glutamate, biosensors exhibit obvious catalytic

activity. Enzyme-modified microelectrodes can detect glutamate

from 5 mM to 0.5 mM over a broad linear range. At various time

points, measurements were performed on organoids, and results

were obtained that were consistent. These findings demonstrate the

biosensor’s dependability and utility for measuring glutamate

concentrations over time in a single culture system (Figures 4D,

E) (70).

Li et al., describe a procedure for the creation of cardiac cyborg

organoids: First, the stretchable grid nanoelectronics are laminated

onto continuous stromal sheets containing human induced

pluripotent stem cells (hiPSCs) or progenitor cells derived from

hiPSCs; subsequently, the cell pieces are aggregated into cell-dense

plates by cell-cell attraction-induced cell proliferation and

migration; and finally, the stretchable grid nanoelectronics are

embedded in the cell plates and folded into tightly packed

structures. The subsequent folding of the 2D cell plate/

nanoelectron mixture into a 3D structure with a bowl-like

geometry results in organ self-organization. Organogenesis

unfolds densely packed nanoelectronics and distributes their

structures throughout 3D organoids. Embedded three-

dimensional nanoelectronics continuously monitor the

electrophysiological behavior of stem cells and progenitor cells as

they continue to develop and differentiate into various types of cells

(83). A cyborg human brain organoid platform with “tissue-like”

stretchable mesh nanoelectronics is described by Le Floch et al. By

matching the mechanical properties of brain organoids and folding

through the organogenesis process of stem cells or progenitor cells,

stretchable electrode arrays can be distributed on 3D organoids. The

tissue-integrated, stretchable electrode array does not impede brain

organoid development, adapts to changes in volume and

morphology during brain organoids, and maintains stable

electrical contact with neurons within brain organoids throughout
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development. During early brain organoids development, electrodes

coupled seamlessly and non-invasively to neurons allow long-term

stable, continuous recording (84).
3.5 Immunotherapeutic studies combining
nanomaterials with organoids

Last but not the least, organoids offer new opportunities for tumor

immunotherapy. For example, Dijkstra et al. developed tumor

organoids by resecting tumor specimens from patients with

colorectal cancer (CRC) or doing core needle biopsies. Subsequently,

the authors co-cultured tumor organoids and the patient’s peripheral

blood to construct a ‘tumor organoid peripheral blood lymphocyte’ co-

cultured model and obtained a population of tumor reactive T cells.

These T cell populations kill tumor organoids and do not damage

healthy tissue organoids, demonstrating that the generation of tumor

specific T cells can be effectively induced by co-culture tumor organoids

with immune cells, providing a new strategy for tumor immunotherapy

(85). However, subject to the limitations of existing organoid structures

and functions, organoid based tumor immunotherapy studies often

require the participation of other regulators to mimic the complex

tumor immune environment. Many studies have shown that

nanomaterials exhibit excellent immunomodulatory effects (86).

Therefore, combining nanomaterials and organoid technology might

be a feasible strategy in the field of tumor immunotherapy. Q. Yin et al.

reported a nanoparticle-based approach for immune environment

modulation of tumor organoids. researchers formulated

nanoparticles containing immunostimulatory substances that

activated endogenous T cells in patient derived tumor organoids, and

finally such endogenous T cells could exert inhibitory effects on tumor

organoids (87). Zhang et al., using human brain organoids and

glioblastoma co-cultured model to study the modulation of glial cells

by dendritic polyglycerol sulfate (dPGS), demonstrated that dPGS has

the effect of reducing inflammatory markers and glioblastoma

invasiveness (88). Tumor immunotherapy research strategies of

nanomaterials combined with organoids have not received much

attention, and as a promising research direction, future investigators

may gain more discoveries from them.
4 Outlook and conclusions

This article reviews the application status of NMs in various

organoid culture systems and the application direction of NMs in

combination with organoids in the biomedical field. Organoids and

nanomaterials are two promising technologies that could revolutionize

biomedical research. They can be combined to create personalized

treatments, diagnostic and therapeutic devices, and various other

medical instruments. However, researchers must also consider the

magnitude of nanomaterials’ toxicity to human tissues; in this regard,

organoids serve as a useful model (89). The organoid model can help

verify the toxicity of nanomaterials without creating any ethical issues.

Numerous studies have demonstrated that not all nanomaterials are

non-toxic;Yuet al., for instance, investigated the intestinal toxic effects of
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graphene quantum dots (GQDs). Higher doses of OH-GQD caused

significant intestinal damage, as evidenced by increased intestinal

permeability, villi shortening, and crypt loss. Additionally, the authors

used isolated crypts to establish three-dimensional organoid cultures,

and the GQD treatment significantly reduced the size of surviving

intestinal organoids (90). Hou et al. provided evidence of the toxic

effects of plastic nanoparticles on the human intestinal system and

explored the mechanisms involved (91). Likewise, the toxicity of some

nanomaterials can affect the physiological properties of organoid

models. In a study of brain organoids by Huang et al., it

was demonstrated that silver nanoparticles inhibited brain organoid

development and promoted apoptosis (92), showing neurodevelopme

ntal toxicity. Therefore, the toxicity factors of nanomaterials should be

taken into account in the development of organoids utilizing

nanomaterials.

The application of nanomaterials in the field of organoids is not yet

sufficiently advanced. In the studies mentioned in this article, the roles

played by nanomaterials have assisted in the construction of cell

scaffolds, the delivery of substances, the culture scaffold of cells and

so on. Currently, no researchers have been able to use nanomaterials to

overcome the limitations of organoid development, yielding landmark

breakthrough results. Two reasons may have hindered the

development of nanomaterials in the field of organoids: (1) existing

nanomaterials technologies have not yet allowed the development of

good enough biomaterials to be adapted to the organoid culture system;

(2) the physiological and developmental landscape of the organ itself is

poorly studied, leading researchers to fail to uncover critical culture

factors and culture environments. But either factor, researchers will

need more work into nanomaterials or organoids.

In conclusion, the use of nanomaterials can assist researchers in

developing organoids that serve as suitable physiological models for

disease research. In addition to reducing the duration and cost of

drug development, the combination of the two can promote the

creation of innovative medical technologies. Accordingly, the

biomedical research applications of these two technologies appear

to be limitless with further research and development.
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