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Background: Chronic rhinosinusitis (CRS), whose prevalence and pathogenesis

are age-related, is characterized by nasal tissue eosinophil infiltration.

CD40-CD40 ligand (CD40L) pathway involves in the eosinophil-mediated

inflammation, and inducible co-stimulator (ICOS)–ICOS ligand (ICOSL) signal

can strengthen CD40-CD40L interaction. Whether CD40-CD40L and

ICOS-ICOSL have a role in the development of CRS remains unknown.

Objectives: The aim of this study is to investigate the association of

CD40-CD40L and ICOS-ICOSL expression with CRS and underlying

mechanisms.

Methods: Immunohistology detected the expression of CD40, CD40L, ICOS,

and ICOSL. Immunofluorescence was performed to evaluate the

co-localizations of CD40 or ICOSL with eosinophils. Correlations between

CD40-CD40L and ICOS-ICOSL as well as clinical parameters were analyzed.

Flow cytometry was used to explore the activation of eosinophils by CD69

expression and the CD40 and ICOSL expression on eosinophils.

Results: Compared with the non-eCRS subset, ECRS (eosinophilic CRS) subset

showed significantly increased CD40, ICOS, and ICOSL expression. The CD40,

CD40L, ICOS, and ICOSL expressions were all positively correlated with

eosinophil infiltration in nasal tissues. CD40 and ICOSL were mainly expressed

on eosinophils. ICOS expression was significantly correlated with the expression

of CD40-CD40L, whereas ICOSL expression was correlated with CD40

expression. ICOS-ICOSL expression positively correlated with blood

eosinophils count and disease severity. rhCD40L and rhICOS significantly

enhanced the activation of eosinophils from patients with ECRS. Tumor

necrosis factor–a (TNF-a) and interleukin-5 (IL-5) obviously upregulated CD40

expression on eosinophils, which was significantly inhibited by the p38 mitogen-

activated protein kinase (MAPK) inhibitor.
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Conclusions: Increased CD40-CD40L and ICOS-ICOSL expressions in nasal

tissues are linked to eosinophils infiltration and disease severity of CRS.

CD40-CD40L and ICOS-ICOSL signals enhance eosinophils activation of

ECRS. TNF-a and IL-5 regulate eosinophils function by increasing CD40

expression partly via p38 MAPK activation in patients with CRS.
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Introduction

Chronic rhinosinusitis (CRS) is a chronic inflammatory disease in

the nose and paranasal sinus characterized histologically by the

infiltration of inflammatory cells, especially eosinophils, with high

prevalence worldwide (1–3). CRS exhibits high heterogeneity due to

its numerous etiologies, and age may be one factor. Existing research

studies indicate that there is increasing prevalence among elderly

patients compared with their younger counterparts as well as higher

incidence of nasal polyposis and worse computed tomography (CT)

score (4–7). Another factor to consider is the different endotypes of

CRS. On the basis of the extent of tissue eosinophilia, CRS can be

classified into eosinophilic CRS (ECRS) and non-eosinophilic (non-

eCRS) subtypes (8, 9). Compared with non-eCRS, ECRS is associated

with worse disease severity, a higher risk of comorbid asthma, and a

higher ratio of recurrence and revision surgery (10–12). There are

significant geographic and ethnic differences in the tissue eosinophilic

infiltration, ECRS is predominant in Western white patients and less

common in East Asians (13–15). However, it has been reported that the

proportion of ECRS has increased over time in Korea and China (16,

17). Thus, identifying specific mediators that drive the development of

eosinophils and modulating their functions, particularly of adult

patients with ECRS, will be important for developing novel

treatment strategies and improving treatment outcomes.
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CD40 is a cell surface receptor that belongs to the tumor necrosis

factor–R (TNF-R) family (18). Although the primary function was

initially restricted to B and T lymphocytes, CD40 has been explored

more extensively because of its broad expression on non-lymphocytic

cell types (19–23). Ohkawara et al. reported that eosinophils isolated

from allergic subjects express CD40, which is biologically functional.

Interestingly, they also found that CD40 was detected in nasal polyp

(NP) tissues but not in normal nasal mucosa (inferior turbinate) and

primarily in eosinophils. At the same time, they demonstrated that

CD40 expression in eosinophils could be upregulated by exposure to

immunoglobulin A (IgA) immune complexes and downregulated by

interleukin-10 (IL-10) and the synthetic steroid budesonide (24). These

observations suggest that the CD40-CD40 ligand (CD40L) pathway

may contribute to the development of eosinophil-mediated

inflammation. It is therefore reasonable to speculate that the CD40-

CD40L signal pathwaymay be involved in the regulation of eosinophils

function in CRS.

CRS without NPs (CRSsNP) and CRS with NPs (CRSwNP) are

the two phenotypes of CRS according to the presence or absence of

NP (1, 3). CRSwNP is often characterized by the local production of

polyclonal IgE idiotypes (25–29). As for the induction and

regulation of IgE synthesis, a two-signal model is accepted. The

first signal is provided by cytokines IL-4 or IL-13, which are secreted

by T cells, mast cells, and basophils. The second signal is CD40-

CD40L interaction, which is well established as a key signal for the

induction of isotype switching in B cells (30–33). Interestingly,

inducible co-stimulator (ICOS)–ICOS ligand (ICOSL) ligation can

promote the expression of CD40L, which, in turn, strengthens

CD40-CD40L interaction to provide a co-stimulatory signal for

B-cell activation. In addition, one very recent study has shown that

ICOS co-stimulation induces CD40L expression by human T cells

(34, 35). Nevertheless, the role of ICOS-ICOSL and its interaction

with CD40-C40L in CRS has not been investigated.

Therefore, in the current study, we investigated adult patients

with CRS, with more attention on ECRS, for their CD40 and C40L

levels, as well as ICOS and ICOSL levels. We characterized the

clinical relevance of CD40-CD40L and ICOS-ICOSL, especially

with eosinophils, in CRS, and we explored potential mechanisms

that underlie their role in the pathogenesis of CRS.
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Material and methods

Study subjects

We assessed 31 patients with CRS treated with functional

endoscopic sinus surgery (FESS) from April 2021 to May 2021 in

the otolaryngology department of The First Affiliated Hospital of

Soochow University. The basic information and clinical

characteristics of these patients are displayed in Table 1. The

diagnosis of sinus disease was based on clinical symptoms and

related examinations such as nasal endoscopy and CT, according to

the guidelines of the European Position Paper on Rhinosinusitis

and Nasal Polyps 2020 (EPOS2020) and the Chinese guidelines for

diagnosis and treatment of CRS (2018). Participants whose age

ranged from 18 to 70 were included. Our study excluded patients

treated with oral, nasal, or systematic corticosteroids or antibiotics;

patients treated antileukotrienes 4 weeks preceding the operation;

patients suffering from upper respiratory tract infections 4 weeks

preceding the operation; and patients developing immune

disorders, pregnancy, malignancy such as nasopharyngeal

carcinoma, and carcinoid such as inverting papilloma. At the

same time, subjects who had CRS because of specific causes,
Frontiers in Immunology 03
cystic fibrosis, fungal sinusitis, vasculitis, or primary ciliary

dyskinesia were excluded.

Preoperative demographic information including sex, age,

phone number, and drug allergies was obtained from each

patient. Medical history including rhinorrhea, nasal blockage,

hyposmia, facial pressure or pain, headache, duration, and prior

nasal surgery was recorded carefully. Rhinology specialists classified

CRS into CRSwNP and CRSsNP through nasal endoscopy and CT,

into ECRS and Non-eCRS through the following hematoxylin–

eosin (HE) staining. CT findings were graded according to the

Lund–Mackay method. Blood samples were taken to perform

complete blood cell counts. Recurrence of CRS was defined as the

presence of NPs after nasal endoscopy. The study was approved by

the ethics committee of The First Affiliated Hospital of Soochow

University (No. 215).
Histological analysis

Nasal tissues were obtained from ECRS (NPs) and non-eCRS

(NPs or uncinate process), respectively. Tissues were immediately

fixed in 10% formalin, embedded in paraffin, and cut into thin

sections. Sections were stained with HE to differentiate CRS into

various eosinophilic phenotypes. Representative HE staining

pictures of non-eCRS and ECRS are shown in Supplementary

Figure 1A. The numbers of eosinophils and total inflammatory

cells beneath the epithelial surface per high-power field (HPF)

(×400) were quantified by two independent researchers, and the

percentage of eosinophils in total infiltrating inflammatory cells

(eosinophils percentage) was calculated. Five fields were randomly

selected, and then, the average percentage was analyzed. According

to previous studies of ECRS in China, we defined ECRS as

eosinophil percentage exceeding 10%, as proposed by Cao

et al. (36).

At the same time, the histological patterns of each patient were

evaluated according to histopathological characteristics referring to

basement membrane thickening, goblet cell hyperplasia,

subepithelial edema, submucous gland formation, eosinophils

infiltration, fibrosis, and atypical cells by two independent

researchers. Briefly, there were four main classifications:

edematous: ECRS with a great number of eosinophils, goblet cell

hyperplasia, and thickening of the basement membrane; CRS

characterized by numerous seromucous glands and ductal

structures; fibroinflammatory CRS: lack of stromal edema and

goblet cell hyperplasia and frequently showed evident dilated

vessels and a great number of fibrocytes; atypical CRS with

distinct stromal cells that were bizarre and atypical. In addition,

six patterns can be presented further: edematous, edematous +

fibrotic, edematous + hyperplasia, fibrotic, hyperplasia, and

atypical. We examined the HE data within four and six patterns

to more thoroughly describe the histologic traits of patients with

CRS. Representative HE stainings of the histologic pattern are

shown in Supplementary Figure 1B.
TABLE 1 Demographic and clinical profile of patients involved in the
present study.

ECRS Non-eCRS
10(9M/1F) 21(11M/10F)

Age (years, mean ± std) 39 ± 13 46 ± 15

Patients with bilateral lesion, n (%) 5 (50%) 10 (48%)

Lund–Mackay score
(mean ± std)

13 ± 4 9 ± 4

Eosinophils in PB
(109/L, mean ± std)

0.37 ± 0.25 0.10 ± 0.08

Histological pattern

Edematous 3 (30%) 1 (5%)

Fibrotic 0 (0%) 7 (33%)

Hyperplasia 0 8 (38%)

Atypical 0 0

Edematous + fibrotic 4 (40%) 3 (14%)

Edematous + hyperplasia 3 (30%) 2 (10%)

CRSwNP, n (%) 10 (100%) 17 (81%)

Comorbidity*

Atopy 3/7 (43%) 5/17 (29%)

Asthma 1/7 (14%) 0/17 (0)

Aspirin intolerance 1/7 (14%) 1/17 (6%)
ECRS, eosinophilic chronic rhinosinusitis; non-eCRS, non eosinophilic chronic rhinosinusitis;
M, male; F, female; std, standard deviation; CRSwNP, chronic rhinosinusitis with nasal polyp.
*Missing of clinical data.
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Immunohistochemistry analysis

For expression analysis of CD40, CD40L, ICOS, and ICOSL,

formalin-fixed and paraffin-embedded nasal biopsies were cut into

4-mm-thick sections deparaffinized by serial treatment.

Deparaffinized sections were subjected to antigen retrieval by

heating the sections in sodium citrate buffer (pH 6.0). After

blocking the endogenous peroxidase in 3% hydrogen peroxide

and with 3% bovine serum albumin, the sections were incubated

overnight at 4°C in the presence of rabbit-derived primary

antibodies against CD40 (1:100; Affinity Biosciences, AF5336),

CD40L (1:200; Abcam, Cambridge, MA, USA, ab65854), ICOS

(1:500; Abcam, Cambridge, MA, USA, ab224644), and ICOSL

(1:200; Abcam, Cambridge, MA, USA, ab233151). Thereafter,

each section was incubated with HRP (horseradish peroxidase)–

conjugated anti-rabbit secondary antibody (1:500) for 50 min. After

washing, sections were incubated with 3,3′-diaminobenzidine

tetrahydrochloride and immediately washed under tap water after

color development. Then, sections were counterstained with

hematoxylin and mounted with dibutyl phthalate xylene. The

sections were blindly examined with no awareness of the clinical

data with an Olympus CX40 Microscope (Olympus Optical Co.,

Hamburg, Germany). The average number of positive cells found in

five randomly chosen HPFs (×200) was used to calculate the

expression level.
Immunofluorescence analysis

For further analysis of co-localization of CD40 and ICOSL with

eosinophils, immunofluorescence was performed using TSA

(Tyramide signal amplification) technique. Sections were

deparaffinized, and antigen retrieval was performed in Tris–

ethylenediaminetetraacetic acid buffer (pH 9.0). After blocking

the endogenous peroxidase, sections were incubated overnight at

4°C in the presence of primary antibody against PRG2 (1:1,000;

Abcam, Cambridge, MA, USA, ab236851), which is a major basic

protein, the predominant constituent of the crystalline core of the

eosinophil granule. Then, HRP-conjugated anti-rabbit secondary

antibody (1:500) was incubated with sections for 50 min at room

temperature. Sections were then incubated with 488 TSA at room

temperature for 10 min. Next, antigen retrieval was performed

before incubating with primary antibody against CD40 (1:250;

Affinity Biosciences, AF5336) or ICOSL (1:200; Abcam,

Cambridge, MA, USA, ab233151). After washing, sections were

incubated with CY3-conjugated anti-rabbit secondary antibody

(1:300). The DNA dye 4′,6-diamidino-2-phenylindole was used to

visualize the nucleus. Results were captured under a fluorescence

microscope. Agents not mentioned specifically obtained from

Servicebio technology Co., Wuhan, China. For co-localization

analysis between CD40 or ICOSL and eosinophils, the co-

localization plugin of ImageJ software was used. Briefly, the RGB
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images of CY3 staining (CD40 or ICOSL) and 488 staining (PRG2)

from a representative patient with ECRS were converted to gray-

scaled images, and then, three regions of interest were selected, and

the Manders’ co-localization coefficient M2, which defined as the

proportion of co-localization component relative to the total CY3

fluorescent (CD40 or ICOSL) component in the same region, was

calculated respectively. Finally, the mean M2 represented the

relative percentage of eosinophils that express CD40 or ICOSL in

all CD40- or ICOSL-positive cells (37).
Assessment of blood eosinophils activation

Whole heparinized blood was obtained from 10 patients with

ECRS. Blood was treated with red blood cell lysis buffer and then

incubated for 24 h at 37°C with either recombinant human CD40L

protein (rhCD40L, 5 µg/ml; R&D Systems, Minneapolis, MN, USA,

6420-CL-025) or recombinant human ICOS protein (rhICOS, 10

µg/ml; R&D Systems, Minneapolis, MN, USA, 169-CS-050). IgG (5

µg/ml; R&D Systems, Minneapolis, MN, USA, 1-001-A) was used as

control. Cells were harvested for further analysis. Leukocytes were

stained with an antibody cocktail of CD45-Allophycocyanin, APC

(Life Technologies, CA, USA, 17-0459-42, HI30), CD16-

Fluorescein isothiocyanate, FITC (BioLegend, San Diego, CA,

USA, 360716, B73.1), and CD69-Phycoerythrin, PE (BioLegend,

San Diego, CA, USA, 985202, FN50). Eosinophils were defined as

CD45+CD16−, and CD69 was determined as its activation marker.
Eosinophils isolation and culture

Peripheral blood eosinophils from healthy controls were

purified by using an eosinophil isolation kit (Miltenyi Biotec, San

Diego, CA, USA, 130-092-010). Eosinophil purity was assayed using

flow cytometry and Wright–Giemsa staining (Supplementary

Figure 2A). This procedure consistently resulted in a highly

purified eosinophil population (95%–99%). These eosinophils

(>99% viable by trypan blue exclusion) were cultured in RPMI

1640 medium supplemented with 10% fetal bovine serum (FBS),

penicillin (100 U/ml), streptomycin (0.1 mg/ml), and granulocyte-

macrophage colony-stimulating factor (GM-CSF, 50 ng/ml;

Novoprotein, Suzhou, China, C003) at 37°C in a humidified

atmosphere of 5% CO2. Then, eosinophils (2 × 105 per well in

200 µl of RPMI) were stimulated in a 96-well plate for 24 or 48 h

with or without the addition of the following agents: recombinant

TNF-a (50 ng/ml; Novoprotein, Suzhou, China, C008),

recombinant IL-5 (50 ng/ml; Novoprotein, Suzhou, China, CI59),

3 mM specific p38 mitogen-activated protein kinase (MAPK)

inhibitor SB203580 (MedChemExpress, NJ, USA, HY-10256A),

and 3 mM SB202474 (a negative analog of SB203580)

(MedChemExpress, NJ, USA, HY-112367). At the end of this

incubation, eosinophils were harvested and investigated further

by using flow cytometry for the expression of CD40 and ICOSL.
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Flow cytometry analysis

Flow cytometry was used to detect CD40 and ICOSL expression

on purified eosinophils at 0, 24, or 48 h. Every time when

eosinophils were isolated, CD16 was used to access their purity.

Briefly, harvested eosinophils were resuspended in phosphate buffer

saline, PBS with 1% FBS. Cell suspension (100 ml) was incubated
with the fluorescein-conjugated antibody at 4°C in the dark for

20 min. All the antibodies were purchased from BioLegend (San

Diego, CA, USA), and the detailed information was as follows:

CD16-FITC (360716, B73.1), PE anti-human CD40 (334308, 5C3),

and APC anti-human ICOSL (309407, 2D3).
Statistical analysis

All data were analyzed using GraphPad Prism 7 software

(GraphPad, San Diego, CA, USA). Normality of variables was

evaluated using Shapiro–Wilk test. Student’s unpaired t-test was

performed for two-group comparisons of the data with normal

distribution; otherwise, Mann–Whitney U-test was used. The

analysis of variance (ANOVA) was performed for comparisons of

multiple groups. In addition, the interaction between variables was

assessed by Pearson’s/Spearman’s correlation test, which was

appropriate for normally and abnormally distributed variables,

respectively. P-values of less than 0.05 indicated statistical significance.
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Results

CD40, ICOS, and ICOSL expressions are
markedly increased in nasal tissues of
patients with ECRS

Representative staining of CD40, CD40L, ICOS, and ICOSL on

sections from the nasal tissue involved in this study varied in density

and intensity in patients with ECRS and non-eCRS (Figure 1A). The

expression levels of CD40 (64.67 ± 13.48 vs. 13.12 ± 2.52, p = 0.0001),

ICOS (63.85 ± 16.8 vs. 7.05 ± 2.31, p = 0.0039), and ICOSL (81.36 ±

15.88 vs. 14.72 ± 2.00, p < 0.0001) were significantly higher in the nasal

tissues of patients with ECRS compared with that in patients with non-

eCRS (Figure 1B). In addition, the number of CD40L-positive cells was

also increased in ECRS nasal tissue compared with that in patients with

non-eCRS, although there was no significant difference (Figure 1B).
CD40-CD40L and ICOS-ICOSL expressions
are correlated in nasal tissues of
patients with CRS

Then, we investigated the correlation of CD40-CD40L and ICOS-

ICOSL expression in the nasal tissues of patients with CRS. Our

correlation analysis results show that there was a significantly
BA

FIGURE 1

The expression of CD40, CD40L, ICOS, and ICOSL in nasal tissues of patients with ECRS and non-eCRS. (A) The representative
immunohistochemistry stainings of CD40, CD40L, ICOS, and ICOSL. Original magnification, ×400. (B) The mean numbers of CD40+ (non-eCRS, n =
19; ECRS, n = 9), CD40L+ (non-eCRS, n = 15; ECRS, n = 9), ICOS+ (non-eCRS, n = 12; ECRS, n = 8), and ICOSL+ (non-eCRS, n = 15; ECRS, n = 10)
cells in nasal tissues.
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positive correlation between ICOS and CD40 expression (r = 0.7875,

p < 0.0001; Figure 2A), ICOSL and CD40 expression (r = 0.5232, p =

0.0061; Figure 2B), ICOS and CD40L expression (r = 0.5604, p =

0.0102; Figure 2D), as well as ICOS and ICOSL expression (r = 0.6389,

p = 0.0018; Figure 2F). Similar correlation tendencies were observed

between CD40L and CD40 expression (Figure 2C), as well as CD40L

and ICOSL expression (Figure 2E), whereas there was no significant

correlation shown.
ICOSL expression is significantly higher in
nasal tissues of patients with CRS with
edematous pattern

All patients with CRS were also classified into different

histopathological pattern. We found that the percentage of mere

hyperplasia (38.1%) and fibrotic pattern (33.3%) were overwhelming

in non-eCRS, whereas none of these two types were observed in ECRS

(Figure 3A). In group ECRS, pattern edematous combined with fibrotic

accounted for the largest proportion (40.0%), followed by edematous

plus hyperplasia pattern (30.0%) and edematous pattern (30.0%),

which were all characterized by edema (Figure 3A). When the six

patterns were combined into three types (edematous: edematous,

edematous + fibrotic, and edematous + hyperplasia; fibrotic: fibrotic

and edematous + fibrotic; hyperplasia: hyperplasia and edematous +

hyperplasia), the edematous pattern was seen in 28.6% of patients with

non-eCRS and 100.0% in patients of ECRS. Whereas, the proportions

of fibrotic and hyperplasia patterns were both slightly lower in ECRS

than non-eCRS, respectively (40.0% vs. 47.6%, 30.0 vs.

47.6%; Figure 3B).

According to the great difference of the proportion in

edematous subtype and merely little variation of that in

hyperplasia and fibrotic subtypes between ECRS and non-eCRS,

we thus only examined CD40-CD40L and ICOS-ICOSL expression

in the histopathological subtype of edema. Results showed that the

expression levels of ICOSL (59.21 ± 12.76 vs. 16.16 ± 2.89,
Frontiers in Immunology 06
P = 0.0319; Figure 3C) were significantly increased in the nasal

tissues of patients with CRS with edematous pattern compared with

non-edematous pattern. The number of ICOS- or CD40-positive

cells was also higher in edematous pattern compared with that in

non-edematous pattern, but no significant difference was observed

(Figures 3D, E). In contrast, there was no obvious difference of

CD40L expression in nasal tissues between edematous and non-

edematous patterns (Figure 3F).
CD40-CD40L and ICOS-ICOSL expression
are strongly correlated in nasal tissues of
patients with edematous pattern CRS

In addition, we further found a strong positive correlation

between the expression of CD40-CD40L and ICOS-ICOSL in

nasal tissues of patients with CRS with edematous pattern. To be

specific, there was a significantly positive correlation between ICOS

and CD40 expression (r = 0.8966, p < 0.0001; Figure 4A), ICOSL

and CD40 expression (r = 0.6679, p = 0.0080; Figure 4B),

CD40L and CD40 expression (r = 0.5429, p = 0.0391; Figure 4C),

ICOS and CD40L expression (r = 0.6300, p = 0.0238;

Figure 4D), ICOSL and CD40L expression (r = 0.8286,

p = 0.0003; Figure 4E), as well as ICOSL and ICOS expression

(r = 0.8611, p = 0.0003; Figure 4F).
High levels of CD40-CD40L and ICOS-
ICOSL expression in nasal tissues are linked
to high eosinophil levels and disease
activity in patients with CRS

Our further findings showed that the expression levels of CD40

(r = 0.6291, p = 0.0003), CD40L (r = 0.5820, p = 0.0023), ICOS

(r = 0.6149, p = 0.0030), and ICOSL (r = 0.5127, p = 0.0063) in nasal

tissues of patients with CRS were all significantly correlated with
B C

D E F

A

FIGURE 2

The correlation among the levels of CD40, CD40L, ICOS, and ICOSL in nasal tissues of patients with CRS. N = 21, 26, 25, 20, 25, and 21 in (A–F).
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tissue eosinophil count (Figure 5A). Consistently, our

immunofluorescence co-staining results showed that the mean

M2 referring to CD40 or ICOSL were 0.871 ± 0.110 and 0.871 ±

0.033, respectively, which demonstrated that a great number of

CD40-positive cells and ICOSL-positive cells were eosinophils in

ECRS nasal tissues (Figures 5B, C).

Furthermore, both increased CD40 and CD40L expression in

our patients with CRS were linked to higher blood eosinophil count

(r = 0.5066, p = 0.0059; Figure 6A; r = 3893, p = 0.0544; Figure 6B).

Similarly, ICOS- and ICOSL-positive cell numbers were strongly

positively correlated with blood eosinophil count (r = 0.6419,

p = 0.0017; Figure 6C; r = 0.6694, p = 0.0001; Figure 6D).

Moreover, ICOS and ICOSL expression levels correlated with

disease activity assessed by Lund–Mackay score (r = 0.4714,

p = 0.0416; Figure 6E; r = 0.4047, p = 0.0498; Figure 6F).
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CD40-CD40L and ICOS-ICOSL
interactions enhance the activation of
eosinophils from patients with ECRS

Because upregulation of CD40 and ICOSL expression in nasal

tissues of patients with ECRS, which mainly located on eosinophils,

we investigated whether CD40-CD40L and ICOS-ICOSL

interactions involved in eosinophils dysfunction. Considering that

ECRS is characterized by both circulating and histologically high

proportions of eosinophils. To determine this, peripheral blood

samples from 10 patients with ECRS were stimulated by rhCD40L

(5 µg/ml), rhICOS (10 µg/ml), or control IgG (5 µg/ml),

respectively. Cells were harvested 24 h after stimulation for flow

cytometry. CD45+C16− cells were defined as eosinophils, and CD69

was an activation marker of eosinophils. There was notable
B C

D E F

A

FIGURE 4

The correlation among the levels of CD40, CD40L, ICOS, and ICOSL nasal polyp of patients with edematous CRS. N = 13, 15, 15, 13, 15, and 13 in
(A–F).
B

C D E F

A

FIGURE 3

The expression of CD40-CD40L and ICOS-ICOSL in different histological patterns of patients with CRS. (A) The percentage of six different
histological patterns in ECRS (n = 10) and non-eCRS (n = 21), respectively. (B) The percentage of three histological patterns (edematous: edematous,
edematous + fibrotic, and edematous + hyperplasia; fibrotic: fibrotic and edematous + fibrotic; hyperplasia: hyperplasia and edematous +
hyperplasia) in ECRS (n = 10) and non-eCRS (n = 21). (C–F) Expression levels of ICOSL (non-edematous, n = 7; edematous, n = 12), ICOS (non-
edematous, n = 10; edematous, n = 16), CD40 (non-edematous, n = 13; edematous, n = 15) and CD40L (non-edematous, n = 10; edematous, n =
15) in nasal tissues of patients with edematous and non-edematous CRS.
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upregulation of CD69 expression on eosinophils in response to

CD40L (Figure 7A) and ICOS (Figure 7B) protein stimulation

compared with that to control or IgG group. These data indicated

that the upregulation of CD40 and ICOSL on eosinophils mediated

their activation in patients with ECRS.
TNF-a plus IL-5 enhanced CD40
expression on eosinophils depending on
the activation of the p38 MAPK pathway

Finally, we investigated the possible inflammatory mediators

involved in enhanced CD40 and ICOSL expression on eosinophils
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in patients with CRS. As CRS is characterized by the increased local

tissue levels of TNF-a and IL-5, especially in ECRS (38–40).

Previous studies have reported that TNF-a induces the expression

of CD40 on epithelial and endothelial cells as well as the expression

of ICOSL expression on fibroblasts, endothelial cells, B cells, and

monocytes (41–45). IL-5 is the most potent activator of eosinophils

(46–48). Thus, we investigated the effect of TNF-a and IL-5 on

CD40 and ICOSL expression on human eosinophils. At the

baseline, purified eosinophils from healthy human peripheral

blood (purity > 95%) have no CD40 or ICOSL expression

(Supplementary Figure 2B). As shown in Figures 8A, B, the

expression of CD40 was markedly upregulated on eosinophils

after rhTNF-a (50 ng/ml) stimulation (P = 0.0014) for 24 h but
B C

D E F

A

FIGURE 6

(A–D) The correlation between expression levels of nasal tissues CD40 (n = 28), CD40L (n = 25), ICOS (n = 21), ICOSL (n = 27), and blood eosinophil
count. (E, F) The correlation between expression levels of ICOS (n = 19) and ICOSL (n = 24) in nasal tissues and Lund–Mackay score.
B

C

A

FIGURE 5

Association between levels of CD40-CD40L, ICOS-ICOSL, and eosinophil in nasal tissues of CRS. (A) The correlation analysis between the number
of CD40+ (n = 28), CD40L+ (n = 25), ICOS+ (n = 21), ICOSL+ (n = 27) cells, and tissue eosinophils levels in CRS. (B, C) The co-localization of
eosinophils (PRG2, 488) and CD40 (CY3) as well as ICOSL (CY3) assessed by immunofluorescence in patients with ECRS. Original magnification,
×400.
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not rhIL-5 (50 ng/ml). Furthermore, TNF-a plus IL-5 further

markedly enhanced CD40 expression on eosinophils compared

with TNF-a incubation (p < 0.0001). However, no time-

dependent effects of TNF-a or TNF-a plus IL-5 on CD40

expression of eosinophils were observed. Whereas, TNF-a alone

or TNF-a combined with IL-5 has no significant effect on ICOSL

expression on eosinophils (Supplementary Figures 2C, D).

Activation of p38 MAPK has been shown to partly mediated

TNF-a–induced anti-apoptotic signals in human eosinophils (49).

Finally, we sought to determine whether p38 MAPK pathway

mediates the up-expression of CD40 here. Purified eosinophils

were treated with 3 mM SB203580 and SB202474 before TNF-a
plus IL-5 stimulation. (Because there was no difference in the pre-
Frontiers in Immunology 09
experiment among the treatment with 3, 10, or 30 mMSB203580, we

decided to use 3 mM as the final concentration. Data are not shown.)

We found that SB203580 highly suppressed the TNF-a + IL-5–

induced CD40 expression on eosinophils (p < 0.0001;

Figures 8A, B).
Discussion

This is the first study to show that both CD40-CD40L and

ICOS-ICOSL are upregulated in the NPs of patients with ECRS.

Our results demonstrate that increased expression of CD40-CD40L

and ICOS-ICOSL in CRS nasal tissues is linked to high eosinophils
BA

FIGURE 7

The effect of CD40-CD40L and ICOS-ICOSL pathways on eosinophil activation. Peripheral blood of patients with ECRS was stimulated with medium
alone (Control, circle, n = 5), IgG (5 µg/ml, rectangle, n = 7), (A) rhCD40L (5 µg/ml, triangle, n = 10) or (B) rhICOS (10 µg/ml, triangle) for 24 h. Then,
CD69 expression on eosinophils was detected by flow cytometry. Activated eosinophils were defined as CD45+CD16−CD69+ cells. The percentage
of activated eosinophils after different stimulation.
B

A

FIGURE 8

The effect of TNF-a and IL-5 on CD40 expression of purified eosinophils. GM-CSF (50 ng/ml) was added as a basic condition (medium) to keep
eosinophils culture for all groups. Freshly isolated eosinophils from healthy controls were cultured with medium alone, rhTNF-a (50 ng/ml), rhIL-5
(50 ng/ml), or rhTNF-a plus rhIL-5 in the absence or presence of specific p38 inhibitor SB203580 (3 mM) and negative analog SB202474 (3 mM) for
24 and 48 h. In addition, SB203580 and SB202474 were preincubated with eosinophils for 1 h before cytokines stimulation. CD40 expression was
subsequently detected by flow cytometry. (A) The expression level of CD40 in the different conditions detected by flow cytometry. (B) The ANOVA
comparisons among different conditions.
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infiltration and disease severity. Then, we found CD40-CD40L and

ICOS-ICOSL pathways do take effect on the activation of

eosinophils from patients with ECRS. In addition, we illustrated

that TNF-a induces CD40 expression on eosinophils via the

activation of the p38 MAPK signaling pathway, and IL-5 further

augments TNF-a–stimulated CD40 expression on eosinophils. Our

findings indicate that CD40-CD40L and ICOS-ICOSL are potential

clinical biomarkers of disease activity in patients with CRS,

particularly in the population with high-level eosinophils.

For the first time, our findings show that the levels of CD40-

CD40L and ICOS-ICOSL are markedly increased in the nasal tissue

of patients with ECRS compared with that in patients with non-

eCRS. Our subsequent correlation analyses showed that high nasal

tissue CD40-CD40L and ICOS-ICOSL levels were strongly

correlated in CRS. Moreover, on the basis of the classification of

histopathologic phenotypes, we observed similar upregulation of

CD40 and ICOS-ICOSL in nasal tissues of edematous CRS.

Consistently, a strong correlation with CD40-CD40L and ICOS-

ICSOL levels was observed in edematous CRS nasal tissues. It has

been reported that edematous CRS was commonly observed in

eosinophilic inflammation (1, 50). Edema pattern is more likely to

develop in such an immune microenvironment where CD40-

CD40L and ICOS-ICOSL as well as specialized cells like

eosinophils, Th2, and ILC2 may play a more significant role than

non-eosinophilic inflammation. The higher level of co-stimulators

and stronger correlation among them can be the predictor of this

pattern. However, our findings that groupings based on ECRS/non-

eCRS and groupings based on histopathologic phenotypes do not

completely overlap. We think that this is mainly related to the
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uneven distribution and the small number of patient cases in

different pathological subtypes, so statistical analysis cannot be

conducted. In addition, age may further contribute to this

inconsistency. Although we selected adult patients to minish age-

related interference, there may be altered immune response and

different distributions of inflammatory mediators in further

classifications of adults (51–54). Given that the ICOS-ICOSL

signal can strengthen CD40-CD40L interaction, thus providing a

co-stimulatory signal for B-cell activation (34, 35), as well as the

allergic characteristics of CRS. Importantly, our findings indicate

that high CD40-CD40L and ICOS-ICOSL expressions in nasal

tissues are potential immunoregulatory factors for the

development of CRS, especially in patients with high

eosinophil levels.

Then, our subsequent correlation analyses showed that high

CD40-CD40L and ICOS-ICOSL expression was linked to high

eosinophils infiltration in the nasal tissue of patients with CRS.

We further observed that both augmented CD40 and ICOSL

expressions were primarily on eosinophils in the local tissue

of ECRS.

So far, several studies have shown that not only CD40 but also

CD40L is expressed on the surface of human eosinophils (24, 55,

56). In addition, close to our results, Ohkawara et al. also found that

CD40 was mainly expressed on the surface of eosinophils in the NP

tissues of allergic subjects. They only compared the expression of

CD40 in NP tissues (24). In this study, we further found the

different CD40-CD40L expression in non-ECRS and ECRS nasal

tissues and also their correlation with clinical feature of CRS. We

assume that the high nasal tissue eosinophil proportion of CRS
TABLE 2 Unpaired T-test between patients with non-eCRS and ECRS.

Non-eCRS
(n = 21)

ECRS
(n = 10)

P-value

Lund–Mackay score 9.18 ± 4.32 12.60 ± 4.09 0.053

Blood neutrophil count (109/L) 4.20 ± 1.30 4.45 ± 1.62 0.650

Blood basophil count (109/L) 0.03 ± 0.02 0.04 ± 0.02 0.279
fron
Values were expressed as mean ± standard deviation.
TABLE 3 Correlation analysis of CD40-CD40 and ICOS-ICOSL expression and clinical parameters in patients with CRS.

Parameter 1 Parameter 2 n R-value P-value

Lund–Mackay score Tissue eosinophil count/HPF 27 0.3042 0.1229

CD40+ cells/HPF Lund–Mackay score 24 0.2300 0.2795

CD40+ cells/HPF Blood neutrophil count (109/L) 28 −0.2830 0.1445

CD40+ cells/HPF Blood basophil count (109/L) 28 0.0581 0.7689

CD40L+ cells/HPF Lund–Mackay score 22 0.1168 0.6048

CD40L+ cells/HPF Blood neutrophil count (109/L) 25 0.1431 0.4951

CD40L+ cells/HPF Blood basophil count (109/L) 25 0.0376 0.8584

ICOS+ cells/HPF Blood neutrophil count (109/L) 21 −0.2859 0.2090

ICOS+ cells/HPF Blood basophil count (109/L) 21 0.2881 0.2054

ICOSL+ cells/HPF Blood neutrophil count (109/L) 27 −0.0907 0.6529
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mainly contributed to the high CD40 expression levels. As CD40L is

predominantly expressed on activated CD4+ T cells, it has been

shown that there is a large number of T cells infiltrating in nasal

tissue of CRS (36, 57–59). Thus, we suspect that there is a “T-

eosinophils–centered function” of CD40-CD40L in the nasal tissue

of CRS with high-level eosinophils, which is worthy of further study.

As for the expression of ICOS-ICOSL in nasal tissues, we reported

it for the first time. Hutloff et al. reported that there is no ICOS

expression on granulocytes using F44 (specific monoclonal antibody

to ICOS) (60). In addition, no research has studied the expression of

ICOSL on eosinophils so far. Our co-localization staining showed first

ICOSL on eosinophils. Considering that ICOS is mainly expressed on

activated CD4+T cells, especially activated Th2 cells (61, 62). ECRS

found worldwide is characterized by a type 2 immune response

involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast

cells, and M2 macrophages (59, 63–67). Thus, we speculate that

activated CD4+ cells, especially Th2 cells, can exert influence on

eosinophils mono-directionally, through ICOS-ICOSL ligation signal

pathway in ECRS. Further studies are still needed.

Then, our clinical correlation analysis shown that blood

eosinophils count was significantly higher in ECRS subset

compared with that in non-eCRS subset (Supplementary

Figure 3A), which is consistent with previous studies (68–70)

However, there was no significant difference of Lund-Mackay

score, blood neutrophil count and blood basophil count between

ECRS and Non-eCRS (Table 2). At the same time, the Lund-

Mackay score and tissue eosinophil count showed no statistical

correlation (Table 3). As shown in Supplementary Figures 3B, C, we

further observed that blood eosinophil count was positively

correlated with disease activity assessed by Lund–Mackay score as

well as nasal tissue eosinophils count in our patients with CRS.

Developing from progenitors in bone marrow, eosinophils can be

recruited to diseased nasal tissue from peripheral circulation by

chemokines and cytokines, resulting in a specific correlation

between them. Then, positive correlations between blood

eosinophil count and tissue CD40-positive cell numbers as well as

CD40L-positive cell numbers were found, and the same findings

were with ICOS-ICOSL–positive cell numbers. Importantly, we

noticed that high ICOS-ICOSL expression levels were positively

correlated with Lund–Mackay score of patients with patients with

CRS. Although, there is still non-significant correlation between the

expression level of CD40, CD40L, ICOS, ICOSL and clinical indexes

such as Lund-Mackay, blood neutrophil count, blood basophil

count (Table 3). Recent studies have reported the pathological

effect of ICOS-ICOSL signals widely participate in inflammatory

responses, particularly ICOS+ T cells, including Th1, Th2, and Th17

as well as T follicular helper (Tfh), T follicular regulatory cells (Tfr),

and regulatory T cells (Treg), with the increased generation,

proliferation, and survival abilities (71–75). Thus, the ICOS-

ICOSL pathway may associate with the local immune

microenvironment and then contribute to the development of

CRS, especially ECRS. Interestingly, ICOSL-positive cells also had

positive correlation with blood basophils (Supplementary

Figure 3D). Therefore, our above data indicate that CD40-CD40L

and ICOS-ICOSL signals may involve in the pathogenies of CRS by

modulating the function of eosinophils.
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Next, we confirmed whether CD40-CD40L and ICOS-ICOSL

axes function on eosinophils by using CD40L and ICOSL protein in

ECRS. We found that CD40L protein stimulation upregulated the

expression of CD69, which is an important marker of activation for

eosinophils. In addition, CD69 levels were also increased in

response to ICOSL protein stimulation. These results show that

both CD40-CD40L and ICOS-ICOSL signals activate eosinophils

and then contribute to the development of ECRS. Recent evidence

suggests that activated eosinophils have an axial role in

symptomology of CRS, especially ECRS. Studies have shown the

association between activated eosinophil count and the

development of ECRS. Moreover, some reports demonstrated a

significant drop of blood eosinophils from before to after FESS (70,

76–78). In the advantage of great local cytokines and chemokines

production, eosinophils are characterized by increased production,

enhanced activation, and prolonged survival. These factors promote

the eosinophils accumulation, ultimately contributing to the

increased destroy of epithelial barrier and hyper-activity in nasal

mucosa (79–81). In addition to activation of eosinophils, the

survival and recruitment to inflammatory site are both crucial for

the development of nasal inflammatory. In fact, studies have

demonstrated that activation of CD40-CD40L pathway increased

eosinophil survival via induction of GM-CSF release and cellular

inhibitor of apoptosis protein 2 (55). The trafficking of eosinophils

from blood into inflammatory nasal cavity involves repeated

adhesion and detachment among endothelial cells, epithelial cells,

intercellular matrix, and eosinophils, in which adhesion molecules

including intercellular adhesion molecule 1 (ICAM-1) and vascular

cell–adhesion molecule (VCAM-1) are regulated constantly (82–

84). Several groups found that a trimeric form of recombinant

murine CD40 ligand induced the expression of leukocyte adhesion

molecules, such as E-selectin, VCAM-1, and ICAM-1 on human

vascular endothelial cells (22, 41, 85). At the same time, chemokines

including eotaxin, RANTES, monocyte chemoattractant protein

(MCP), and macrophage inflammatory protein (MIP) also

regulate eosinophils infiltration (86, 87). Some research studies

have demonstrated that CD40 ligation can induce expression of

IL-8, MCP-1, RANTES in fibroblasts, epithelial cells, and

endothelial cells (88–90). In addition, at present, the chemotaxis

of ICOS signal only limited in T cells by a way to regulate the

expression of chemokine receptor. Research studies showed that

ICOS ligand enhanced the homing of Tfh to the follicular region

through the induction of C-X-C motif chemokine receptor 5

(CXCR5) as well as the chemotaxis of Treg to pancreas islet

through CXCR3 in in early phase of diabetes (91, 92). However,

there is no any study about CD40-CD40L or ICOS-ICOSL mediated

eosinophils recruitment. All these results show the possible different

roles of co-stimulators in eosinophils trafficking and the great

potent to study further.

TNF-a and IL-5 are closely related to CRS. Previously, many

researchers have reported the high levels of TNF-a and IL-5 in

patients with CRS and positive correlation with disease activity (38,

39). In addition, TNF-a and IL-5 are critical for the function of

eosinophils including antigen presentation, cytokine or chemokine

production, and secretion of granule mediators (47, 93, 94).

Furthermore, clinical studies of anti–IL-5 antibody (Ab) and
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anti–IL-5 receptor (IL-5R) Ab have been performed for severe

CRSwNP. Several placebo-controlled double-blind study of anti–

IL-5 (mepolizumab) and anti–IL-5RA (benralizumab)

demonstrated to decrease NPs and to improve CT findings in

patients with large NPs, especially in ECRS (95–97). Then, we

observed that TNF-a stimulation significantly upregulated CD40

expression on eosinophils, which was further markedly enhanced

by combined incubation with IL-5. However, TNF-a, IL-5, or TNF-
a plus IL-5 stimulation feebly affected ICOSL expression on

eosinophils, no significant difference was observed compared with

that in control groups. These results indicated that TNF-a and IL-5

mainly affected the expression of CD40 on eosinophil. As for the

expression of ICOSL-derived eosinophils, the specific mechanism

needs to be further explored in the future. For example, is there a

synergistic effect of cytokines? Or other potential, unknown

mediators? In fact, there are other Th2 cytokines that play a

pivotal role in the eosinophilic inflammatory including IL-4 and

IL-13. In part, because of shared receptor affinity for IL-4Ra, IL-4
and IL-13 have overlapping roles (98). Some studies have

demonstrated that IL-4 and IL-13 can enhance eosinophils

survival and activation assessed by CD69 expression (99, 100).

Furthermore, eosinophils infiltration in local inflammatory site can

be promoted by IL-4 and IL-13, through eosinophil chemotaxis

induction and increased adhesiveness between endothelial cells and

eosinophils (99, 101–103). In clinical trials, targeting on IL-4 and

IL-13 has been a promising potential biologic therapy for CRS. A

randomized control trial that examined the effects of dupilumab, a

monoclonal antibody to the a subunit of the IL-4 receptor (IL-4Ra)
that inhibits signaling of IL-4 and IL-13, in patients with CRSwNP

versus placebo have demonstrated significant improvements in

polyp size, disease-specific SNOT-22 (22-item Sinonasal Outcome

Test) score, and objective olfactory function (104). Furthermore,

there are other clinical trials of immunotherapy targeting

eosinophils including CSL311(a novel human monoclonal

antibody that may interact with GM-CSF/IL-3/IL-5 at the same

time, specifically targeting eosinophil survival) and anti–Siglec-8

antibody [sialic acid–binding immunoglobulin-like lectin 8 is a

surface receptor predominantly expressed on human eosinophils

where its ligation induces reactive oxygen species (ROS) formation

and cell death] (105–107). Thus, we think that whether these

cytokines like IL-4, IL-13, GM-CSF/IL-3, and molecule such as

siglect-8 regulate the function of eosinophils through CD40-CD40L

or ICOS-ICOSL pathway can be further studied.

Since previously, it has been described that p38 MAPK is

activated in eosinophils by TNF-a (49, 93). Thus, in discerning

the individual contributions of specific signaling pathways, we

observed the effect of the inhibitor that targeted the p38 MAPK

pathway. The present study shows that the specific p38 MAPK

inhibitor SB203580 could largely inhibit TNF-a plus IL-5–induced

CD40 expression on eosinophils. These data indicated the

important role of the activation of p38 MAPK in the mechanism

of TNF-a plus IL-5–induced CD40 expression on eosinophils.

Therefore, modulation of TNF-a/IL-5/CD40/p38 MAPK

pathways might be useful for the treatment of CRS. Moreover, we
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found that SB203580 did not fully inhibit the CD40 expression on

eosinophils. These findings indicate that pathways other than p38

MAPK are also involved in TNF-a– and IL-5–induced inhibition of

CD40 expression on eosinophils. Because p38MAPK is required for

NF-kB–dependent gene expression and CD40 gene expression

could partly mediated by nuclear factor kappa-B, NF-kB, it is

reasonable that the inhibition of p38 MAPK can downregulate

the expression of CD40 (108–111). Therefore, it may be possible

that the inhibition of p38 MAPK by SB203580 can block TNF-a–
and IL-5–induced eosinophil-derived CD40 by indirect inhibiting

NF-kB activity and subsequently suppress the eosinophil activation.

Further investigation is required to explore other signaling

pathways involved in TNF-a– and IL-5–mediated modulation of

CD40 expression on eosinophil.

Critical roles for CD40-CD40L signaling include promoting

antigen presentation and B- and T-cell priming in a range of

inflammatory responses. As such, abnormalities in the CD40-

CD40L co-stimulation pathway are frequently observed in a

variety of human diseases. Many studies have found increased

serum or plasma levels of soluble CD40L (sCD40L) in patients

suffering from systemic lupus erythematosus (SLE), Sjögren’s

syndrome (SS), inflammatory bowel disease (IBD), and

cardiovascular disease (112–117). Being a biomarker, plasma

levels of sCD40L correlate with anti–double-stranded DNA

(dsDNA) titers and disease severity in patients with lupus (112,

118). In addition, increased sCD40L indicates an increased risk of

cardiovascular events and susceptibility for vascular damage in

patients with cardiovascular disease (113, 117). At present, there

are exciting data on the anti-CD40L treatment efficacy referring to

transplantation, SLE, and immune thrombocytopenic purpura

(ITP) (119, 120). For example, in a phase II trial in lupus

nephritis, efficacy of ruplizumab was supported by the reduced

symptoms, reductions in proteinuria, anti-dsDNA antibodies, and

hematuria (121, 122). At the same time, as the obstruction on future

clinical experience, the complication of thromboses should be paid

more attention.

As the co-stimulator regulating the proliferation, differentiation,

and effective function of T cells, especially Treg and Tfh, the

upregulation or downregulation of ICOS is closely correlated with

the development of autoimmune diseases. In the animal model of no

obesity diabetes, ICOS promoted the development of hyperglycemia

through the increased production of IFN-g by Th1 while sustaining

the function and homeostasis of Treg cells (91, 92). Studies have

showed that there is higher ICOS expression level in patients with

SLE. In the experimental animal in which the gene encoding ICOSL

was specifically deleted, the symptoms including proteinuria and

interstitial nephritis, the infiltrated effective T cells, as well as the level

of autoantibody decreased compared to the control (123, 124).

Furthermore, through abnormal regulation of Tfh cell function,

ICOS is involved in the development and deterioration in some

diseases like rheumatoid arthritis (RA), myasthenia gravis, and

multiple sclerosis (MS) (125–127). Thus, interfering with the ICOS

signaling pathways may be a potential treatment for autoimmune

diseases. Therefore, targeting CD40-CD40L and ICOS-ICOSL has a
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significant therapeutic potential for treating chronic inflammation,

such as CRS.

The limitations of our study are its retrospective, cross-sectional

design, the univariate and descriptive nature of the analyses

performed, the lack of a large cohort of patients with CRS, and

the not yet identified relevant mechanisms underlying including the

regulation of the survival and recruitment of eosinophils through

CD40-CD40L and ICOS-ICOSL pathway.

In summary, we observed that the high levels of CD40-CD40L

and ICOS-ICOSL in local nasal tissues are closely associated with

high eosinophils infiltration and high disease activity in CRS. We

demonstrated a previously unrecognized role for CD40-CD40L and

ICOS-ICOSL pathways, most remarkably in eosinophil activation

of ECRS. Our data have shown that TNF-a and IL-5 mediate CD40

upregulation in human eosinophils in part via activation of p38

MAPK. In view of the above findings, we conclude that blocking of

the activation of eosinophils by targeting CD40-CD40L and ICOS-

ICOSL pathways, especially manipulation of TNF-a/p38 MAPK

pathways targeting eosinophils activation might be useful for the

treatment of CRS with high-level eosinophils.
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SUPPLEMENTARY FIGURE 1

Representative eosinophilic subtypes and histological patterns in nasal tissues
of CRS patients. (A) Eosinophils infiltration in nasal tissue of ECRS and Non-

eCRS. Eosinophils were in the bottom of right panel. (B) Different histological
change in nasal tissue of 4 patterns: edematous CRS with a great number of

eosinophils (thick arrow), goblet cell hyperplasia (triangle), thickening of the

basement membrane (arrow), and the loose stroma contains pseudocystic
spaces filled with fluid (star); CRS with hyperplasia of seromucinous glands

(arrow); Fibroinflammatory CRS with evident dilated vessels(star) and a great
number of fibrocytes (arrow); Atypical CRS with bizarre cells in stroma. The

nuclei of these “atypical” cells often tend to be hyperchromatic (arrow).
Original magnification x200.

SUPPLEMENTARY FIGURE 2

The effect of TNF-a and IL-5 on ICOSL expression of purified eosinophils. (A)
The purity of isolated eosinophils verified by Flow cytometry (left panel) and
Wright–Giemsa staining (right panel, x 1,000). (B) The expression level of

CD40 and ICOSL on purified eosinophils at 0h accessed by flow cytometry.
(C) The effect of TNF-a and IL-5 on ICOSL expression of eosinophils isolated

from healthy donators. GM-CSF (50 ng/mL) stimulation used as basic

condition (medium) for all groups. Freshly isolated eosinophils were
cultured with medium alone, or rhTNF-a (50 ng/mL), or rhIL-5 (50 ng/mL)

or rhTNF-a plus rhIL-5. ICOSL expression was then detected by
Flow cytometry.

SUPPLEMENTARY FIGURE 3

(A) The blood eosinophil count in ECRS (n=10) and Non-eCRS (n=21). (B) The
correlation between blood eosinophil count and Lund-Mackay score (n=27).
(C) The correlation between tissue eosinophil count and blood eosinophil

count (n=31). (D) The correlation between blood basophil count and the
levels of ICOSL in nasal tissue of CRS patients (n=27).
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