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Background: Patients with pancreatic duct adenocarcinoma (PDAC) have varied

prognoses that depend on numerous variables. However, additional research is

required to uncover the latent impact of ubiquitination-related genes (URGs) on

determining PDAC patients’ prognoses.

Methods: The URGs clusters were discovered via consensus clustering, and the

prognostic differentially expressed genes (DEGs) across clusters were utilized to

develop a signature using a least absolute shrinkage and selection operator

(LASSO) regression analysis of data from TCGA-PAAD. Verification analyses were

conducted across TCGA-PAAD, GSE57495 and ICGC-PACA-AU to show the

robustness of the signature. RT-qPCR was used to verify the expression of risk

genes. Lastly, we formulated a nomogram to improve the clinical efficacy of our

predictive tool.

Results: The URGs signature, comprised of three genes, was developed and was

shown to be highly correlated with the prognoses of PAAD patients. The

nomogram was established by combining the URGs signature with

clinicopathological characteristics. We discovered that the URGs signature was

remarkably superior than other individual predictors (age, grade, T stage, et al).

Also, the immune microenvironment analysis indicated that ESTIMATEscore,

ImmuneScores, and StromalScores were elevated in the low-risk group. The

immune cells that infiltrated the tissues were different between the two groups,

as did the expression of immune-related genes.

Conclusion: The URGs signature could act as the biomarker of prognosis and

selecting appropriate therapeutic drugs for PDAC patients.
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Introduction

Pancreatic duct adenocarcinoma (PDAC)is often called the

“king of cancer” (1, 2). Its prognosis is extremely poor making it

the fourth leading contributor to cancer-associated death globally

(3). Due to the lack of specific clinical manifestations in the first

stages of PDAC, only a small proportion of individuals are

identified with certainty at such early stages, and the vast

majority are diagnosed at a more advanced level (4). Despite

recent breakthroughs in the systematic treatment of PDAC, the

prognoses for those with the advanced disease remain dismal owing

to the disease’s rapid local progression and frequent distant

metastasis (5). Therefore, it is very important to find some pivotal

genes that may regulate the onset and advancement of PDAC and

serve as novel therapeutic targets for PDAC.

Recently, with the considerable progress of cutting-edge high-

throughput sequencing technologies and the growing improvement

of public databases, two authoritative databases, the Cancer

Genome Atlas (TCGA) and the International Cancer Genome

Consortium (ICGC), have collected considerable clinical,

pathological, and biological data of cancer patients (6, 7).

Researchers can use these data and a variety of bioinformatics

analysis methods to screen and predict new diagnostic and

prognostic markers for various cancers. Like most cancers, PDAC

is a complex malignant disease involving multiple molecules. At

present, researchers have successfully established a variety of

effective polygene prognostic risk models using bioinformatics

technology (8, 9). A multigene prognosis model is helpful to

evaluate the total survival period and recurrence risk of patients,

and identify high-risk patients with poor prognosis and timely and

systematic treatment, while for low-risk patients, unnecessary

treatment burden can be appropriately avoided. For example,

based on DNA methylation, autophagy, and immune-related

genes, the prognosis prediction models for PDAC have strong

prediction ability, which can be used for early diagnosis,

prognosis evaluation, and treatment (10–12). Ubiquitination-

related genes (URGs) have been reported as regulators of tumors,

affecting tumor cell cycle regulation, gene expression, and

progression (13). However, there is much less understanding of

ubiquitination in the PDAC microenvironment and prognosis.

In this study, to examine the link between URGs and the

prognosis of PDAC individuals, we used multivariate Cox and

LASSO regression analyses to identify three ubiquitination genes

that have the most impact on the prognosis of PDAC individuals

and constructed a three genes prognosis model. In addition, we

integrated clinicopathological parameters and risk scores to develop

a novel nomogram for clinical application, which can more directly

assess PDAC patients’ prognoses, and help achieve personalized

therapy. We then found the different immune statuses between

various URGs risk groups. Additionally, we examined the

prognostic model’s biological roles and signaling pathways to

further evaluate the probable molecular processes that influence

PDAC patients’ survival and prognoses.
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Materials and methods

Data retrieval

The TCGA database (TCGA-PAAD, https://portal.gdc.cancer.gov,

2022.11.21) was searched to obtain the gene expression data (FPKM) of

178 PDAC tumor samples, 4 normal tissue samples, and the related

clinical data. Genotype-Tissue Expression (GTEx) database (https://

commonfund.nih.gov/GTEx) was used to obtain the gene expression

data of pancreatic normal tissue. TCGA-PAAD was categorized into

the train and test groups according to the 1:1 ratio with R software

(Supplementary Table S1). The ICGC database (ICGC-PACA-AU,

https://dcc.icgc.org/) was searched, and 88 pancreatic cancer samples

along with their associated prognostic data were retrieved for external

verification after normalization. The GEO database (GSE57495, https://

www.ncbi.nlm.nih.gov/geo, 2022.11.21) was also obtained for external

verification. A search of the MSigDB database (http://

www.broad.mit.edu/gsea/msigdb/, 2022.11.21) yielded 79 URGs, and

the genes are listed in Supplementary Table S2. The research flowchart

was shown in Figure 1.
Consensus clustering analysis of URGs

The R package “limma” and “ConsensusClusterPlus” were used

for consistent cluster classification of PDAC (14). The association

between clusters and overall survival (OS) was analyzed by R packet

“survival”. The results were analyzed by R packages “pheatmap”,

“survival” and “survminer” as heat maps and Kaplan-Meier (KM)

curves. The “limma” program was employed to determine DEGs

between two clusters with the criteria of |log fold change (FC)| >1

and FDR < 0.05. Scores of infiltrating immune cells were derived via

the CIBERSORT method, and the difference in infiltration of

immune cells between the two subtypes was assessed by

“limma” package.
Development and verification of the URGs
prognostic signature

A univariate Cox regression analysis was conducted to determine

DEGs associated with prognosis. Then, using multivariate Cox and

least absolute shrinkage and selection operator (LASSO) regression

analyses by “caret”, “glmnet” and “survival” packages, thress genes

were selected and integrated into the prognostic signature (15). The

median risk score was used to classify individuals with PDAC into

two categories (low- and high-risk categories). Subsequently, the OS

was compared by KM analysis. OS and Receiver Operating

Characteristics (ROC) of subgroups were analyzed with the

“survival”, “survminer” and “timeROC” R packages for 1, 3, and 5

years. Specifically, the “ggplot2” R program was employed to conduct
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a principal component analysis (PCA). By incorporating risk

assessment with clinical data, a nomogram was developed. Next,

multifactor ROC was implemented to verify the predictive accuracy

of the nomogram.
Comparative analysis of the tumor
microenvironment between high- and
low-risk categories

Immune cell abundance (ImmuneScores) and stromal cell

abundance (StromalScores) were evaluated by the ESTIMATE

(16). To examine the variation in immune cell infiltration

between high-risk and low-risk categories, we used the TIMER,

CIBERSORT-ABS, QUANTISEQ, EPIC, MCPCOUNTER, and

CIBERSORT, XCELL, algorithms. The correlation of risk score

and immune cell was evaluated by “corrplot” packages. Differential

immune cell infiltration and immune function were probed via

single-sample gene set enrichment analysis (ssGSEA) using

“GSEABase” package. The expression patterns of immune-related

genes were also determined. Tumor immune dysfunction and

exclusion (TIDE) acted as a vital biomarker for immunotherapy

response. Additionally, we assessed whether there was any link

between TIDE scores and risk scores.
Frontiers in Immunology 03
Pathway analysis of the URGs signature

We examined the DEGs in the high- and low-risk categories.

The underlying pathway analysis associated with DEGs was

enriched through the Gene Ontology (GO), Disease Ontology

(DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis using “DOSE”, “org.Hs.eg.db” R packages. To assess the

probable biological functioning differences between high- and low-

risk categories, a gene set variation analysis (GSVA) was carried out.
Drug sensitivity analysis

We investigated the potential for URGs signature to serve as a

predictor for medications used in chemotherapy and targeted

treatment. Subsequently, the half-maximal inhibitory concentration

(IC50) was computed with the “pRRophetic” method (1, 8).
Reverse transcription quantitative
polymerase chain reaction

Pancreatic tissue samples were collected from the Ningbo First

Hospital, including eight normal pancreatic tissue samples and eight
FIGURE 1

The flowchart of the current study. *P < 0.05.
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pancreatic cancer tissue samples. The study was approved by the

Ethics Committee of the Ningbo First Hospital. All research was

performed in accordance with relevant guidelines/regulations. Trizol

was employed to isolate total RNA, after which it was reverse-

transcribed into the cDNA template. Next, RT-qPCR was

conducted with the aid of SYBR Green Real-Time PCR Master Mix

Plus (Toyobo). Analyses were conducted according to MIQE

guidelines. The internal reference gene utilized was b-Actin.
Supplementary Table S3 outlines the amplification primer sequences.
Cell culture and S100A2-knockdown
by siRNA

PANC-1 cells were cultured in DMEM with 10% fetal bovine

serum under standard culture conditions. Using Lipofectamine

2000 (Invitrogen), siRNA (100 nm) was transfected into cells 48

hours after transfection according to manufacturer’s instructions.

Colony formation assay was evaluated by crystal violet staining

methods. PANC-1 cells were seeded at 1000 cells per well to six‐well

plates then cultivated for 14 days. Sequentially, cell number at each

well was counted after staining.
Transwell assay

Transfected PANC-1 cells were seeded at 2× 105 cells per upper

transwell chamber, cultivated with or without 100 mL of

reconstituted Matrigel-coated membrane for 36-48 hours. Then

stained the cells with crystal violet. Thereafter, number of migration

or invasion cells was count.
Statistical analysis

Data were presented as the mean ± SEM. Significant differences

were evaluated by performing Student’s t-test using Prism software

v6.02. Moreover, the Kruskal-Wallis test was used for variables with

more than two groups. The Kruskal-Wallis test and Wilcoxon rank

sum test were applied to analyze correlations. Correlation analysis

between two groups of variables was used spearman correlation

coefficient. Statistical significance was set at P < 0.05.
Results

Identification of URGs clusters in PDAC

The link between URGs expression and PDAC subtypes was

first analyzed using a consensus clustering method. As depicted in

Figures 2A–C, the CDF curve was applied to categorize patients

with PDAC into two clusters (C1 and C2). In contrast with C2, C1

individuals diagnosed with PDAC had remarkably lower survival

duration (Figure 2D). The correlation between URG clusters,

clinical characteristics, and URGs expression in PDAC patients is

depicted in Figure 2E. Most URGs were expressed higher in C1 than
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in C2, and the Grade of the samples in C1 was higher, while T, N,

stage, age and gender had no significant difference between C1

and C2.

Since immune cells perform an instrumental function in the

onset and advancement of PDAC, we next evaluated the variations

in infiltrating immune cells between the two clusters. In cluster 2,

the level of monocytes, resting mast cells, naive B cells, and CD8 T

cells were higher than in cluster 1, while Tregs, Eosinophils,

Macrophages M0 and Mast cells activated were lower than in

cluster 1 (Supplementary Figure S1).
Development and validation of the
ubiquitination-related prognostic signature

Using the “limma” program, 996 DEGs were found between

two clusters with the criteria of |log fold change (FC)| >1 and FDR <

0.05. Thereafter, 43 ubiquitination-related DEGs whose expression

levels were remarkably different between PDAC and normal tissues

were identified (Figures 3A, B). Next, 12 prognosis-related

DEGs were found by the univariate Cox analysis. Subsequently,

we completed a LASSO analysis to remove the overfitting genes

and the URGs signature of 3 genes (SLC22A17, UCHL1 and

S100A2) was created (Figures 3C, D). The equation applied to

derive the risk score is as indicated: risk score= (SLC22A17 ×

(-0.260926538020362) + (UCHL1 × (-0.286371148071792) +

(S100A2 × (0.157355046660652).

Patients with PDAC were classified into low- and high-risk

categories as per the median risk score value (Figure 3E). The

variations in the expression of these two genes between the two risk

categories are illustrated in Figure 3F. Also, patients having elevated

risk scores had a greater fatality rate (Figure 3G). Moreover, the

ROC curve was performed to assess the URGs signature, which

manifested that the AUC values for 1-, 2- and 3-year periods were

0.710, 0.706, and 0.748, respectively (Figure 3H).

Furthermore, we verified the aforementioned findings in test

datasets. All patients with PADC in the test datasets were also

classified into low- and high-risk categories. The KM analysis

disclosed that the low-risk individuals exhibited a more favorable

prognosis in contrast to those at high risk in TCGA-test, TCGA-all,

and ICGC-PACA-AU (Figures 4A–C). The AUC values of the ROC

curve of 1-, 2-, and 3-year periods were 0.738, 0.654, and 0.723,

correspondingly, in TCGA-test (Figure 4D), 0.723, 0.707, and 0.704

in TCGA-all (Figure 4E), and 0.726, 0.738, and 0.759 in ICGC-

PACA-AU (Figure 4F). In addition, another test dataset GSE57495

was also used for validation. Patients having high risk scores had a

greater fatality rate, the AUC values for 1-, 2- and 3-year periods were

0.706, 0.733, and 0.871, respectively (Supplementary Figure S2).
Construction of a nomogram for PDAC

Multivariate and univariate Cox regression analyses proved that

risk score independently acted as a robust prognostic marker (P <

0.05) (Figures 5A, B). An innovative nomogram was developed

using the URG signature and clinical variables from the training
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1171811
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1171811
dataset to further exploit the URG signature’s prognostic potential

(Figure 5C). The predictive 1, 2, 3-survival rate was close to the

actual observation (Figure 5D). In addition, the ROC analysis was

conducted to evaluate the nomogram’s prognosis-predicting value.

For 1-year survival times, the AUC value was 0.745 (nomogram),

0.731(risk score) (Figure 5E). For 2-year survival times, the AUC

value was 0.776 (nomogram), 0.680(risk score) (Figure 5F). For 3-

year survival times, the AUC value was 0.802 (nomogram), 0.708

(risk score) (Figure 5G). These results revealed that this novel

nomogram could act as an admirable prognosis prediction model.
Frontiers in Immunology 05
The tumor microenvironment analysis in
high- and low-risk groups

The TME serves as a crucial indicator of the biological behavior

of the tumor. ESTIMATE analysis revealed that the ImuneScores,

StromalScores, and ESTIMATEScores were all lower in the high-risk

category in contrast with the low-risk category (Figure 6A). ssGSEA

analysis found less infiltration of the B cells, CD8+ T cells, DCs, iDCs,

Neutrophils, Mast cells, T helper cells, Tumor-infiltrating cell (TIL),

and T cells regulatory (Treg) in the high-risk patients in contrast with
A B

D

E

C

FIGURE 2

URG clusters and clinical characteristics between PDAC samples in two clusters. (A, B) The cumulative distribution function curve illustrates the most
effective way of URG clustering. (C) The consensus matrix of the clustering analysis via k-means clustering (k = 2). (D) Kaplan–Meier (KM) curves for
the overall survival (OS) of PDAC patients among different URG groups. (E) Heatmap of URG expression in PDAC patients with different clinical
characteristics and URG clusters.
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the low-risk patients (Figure 6B). Some immunologic functions,

including T cells co-stimulation, CCR, Type II IFN response, and T

cell co-inhibition were also improved in the low-risk patients

(Figure 6C). Additionally, the distinctions of immune cell levels

between the two risk groups were also investigated through
Frontiers in Immunology 06
CIBERSORT, MCPCOUNTER, QUANTISEQ, EPIC, TIMER,

CIBERSORT-ABS, and XCELL. As per the findings, the low-risk

category had remarkably higher levels in most immune cells,

including naive CD4 T cells, CD8 T cells, DCs, Cancer associated

fibroblast, NK cell, B cell and Monocyte (Figure 6D). This may
A B

D

E

F

G

H

C

FIGURE 3

Construction of the prognostic signature. (A, B) The different expression of DEGs between PDAC and normal tissue. (C) LASSO coefficient profiles
(y-axis) of the gene sets and the optimal penalization coefficient (l) via 3-fold cross-validation based on partial likelihood deviance. (D) The dotted
vertical lines represent the optimal values of l. The top x-axis has the numbers of gene sets, whereas the lower x-axis revealed the log (l). (E) Risk
score and survival outcome of each case. (F) Heatmap showed the expression of 2 genes in two risk groups. (G) The KM curve showed that patients
in the high-risk group had a worse prognosis. (H) The AUC for 1-, 2- and 3-years survival.
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explain why the low-risk category has a superior prognosis.

Additionally, Figure 6E depicted the distribution of low- and high-

risk individuals across multiple immune subtypes.

We next examined the low- and high-risk patients in terms of the

expression patterns of immune-related genes. A majority of immune-

related genes were discovered to be expressed at low levels in the high-

risk category (Figures 7A—D). TIDE scores acted as a vital biomarker

for immunotherapy response. The link between the TIDE score and

risk score was also investigated. TIDE scores were found to be lower in

the high-risk category in contrast with the low-risk category

(Figure 7E). Furthermore, high-risk patients respond better to

immunotherapy in contrast with those at low risk (Figure 7F).
Frontiers in Immunology 07
Comparative analysis of mutations and
functional evaluation of the URG signature

The somatic mutations of PDAC with high and low URG scores

were examined to adequately describe the pathobiological

significance of the URG score. The high-URG score group had a

greater somatic mutation frequency (94.05%) in contrast with the

low-URG score group (70.51%) (Figures 8A, B). The GO, KEGG, and

DO enrichment analyses were conducted to investigate the latent

biological roles of the DEGs. Accordingly, the GO result revealed that

the DEGs were primarily enriched in signal release, external side of

plasma membrane, and antigen binding (Figures 9A, C). The KEGG
A

B

D

E

FC

FIGURE 4

Validation of the prognostic signature. KM curve showed that patients in the high-risk group had a worse prognosis in TCGA-test (A), TCGA-all (B),
and ICGC-PACA-AU (C). The AUC for 1-, 2- and 3-years survival in TCGA-test (D), TCGA-all (E), and ICGC-PACA-AU (F).
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result suggested that the DEGs were primarily enriched in insulin

secretion, cAMP signaling pathway, and Chemokine signaling

pathway (Figure 9B). The DO result suggested that the DEGs were

primarily enriched in cell type benign neoplasm, adenocarcinoma

and pancreas disease (Figure 9C). In addition, the GSVA indicated

that many pathways were substantially altered between the high- and

low-risk PDAC patients (Figure 9D).
The correlation analysis of drug sensitivity
and risk score

We correlated the PDAC patients’ risk scores with the IC50

values of chemotherapy and targeted treatment medications to

learn more about the possible variations in drug sensitivity
Frontiers in Immunology 08
between low- and high-risk categories. The IC50 values of 17-

AAG and PD-0325901 were significantly higher in low-risk group,

whereas the IC50 values of Phenformin, Axitinib, AZD8055 and

TAK-715 were lower in low-risk group (Figure 10).
Knockdown of S100A2 inhibits the
malignant biological behavior of
pancreatic cancer

First, we detected the expression of three risk genes by RT-

qPCR. The results showed that the expressions of three risk genes in

pancreatic cancer tissue were higher than normal pancreatic tissue

(Figure 11A). Next, we knocked down of S100A2 in PANC-1 cells

to explore the role of S100A2 in pancreatic cancer. The results
A B

D

E F G

C

FIGURE 5

Construction and assessment of nomogram. (A) Univariate Cox regression (B) multivariate Cox regression analyses. (C) The prediction of nomogram
in the TCGA-train dataset. (D) Calibration plots for the nomogram. The multifactor AUC for 1- (E), 2- (F), and 3-years (G) survival.
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showed that S100A2 knockdown reduced the cloning, migration,

and invasion ability of PANC-1 cells (Figures 11B–D). In addition,

it was found that S100A2 knockdown increased the ubiquitination

of b-catenin, thereby reducing its protein expression (Figure 11E).

These results suggested that S100A2 knockdown might inhibit the

malignant biological behavior of pancreatic cancer cells by

increasing the ubiquitination of b-catenin.
Discussion

Pancreatic cancer is a particularly deadly malignancy of the

digestive system (18). Although there is a new understanding of the
Frontiers in Immunology 09
molecular mechanism of PDAC, and new progress in surgery,

adjuvant therapy, and chemotherapy, patients diagnosed with

PDAC have not seen a substantial improvement in their

prognoses (19). For a long time, the prognosis of PDAC has been

judged mainly based on clinical manifestations, tumor stage,

pathological grade, lymph node metastasis, neurovascular

invasion, and other pathological characteristics (19, 20).

Consequently, predicting a patient’s prognosis in PDAC using

these markers is challenging. Additionally, in the early diagnosis

of PDAC, the detection of single tumor markers, such as CEA,

CA199, and CA125, is difficult to reach the ideal level of sensitivity

and specificity (21–26), which can no longer meet the current

clinical needs. Recently, Wu et al. found a nine-gene signature,
A

B

D E

C

FIGURE 6

Analysis of immune conditions of high- and low-risk groups. (A) Differences in immune microenvironment scores between the two groups. (B) The
analysis of differences in immune cell infiltration between the two groups with ssGSEA. (C) The analysis of differences in immune functions between
the two groups with ssGSEA. (D) The analysis of differences in immune cell infiltration between the two groups with Multiple algorithms. (E) The
distribution of patients with high- and low-risk in different immune subtypes. *P <0.05; **P <0.01; ***P <0.001.
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which could anticipate the OS duration of PDAC patients (27). As

per the expression of immune-related genes such as MMP14 and

INHBA, Xu et al. developed a predictive risk model to assess PADC

patients’ prognoses and identify PDAC therapy opportunities (28).

However, there is much less understanding of ubiquitination in the

PDAC prognosis and microenvironment. Here, we built a risk

model using three SLC22A17, UCHL1 and S100A2, to indicate

the outcomes of PDAC. The risk model also presented as a potential

biomarker to reflect the sensitivity of targeted therapy and immune

status in tumor tissues. Our study analyzed the mRNA expression

data of these three risk model genes.

First, we identified 996 DEGs between the two clusters of

ubiquitinated subtypes, and further screened 12 genes correlated

with the prognosis from these DEGs utilizing univariate Cox

regression analysis. Thereafter, we utilized LASSO regression
Frontiers in Immunology 10
analysis to obtain the optimal genes for predicting outcomes.

Lastly, a prognostic risk model of PDAC containing three

ubiquitination-related genes (SLC22A17, UCHL1 and S100A2)

was constructed, and KM and ROC curve analyses were

employed in TCGA, ICGC and GEO data sets to confirm the

effectiveness of the model for prognostic evaluation of PDAC. Wei

et al. found that high expression of SLC22A17 indicates poorer

prognosis in gastric cancer (29). UCHL1 might play a role in the

malignant progression of triple-negative breast cancer by

maintaining dryness and promoting cell invasion (30). Li et al.

revealed S100A2 promoted glycolysis and proliferation of colorectal

cancer through GLUT1 regulation (31). In this study, we found

S100A2 knockdown could inhibit the malignant biological behavior

of pancreatic cancer cells by increasing the ubiquitination of b-
catenin. However, the significance of other two genes in PDAC
A B

D

E F

C

FIGURE 7

Assessment of Immunotherapy response of high- and low-risk groups. (A–D) The immune-related gene expression levels in different groups. (E) The
TIDE scores in different groups. (F) Prediction immunotherapy response in IMVigor210. *P <0.05; **P <0.01; ***P <0.001.
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A B

FIGURE 8

The somatic gene mutations in the high-risk group (A) and low-risk group (B).
A B

DC

FIGURE 9

Function analysis. (A) GO analysis of differential genes between high and low-risk groups. (B) KEGG analysis of differential genes between high- and
low-risk groups. (C) DO analysis of differential expression genes. (D) GSVA enrichment analysis in high- and low-risk groups.
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remains uncertain and this is a direction of pancreatic cancer

research in the future.

The tumor microenvironment (TME) is constituted of diverse

immune cells, interstitial cells, extracellular matrix, and tumor

blood vessels, which stimulate the onset and advancement of

cancer (31). The infiltrating immune cell levels in TME usually

change with tumorigenesis and progression (32). Our analysis

illustrated that PDAC patients having high risk scores recorded

lower ImuneScores, StromalScores and ESTIMATEScores. We

found that most of the immune cells (B cells, CD8+ T cells, Treg,

T helper cells, Neutrophils, TIL, and Mast cells) were substantially

reduced in the high-risk patients in contrast with the low-risk

patients. Additionally, the majority of immune-related genes tended

to be downregulated in the high-risk population, whereas the low-
Frontiers in Immunology 12
risk category illustrated considerable improvement in immunologic

functioning. Research suggests that immune cells are important

components of anti-tumor immunity (33). One reason high-risk

individuals have such a dismal prognosis is that they have fewer

immune cells and attenuated immunological functioning. TIDE

scores acted as vital biomarkers for immunotherapy response (34).

Our results highlighted that high-risk individuals with PDAC

responded more positively to immunotherapy compared to those

in the low-risk category and that the TIDE scores were lower in the

high-risk patients in contrast with those in the low-risk category.

The findings of this research shed light on the involvement of

ubiquitination in PDAC and may be utilized to direct

immunotherapeutic and chemotherapeutic interventions for

PDAC patients.
FIGURE 10

Drug sensitivity analysis in high and low-risk groups.
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Nevertheless, our investigation does have a few drawbacks.

Case selection bias could be present since the vast majority

of analyses use data from publicly available data sets

and all samples are retrieved retroactively. Furthermore,

additional in vitro and in vivo tests are warranted to corroborate

our findings.
Frontiers in Immunology 13
In summary, we designed a molecular cluster and prognostic

signature based on URGs, which aid in anticipating survival,

directing immunotherapy, and determining clinical outcomes.

This research potentially provides deeper insights into the

function of ubiquitination in PDAC and facilitates the

development of more effective therapies for this disease.
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FIGURE 11

S100A2 knockdown inhibits the malignant biological behavior of PDAC cell. (A) Detection of risk gene expression in pancreatic cancer tissues and
normal tissues by RT-qPCR. (B) S100A2 knockdown inhibits the cloning of PANC-1 cell. (C) S100A2 knockdown inhibits the migration ability of PANC-1
cell. (D) S100A2 knockdown inhibits the invasion ability of PANC-1 cell. (E) S100A2 knockdown increased the ubiquitination of b-catenin. *P <0.05.
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