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Background: Idiopathic pulmonary fibrosis (IPF) has attracted considerable

attention worldwide and is challenging to diagnose. Cuproptosis is a new form

of cell death that seems to be associated with various diseases. However,

whether cuproptosis-related genes (CRGs) play a role in regulating IPF disease

is unknown. This study aims to analyze the effect of CRGs on the progression of

IPF and identify possible biomarkers.

Methods: Based on the GSE38958 dataset, we systematically evaluated the

differentially expressed CRGs and immune characteristics of IPF disease. We

then explored the cuproptosis-related molecular clusters, the related immune

cell infiltration, and the biological characteristics analysis. Subsequently, a

weighted gene co-expression network analysis (WGCNA) was performed to

identify cluster-specific differentially expressed genes. Lastly, the eXtreme

Gradient Boosting (XGB) machine-learning model was chosen for the analysis

of prediction and external datasets validated the predictive efficiency.

Results: Nine differentially expressed CRGs were identified between healthy and

IPF patients. IPF patients showed higher monocytes and monophages M0

infiltration and lower naive B cells and memory resting T CD4 cells infiltration

than healthy individuals. A positive relationship was found between activated

dendritic cells and CRGs of LIPT1, LIAS, GLS, and DBT. We also identified

cuproptosis subtypes in IPF patients. Go and KEGG pathways analysis

demonstrated that cluster-specific differentially expressed genes in Cluster 2

were closely related to monocyte aggregation, ubiquitin ligase complex, and

ubiquitin-mediated proteolysis, among others. We also constructed an XGB

machine model to diagnose IPF, presenting the best performance with a

relatively lower residual and higher area under the curve (AUC= 0.700) and

validated by external validation datasets (GSE33566, AUC = 0.700). The analysis
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of the nomogram model demonstrated that XKR6, MLLT3, CD40LG, and HK3

might be used to diagnose IPF disease. Further analysis revealed that CD40LG

was significantly associated with IPF.

Conclusion: Our study systematically illustrated the complicated relationship

between cuproptosis and IPF disease, and constructed an effective model for the

diagnosis of IPF disease patients.
KEYWORDS

idiopathic pulmonary fibrosis disease, cuproptosis, machine learning, immune
infiltration, molecular clusters
1 Introduction

IPF is among the most severe form of interstitial pneumonia,

characterized by chronic and progressive lung scars and usual

interstitial pneumonia (1). IPF has a poor prognosis, with a

median life expectancy of only 2-3 years from diagnosis (2).

Epidemiological studies of North America, the US, and Europe

demonstrated that the number of IPF patients increased, placing a

growing economic burden on global health care (1). Currently, the

primary drugs used to treat IPF are pirfenidone and nidanib.

Nevertheless, there are some limitations in preventing disease

progression and improving the quality of life of patients because

of the treatment efficacy of Individual differences, and side effects

(gastrointestinal intolerance, skin reactions and diarrhea) caused by

the Nintedanib and Prefenidone (3). IPF is the result of various

mechanisms. Alveolar epithelial injury and infiltration of

inflammatory cells, such as neutrophils, macrophages, and

lymphocytes, are the primary causes of the destruction of lung

tissue structure, alveolar atrophy and collapse, and regression of

pulmonary vessels (4). The accumulation of extracellular matrix in

lung tissue leads to fibroblast foci and collagen fiber reconstruction

(5). In addition, the development of IPF is favored by the

interaction of epithelial-mesenchymal transition (EMT),

interleukin, TGF-b, and oxidative stress.

Cuproptosis, a novel unique non-apoptotic programmed cell

death, targets and leads the aggregation of fatty acylated

components and the loss of Fe-S cluster-containing proteins,

causing proteotoxic stress and cell death (6). At present, more

articles reveled the cuproptosis-related genes (CRGs) as a bio-

marker play an important role in the development of disease,

such as stomach adenocarcinoma (STAD), hepatocellular

carcinoma (HCC) and head and neck squamous carcinoma

(HNSC) (7–9). Furthermore, copper is essential for all living

organisms and serves as a catalyst, antioxidant defense,

autophagy, and even arouses immune activation (10). Notably,

copper homeostasis strongly correlates with the concentration of

T cells, neutrophils, and macrophages (11). In the development of

pulmonary fibrosis, H2O2 was increased in alveolar macrophages

due to the translocation of Cu and Zn-SOD to the mitochondrial

intermembrane space (12). In addition, NLRP3, a cuproptosis gene,
02
was involved in TGF-b and EMT signaling pathways and promoted

fibrosis progression (13, 14). Therefore, we hypothesize that

cuproptosis-related genes (CRGs) may play a role in developing

IPF. This study investigated the underlying mechanism and

immune cell infiltration on IPF and analyzed the effect of CRGs

on IPF. In this study, the underlying mechanism and immune cell

infiltration of IPF was investigated, and the effect of CRGs on IPF

was analyzed.
2 Materials and methods

2.1 Raw data acquisition and processing

Three datasets (GSE38958, GSE28042, and GSE33566) were

downloaded from the database of the website GEO (GEO,

www.ncbi.nlm.nih.gov/geo). Database GSE38958 (platform

GPL5175), which includes 45 healthy and 70 IPF blood samples,

was selected to analyze the relationship between CRGs and IPF and

construct the machine learning model to diagnose IPF. Datasets

GSE28042 (GPL6480 platform) (containing 19 healthy and 75 IPF

blood samples) and GSE33566 (GPL6480) (containing 30 healthy

and 93 IPF blood samples) were used for the validation of the IPF

prediction model and following analysis. The three datasets were

processed with limma package and normalized using the

normalizeBetweenArrays method.
2.2 CRGs difference expression and
correlation analysis

According to Peter Tsvetkov’s report (6), 19 cuprotosis-related

genes were reported and analyzed, including NFE2L2, NLRP3,

ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, and

DLST. These genes were selected for analysis of CRGs expression in

the blood of 45 healthy and 70 IPF patients. The differentially

expressed cuprotosis-related genes was analyzed by the wilcox.test,

and p-values < 0.05 was considered to be significantly different. The

heatmap and boxplot were exhibited using R packages heatmap and
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ggpubr. Then, the conspicuous expression of CRGs in IPF was

selected for correlation analysis. The results were exhibited using

the R packages corrplot (version 0.92) and circlize (15). P-values

below 0.05 represented a significant correlation.
2.3 Relationship between cuproptosis-
related genes expression and immunity

CIBERSORT R package (16) and LM22 signature matrix were

applied to esimate the relative abundance of 22 types of immune

cells infiltrated in IPF patients. Correlations between CRGs and

immune cells infiltration level in IPF were performed using the R

packages tidyverse (17), ggplot2 (18), and reshape2. The sum of the

22 immune cells proportions in each sample was 1 (16), and p < 0.05

represented a significant correlation.
2.4 IPF patients classification analysis

The R package ConsensusClusterPlus (19) and the k-means

algorithm with 1,000 iterations were applied to classify 70 IPF

samples into different clusters based on the differentially expressed

CRGs profile acquired from 2.2. The maximum subtype k was 9 and

the optimal clusters numeber was comprehensively evaluated based

on the result of the cumulative distribution function (CDF) curve,

consensus matrix and consistent cluster score (> 0.9).
2.5 Gene set variation analysis

GSVA, a non-parametric unsupervised analytical method, is

mainly used to evaluate the results of gene enrichment by R

packages limma, GSEABase, and GSVA. We downloaded

“c2.cp.kegg.v7.4.symbols” and “c5.go.bp.v7.5.1.symbols” from the

MSigDB website database. Finally, the top 10 GO and KEGG

pathways were selected for statistical analysis and ridge mapping.

The absolute value of t value of GSVA score more than 2 was

considered as significantly altered.
2.6 Weighted gene co-expression network
analysis analysis

Co-expression modules were identified by the R package

WGCNA (20). The top 25% of genes with the highest variance

were used for subsequent WGCNA analysis. We then constructed

an adjacency matrix with the optimal soft power value and

converted it into a topological overlap matrix (TOM). Based on

the hierarchical clustering tree algorithm, the modules were

determined using the TOM dissimilarity measure (1-TOM) and

the minimummodule size was set to 100. Each module was assigned

a random color. Module eigengene represented the gene expression

profiles in one module. The correlation between genes, clinical

phenotype, modules, and disease status were also identified. The

modular significance showed the relationship between modules and
Frontiers in Immunology 03
disease status. Gene significance was described as the correlation

between a gene with the clinical phenotype.
2.7 Construction and verification of
multiple machine learning model

Four machine-learning models: Support Vector Machines

(SVM), XGB, generalized linear model (GLM), and Random

Forest (RF) models were built by the R package caret, and all the

models worked with default parameters and assessed via 5-fold

cross-validation. Data were randomly divided into a training set

(70%, N=81) and a test set (30%, N=35). Interpretive analysis of the

4 models was performed by the DALEX package (21), and then the

cumulative residual distribution map and boxplot distribution map

of these machine-learning models were visualized. The ROC curves

were obtained and visualized using the pROC R package. Next, the

optimal learning model was determined, and the top 4 key genes

were selected as the predictive genes related to the IPF.

Subsequently, the ability of the predictive model was validated

with GSE33566 using the ROC analysis. In addition, we

performed the correlation between four key genes and TGF-b and

constructed a gene-gene interaction network by the GeneMANIA

website for key genes (http://www.genemania.org). R package rms

was used to build a nomogram model, and the predictive power of

the nomogram model was tested by the calibration curve and

decision curve analysis (DCA).
2.8 The analysis of clinical features

To determine the relationship between key genes and clinical

indicators associated with IPF, including age, diffusing capacity of

the lung for carbon monoxide (DLCO), and FVC, the spearman

correlation analysis was performed to explore the correlations. R

packages ggplot2, ggpubr (version 0.4.0), and ggExtra (version

0.10.0) were used to draw the scatter plot. P < 0.05 represented a

significant correlation and R represented a correlation coefficient.
3 Results

3.1 CRGs expression and immune
activation in IPF

We systematically analyzed the differentially expressed

curproptosis genes between healthy and IPF patients using the

GSE38958 database. There were 9 CRGs with significant differences

in IPF patients including, NLRP3, ATP7B, ATP7A, SLC31A1,

FDX1, LIAS, LIPT1, DLAT, GLS, CDKN2A, and DBT. Among

them, 3 CRGs in IPF samples were higher than that in healthy

subjects, including NLRP3, SLC31A1, and CDKN2A, while others

exhibited a lower expression, especially GLS (Figures 1A, B). The

location of 9 CRGs on chromosomes is shown in Figure 1C. We also

performed the correlation analysis among the 9 CRGs to examine

whether these genes play an essential functional role in the
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progression of IPF. The results showed an apparent synergistic

effect among the LIPT1, LIAS, GLS, DBT, ATP7A, and DLAT, and

the most robust antagonistic effect was found between CDKN2A

and LIPT1, LIAS, GLS, DBT, ATP7A and DLAT (Figure 1E). The

Cyclograph was constructed to detect further the relationships of

the differentially expressed CRGs (Figure 1D).

We estimated the relative percent of 22 types of immune cells in

healthy and IPF patients to find immune cell infiltration differences.

The boxplot results revealed that IPF patients had higher immune cell

infiltration of Monocytes and Monophages M0 than healthy subjects

but lower naive B cells and memory resting T cells CD4 infiltration

(Figure 1F). Meanwhile, we also examined the correlation between

CRGs and immune infiltration. The results showed a strong positive

relationship between activated dendritic cells and LIPT1, LIAS, GLS,

and DBT. In addition, these four genes also showed a positive

relationship with plasma cells, memory activated and resting T

Cells CD4, and naive T cells CD4. However, a negative relationship

was found between the macrophages M0 and LIPT1, LIAS, GLS,

DLAT, DBT, and ATP7A. The monocytes displayed the most robust

positive relationship with NLRP3 and a negative relationship with

GLS (Figure 1G).
3.2 Identification of cuproptosis
related IPF subtypes

To elucidate the cuproptosis-related expression patterns in IPF,

we classified 70 IPF samples based on differentially expressed CRGs.
Frontiers in Immunology 04
The cluster numbers were most stable when the k value was set to

two (k = 2). Moreover, the CDF curves fluctuated within a

minimum range at a consensus index of 0.2 to 0.8 (Figures 2A,

E). When k = 2 to 9, the area under the CDF curves exhibited the

difference between the two CDF curves (k and k-1) (Figure 2D).

Furthermore, the consistency score of each subtype was >0.9 only

when k = 2. (Figure 2C). Furthermore, the two clusters showed

significant differences (Figure 2B).
3.3 CRGs and immune cell infiltration in
different cuproptosis related IPF subtypes

The differences in immune cell infiltration and differentially

expressed CRGs were also examined in different cuproptosis-related

IPF subgroups, and there were 9 differentially expressed CRGs

between Cluster 1 and Cluster 2. ATP7A, LIAS, LIPT1, DLAT, GLS,

and DBT overexpressed in Cluster 1, and CDKN2A overexpressed

in Cluster 2 (Figures 3A, B). Moreover, Cluster 1 exhibited higher

immune cell infiltration of naive T cells CD4, memory resting and

activated T cells CD4, but a lower level of monocytes, macrophages

M0, and resting mast cells (Figure 3C).
3.4 GSVA analysis

To explore the GO function and KEGG pathway in different

clusters, the GSCA algorithm was applied to quantify the test value of
D
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G

C

FIGURE 1

CRGs expression and immune cells infiltration in IPF. (A) Significantly differential expressed CRGs between normal individuals and IPF patients
-Heatmap. (B) The CRGs expression between Normal group and IPF group. (C) The location of 9 CRGs on chromosomes. (D) Correlation of
differentially expressed CRGs - Cyclograph. (E) Correlation of differentially expressed CRGs, red and green represent positive correlation and
negative correlation, respectively-Pie chart. (F) The relative percent of immune cells in Normal and IPF groups. (G) The differentially expressed CRGs
expression in immune cells. *p< 0.05, **p< 0.01, ***p< 0.001.
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GSVA between clusters. The results of GO analysis indicated that

Cluster 2 IPF group was enriched in the ubiquitin ligase complex,

ubiquitin mediated proteolysis, tRNA methylation, monocyte

aggregation, nucleotide sugar metabolic process, cell-cell adhesion via

plasma membrane adhesion molecules, circulatory system

development, myotube differentiation, and synaptic membrane,

among others (Figure 4A). KEGG pathway enrichment showed that

Cluster 2 IPF was enriched in aminoacyl tRNA biosynthesis, RNA

polymerase, and calcium signaling pathway, among others (Figure 4B).
3.5 WGCNA co-expression analysis

To find out the essential gene modules related to the IPF, the co-

expression network and modules were constructed using the

WGCNA algorithm, and the top 25% of differently expressed

genes were opted to further analysis. When the optimal value of

soft power was set to 5, the co-expressed gene modules were

identified, and R2 was equal to 0.92 (Figure 5A). Thus, 8 distinct

modules with different colors were obtained, and the topological

overlap matrix was displayed (Figures 5B–D). The yellow module

strongly correlated with the IPF with a correlation coefficient of 0.6

and p value of 9×e-24 (Figure 5E). A total of 253 genes were in the

yellow module, as shown in Figure 5F.
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We also used the R package WGCNA to analyze the

correlations between cuproptosis clusters and critical genes

modules. The scale-free network was ensured when b = 4 (scare-

free R2 = 0.97) (Figure 6A). There were 8 significant modules

determined (Figures 6B–D), and the turquoise module had the

highest relationship with IPF (Figure 6E). The scatter plot portrayed

the relationship between members in the turquoise module and the

significant gene of Cluster 2 (Figure 6F).
3.6 Establishment and evaluation of
machine learning

To identify specific genes with a high diagnostic capacity for

IPF, 66 core genes (Figure 7A) were used to train a machine-

learning model with different methods, including SVM, XGB, GLM,

and RF. XGB and GLM models displayed a relatively low residual

(Figures 7B, E). Subsequently, the top 10 feature variables of each

method were ranked according to the root mean square error

(RMSE, Figure 7D). Moreover, all four machine learning models

were evaluated for the discriminative performance by calculating

receiver operating characteristic (ROC) curves, and all the

performance of models were compared by AUC-ROC value (RF,

AUC = 0.729; SVM, AUC = 0.630; XGB, AUC= 0.700; GLM, AUC=
D
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C

FIGURE 2

Identification of cuproptosis-related IPF subtype. (A) Consensus matrix when k=2. (B) CDF delta area curves when k was ranged 2 to 9.
(C) Representative cumulative distribution function (CDF) curves. (D) The score of consensus clustering. (E) Principal component analysis (PCA) of
two subtypes.
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0.599, Figure 7C). Above all, the XGB model was the best model to

distinguish IPF. Moreover, the 4 genes, including XKR6, MLLT3,

CD40LG and HK3, were applied as predictor genes for

further analysis.

To further assess the predictive efficiency of the XGB model a

clinical nomogram was created, which assigns all risk factors to

points and judges the IPF risk according to the total points

(Figure 8D). The R package rms made the calibration curve and

DCA to assess the predictive efficiency of the nomogram model.

Results showed that the nomogram had high accuracy in diagnosing

IPF, with the predicted probability presenting a small error and the

decision curve of the model far from the curve of all models

(Figures 8A, B). We then validated the 4-gene prediction model

with ROC analysis, which showed satisfactory performance with an

AUC value of 0.7 in the GSE33566 database (healthy vs. IPF

patients) (Figure 8C). The results indicated that our diagnosis

model is effectively distinguishes IPF from healthy patients.
Frontiers in Immunology 06
3.7 The relationship analysis between
clinical characteristics and the 4
critical genes

To explore the correlation between clinical characteristics and

the 4 most critical genes, we enrolled them in the GSE38958

databases to validate the correlation between the predictor genes

and clinical characteristics. DLCO was selected as the factor related

to IPF. The results revealed that 3 genes exhibited a positive

correlation with DLCO (p < 0.05, CD40LG, R = 0.35; XKR6, R =

0.29; MLLT3, R = 0.36), except HK3 (R = -0.44, p < 0.01)

(Figures 9A–D).

We also constructed the heatmap portraying the correlation

between the 4 genes and genes related to TGF-b in the GSE38958

and GSE33566 databases. Two databases showed that XKR6,

MLLT3, and CD40LG had a negative correlation with TGFb1,
while HK3 presented a positive relationship (Figure 9E, F).
A

B

C

FIGURE 3

Identification of CRGs expression and immune characteristics between the two cuproptosis related IPF subtype (clusters). (A) CRGs expression
between the two cuproptosis related IPF clusters - Heatmap. (B) CRGs expression between the two cuproptosis related IPF clusters. (C) The relative
percent of 22 infiltrated immune cells between two cuproptosis related IPF clusters. *p< 0.05, **p< 0.01, ***p< 0.001.
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A

B

FIGURE 4

GO enrichment and KEGG pathway enrichment between the two cuproptosis related IPF subtype (clusters). (A) GO enrichment. (B) KEGG
pathway enrichment.
DA

B

E FC

FIGURE 5

Co-expression network of differential expressed genes between IPF patients and normal individuals. (A) Exponential curve fitting and mean
connectivity of power value. (B) The correlation between different modules in dendrogram. (C) Gene clustering dendrogram with dynamic
identification of modules. Different colors show distinct co-expression modules. (D) Network heatmap of the correlation among 8 modules.
(E) Module-trait relationships. Each row represents a module; each column represents a clinical status. (F) Scatter plot between module
membership in yellow module and the gene significance for IPF.
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DA

B

E FC

FIGURE 6

Co-expression network of differential expressed genes between two cuproptosis related IPF clusters. (A) Exponential curve fitting of power value.
(B) The correlation between different modules in dendrogram. (C) Gene clustering dendrogram with dynamic identification of modules. Different
colors show distinct co-expression modules. (D) Network heatmap of the correlation among 8 modules. (E) Module-trait relationships. Each row
represents a module; each column represents a clinical status. C1 and C2 represent cluster 1 and cluster 2, respectively. (F) Scatter plot between
module membership in turquoise module and the gene significance for cluster 2.
D

A B

E

C

FIGURE 7

The construction and verification of Study machine learning. (A) The core gene of differently expressed gene in IPF and IPF clusters. (B) Boxplots of
four machine learning models. (C) ROC analysis of machine learning models. (D) Top gene of four models. (E) Cumulative residual distribution of
XGB, RF, GLM and SVM machine learning models.
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Meanwhile, the gene-gene interaction network for CD40LG was

constructed using GeneMANIA, and the functions with high

significance were selected to display (Figure 9G). Moreover, the

function and pathways analysis revealed that CD40LG was

prominently enriched in tumor necrosis factor (TNF) receptor

binding, TNF-mediated signaling pathway, CD40 receptor

complex, NF-kB signaling pathway, and cytokine and regulation

of immune effector process (Figure 9H).
4 Discussion

IPF is a progressive and irreversible lung disease with different

etiology. There is no effective treatment but lung transplantation for

IPF patients (22). A new mechanism, copper-dependent cell death,

has been reported to be strongly associated with disease progression

through the aggregation of lipoylated mitochondrial enzymes and

loss of iron-suffer cluster proteins (6). As there was no study about

the role of CRGs in IPF patients blood, more studies needed to

analysis the relationship between CRGs and IPF in blood samples,

and the correlation between CRGs and immune cells in IPF

patients. Therefore, we sought to clarify the role of CRGs in the

progression of IPF and the effect on the immune microenvironment

of IPF patients, which may provide a novel treatment approach for

IPF. Additionally, gene signatures related to cuproptosis were used

to predict IPF subtypes, and define biomarkers for the diagnosis

of IPF.

It’s reported that the CRGs, such as FDX1, LIAS, DLD, PDHA1,

PDHB, DLAT, and LIPT1, were down-regulated in the lung tissues

of pulmonary fibrosis mouse model, and the same results were
Frontiers in Immunology 09
obtained via analysis of lung tissues scRNA-seq data for human

pulmonary fibrosis (23). In our study, differential expression

analysis showed that there were 9 different expressed CRGs in

blood samples of IPF patients compared with healthy individuals,

suggesting that CRGs may participate in the development of IPF. Of

the 9 CRGs, NLRP3, SLC31A1, and CDKN2A were upregulated in

IPF, while ATP7A, LIAS, LIPT1, DLAT, GLS, and DBT were

downregulated in IPF patients than healthy subjects. It also has

been reported that the overactivation of NLRP3 in IPF patients

leads to the increased production of Class I of collagens (24, 25),

and NLRP3 inflammasome can promote fibrosis via pathways

involving TGF-b1 and EMT (26). Besides, CDKN2A, a cell cycle

negative regulator, is involved in the progression of dysregulated

epithelial cell senescence and triggering the activation of fibroblasts

and myofibroblasts in IPF patients (27, 28).Therefore, CRGs may

attend to the progression of IPF, but more studies are needed.

Subsequently, we further calculated the correlation between the

CRGs to clarify the relationship between cuproptosis regulators and

IPF. There was an apparent synergistic effect among LIPT1, LIAS,

GLS, DBT, ATP7A, and DLAT, and a robust antagonistic effect

between CDKN2A and LIPT1, LIAS, GLS, DBT, ATP7A, and

DLAT in IPF patients. Moreover, the abundance of immune cells

differed between healthy subjects and IPF patients. In this study, IPF

patients exhibited high infiltration levels of monocytes, which was

consistent with previous studies, and can be considered a biomarker

for assessing IPF patients (29). Further, based on the expression

landscapes of CRGs, we used unsupervised cluster analysis to

illustrate the different cuproptosis regulation patterns in IPF

patients. Two distinct cuproptosis-related clusters were identified.

We found that most CRGs were downregulated in the Cluster 2 IPF
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FIGURE 8

Validation of the 4-gene-based XGB model. (A, B) Predictive efficiency of the nomogram model by the DCA (A) and calibration curve (B). (C) ROC
curve of the 4-gene-based XGB model in the GSE33566. (D) The construction of nomogram for predicting the rate of IPF based on the 4-gene-
based XGB model.
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group. In addition, the cluster 2 group had a high infiltration of

monocytes and macrophages M0, and low infiltration of naive T

cells CD4 and memory resting and activated T cells CD4. Elevated

monocyte counts in IPF have been associated with worse outcomes

(30, 31). Growing data also shows monocyte-derived cells in lungs

display discrete profibrotic phenotypes characterized by the

expression of markers of alternative macrophage activation (32).

In addition, macrophages are activated by activators such as IFN-g,
IL-10, or IL-3, acquiring profibrotic phenotype (33). Even more,

macrophages can be polarized to M1 or M2 by these chemokines

and release TGF-b and IL-10 to regulate endothelial cell

proliferation, fibroblast activation, angiogenesis, and extracellular

matrix (ECM) deposition to facilitate fibrosis formation (34, 35).

Few T cells are in the fibrotic lung compared to the healthy lung

(36). Above all, we believe that cluster 2 IPF patients are more likely

to have worse outcomes, but more studies are needed. GO

enrichment showed that the Cluster 2 IPF group was enriched in

the ubiquitin ligase complex, ubiquitin-mediated proteolysis, tRNA

methylation, monocyte aggregation, nucleotide sugar metabolic

process, cell-cell adhesion via plasma membrane adhesion

molecules , c irculatory system development , myotube

differentiation, and synaptic membrane, among others. KEGG

pathway enrichment showed that Cluster 2 IPF was enriched in

aminoacyl tRNA biosynthesis, RNA polymerase, calcium signaling

pathway, and other pathways.

The performance of 4 selected machine-learning models (RF,

SVM, GLM, and XGB) was compared and selected based on the
Frontiers in Immunology 10
high predictive efficacy in the testing cohort. Results showed that

the XGB-based machine-learning model had the best performance

in predicting the IPF. We then selected 4 critical genes (XKR6,

MLLT3, CD40LG, and HK3) to construct a 4-gene-based XGBand

nomogram models. The constructed 4-gene-based XGB model

could accurately predict IPF, validated in other external datasets

(AUC = 0.700), which provides new insights into the diagnosis of

IPF. The nomogram was established for the diagnosis of IPF,

exhibiting effective predictive efficacy with possible clinical

application. Next, we analyzed the correlations between the

clinical characteristics of IPF and 4 critical genes. DLCO was used

to evaluate the diffusing capacity of the lung for carbon monoxide

and aiding in IPF diagnosis. Our result revealed that only DLCO

strongly correlated with the selected 4 genes. Additionally, an

increasing number of studies have confirmed that TGF-b1 is a

fundamental pathological mechanism, which contributes to the

progression of IPF by promoting the transformation of fibroblast

into myofibroblast, epithelial cells into mesenchymal cells, the

production of collagen, filamentous actin, and a-SMA (37).

Therefore, we performed a correlation analysis between these 4

predictor genes and TGF-b in two databases. The results suggested

that HK3 was positively associated with TGF-b1, while the other 3
predictor genes were negatively correlated with TGF-b1 levels.

Overall, the 4-gene-based XGB model is a satisfactory indicator of

the diagnosis of IPF.

We also constructed a gene-gene network and performed Go

and KEGG analyses of similar genes related to the 4 critical genes.
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FIGURE 9

Correlation of clinical characteristics with CRGs based on two datasets and the construction of gene-gene network. (A–D) The correlation between
key genes and DLCO. (E, F) The correlation between four key genes and TGF-b in GSE38958 (E) and GSE33566 (F). (G) The gene-gene interaction
network of CD40LG from GeneMANIA. (H) Go enrichment and KEGG pathway enrichment for genes related to CD40LG.
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GO analysis of CD40LG showed that tumor necrosis and NF-kB
were primarily enriched. Many studies have demonstrated that the

tumor necrosis factor is primarily produced by macrophages and

monocytes linked to a number of pulmonary inflammatory

diseases, including IPF (38, 39). It also has been widely reported

that NF-kB is one of the essential pathways in the progression of

IPF, and blockade of NF-kB prevented lung fibroblast-mediated IL-

6, IL-8, and CXCL6 cytokine secretion as well as accumulation of

profibrotic factors (40). Meanwhile, regulation of the immune and

tumor necrosis factor-mediated signaling pathways are enriched in

KEGG. Therefore, CD40LG may correlated with the progression of

IPF and the immune system. HK3, one of the 4 critical genes, is a

protein-coding gene related to the glycolysis pathway. It has been

observed that glycolysis reprogramming drives fibroblast activation

when macrophages direct the metabolic fate of adjacent cells,

implying that HK3 may be influenced in the development of IPF

(41). MLLT3, as a critical gene, acts upstream of or within the

negative or positive regulation of the canonical Wnt pathway, which

has been reported to be associated with lung fibroblast activation,

differentiation, and dysregulation of repairing processes (42).

Although the correlation between IPF and MLLT3 has not been

reported, we believe that MLLT3 may play a role in regulating the

Wnt signaling pathway to participate in the progression of IPF. In

addition, the correlation of XKR6 with IPF has not been reported.

However, the mechanism of the 4 critical genes in regulating IPF

progression needs more studies.

This study has some limitations. Firstly, more IPF samples are

needed to demonstrate the correlation between CRGs and IPF

disease or immune cells infiltration. Secondly, it is necessary to

do more experiments to clarify the regulation and mechanism of the

4 critical genes identified and CRGs in the progression of IPF.

Lastly, more clinical features are required to confirm the validity of

the predictive model.
5 Conclusions

In conclusion, our study clarified that CRGs might play a role in

IPF progression. We also showed the correlation between CRGs and

immune cell infiltration, and elucidated the significance of immune

heterogeneity in IPF patients with distinct cuproptosis clusters. The

prognostic model based on the 4 critical genes may allow a new way

to predict the prognosis of IPF.
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