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Editorial on the Research Topic

Hypoxia and inflammation: A two-way street
Oxygen homeostasis is crucial for survival, and mammals have developed fine

regulatory mechanisms in response to oxygen variations. The role of oxygen availability

in physiological and pathological processes catches more and more attention. Oxygen

tension in mammalian body varies depending on the considered tissue. An oxygen gradient

exists between the air we breathe (~21% O2), present in lung alveoli, and the oxygen tension

found in other mammalian tissues. Accordingly, normoxia is tissue-dependent. Within a

given tissue, oxygen distribution varies. Indeed, the partial oxygen pressure (PO2) of the

bone marrow (BM) -the primary site of hematopoiesis- is different in the human sternum

and iliac crest marrow. Reduced oxygen availability -a situation called physiological

hypoxia- is detected in localized areas in the BM that are critical for hematopoietic stem

and progenitor (HSPC) differentiation. For a same organ such as the spleen, PO2 values

differ from one species to another, reflecting the heterogeneous perfusion of this secondary

lymphoid organ. Besides the physiological variations of oxygen availability, pathological

hypoxia is a common hallmark of several inflammatory diseases such as cancers and

infectious diseases. In vitro experiments performed in standard cell culture incubators (5%

CO2, 75% humidity) should be considered as hyperoxic conditions (~18.5% O2) for

cultured cells. Therefore, the terms hyperoxia, normoxia, and hypoxia should be used

contextually rather than absolutely, since oxygenation is variable in vivo. For better

interpretation, oxygenation should always be defined quantitatively (1).

The main cellular oxygen sensors are hypoxia-inducible factors (HIFs) with HIF-1a
being the most studied transcription factor. Activation of HIF-1a by hypoxia leads to its

translocation to the nucleus (for details on HIF-1a activation, refer to Thomas et al.). After

translocation, HIF-1a binds to hypoxia-response elements, which initiate the transcription

of hypoxia-sensitive genes. These genes code for different proteins (e.g., vascular

endothelial growth factor [VEGF], erythropoietin [EPO], or glucose transporter 1)

decreasing cellular oxygen consumption and/or increase oxygen delivery (1). Hypoxia

influences immune cell functions by regulating metabolic pathways, and can be a

pathogenic factor in some inflammatory diseases. Conversely, inflammation can lead to

local hypoxia. The aim of this Research Topic was to gather articles discussing/studying the
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relationship between hypoxia and inflammation. This topic collects

five original research manuscripts and one review dealing with six

different diseases associated with hypoxia and inflammation. Four

diseases affect the lungs: sarcoidosis (Jeny et al.), chronic obstructive

pulmonary disease (COPD), obstructive sleep apnea (Florentin

et al.) as chronic diseases and coronavirus disease 2019 (COVID-

19) (Diaz-Garcia et al.) as an acute disease. Atherosclerosis

(Thomas et al.) and myocardial infarction (MI) (Qi et al.) target

the cardiovascular system. Several cell types are exposed to hypoxia,

including a rat myoblast cell line (Qi et al.), human circulating

leukocytes (Diaz-Garcia et al.), mouse and human HSPC (Florentin

et al.) and macrophages (Thomas et al.; Emam et al.; Jeny et al.).

The in vitro oxygen-glucose deprivation (OGD) model is

utilized for the culture of H9c2, a myoblast cell line derived from

embryonic rat heart, in a sugar-free medium under hypoxic

conditions (1% O2, 12 hours). Qi et al. show that OGD induces

NLRP3 inflammasome activation; whereas treatment of H9c2 cells

with ginsenoside-Rh2 (a Chinese medicine compound) and

exosomes collected from mesenchymal stem cells reduces this

activation. This may represent a new therapeutic approach for the

reduction of ischemia-induced cardiac inflammation.

Diaz-Garcia et al. report that circulating soluble CD39 increases

in patients developing a severe form of COVID-19. This increase is

associated with increased CD39 expression on circulating T and NK

cells, but also with hypoxemia severity and clinical prognosis. In

vitro experiments using peripheral blood-derived mononuclear cells

(PMBCs) cultured under hypoxic conditions (9% O2, 16 hours)

confirm this enhanced expression of CD39 on T and NK cells, while

decreased expression of CD73 is observed. CD73 is responsible for

the final degradation of adenosine triphosphate and diphosphate

into the immunosuppressive adenosine (2). Accumulation of these

two adenosine nucleotides resulting from altered CD73 expression

stimulates purinergic receptors expressed by platelets and

monocytes. This leads to platelet and monocyte activation

inducing both thrombus formation and inflammatory cytokine

production. These results are recently confirmed by others (3, 4).

In severe COVID-19, hypoxia could be responsible for uncontrolled

thrombo-inflammation.

In two mouse models -mice exposed to 10% O2 for three weeks

and the cigarette smoke-induced COPD model-, Florentin et al.

determine the effects of chronic hypoxia on HSPC proliferation.

Hypoxia induces HSPC proliferation via the upregulation of VEGF

and its receptor, VEGF receptor 1 (VEGFR1). HIF1A silencing in

both human and mouse HSPC reduces hypoxia-induced

proliferation and hypoxia-induced VEGFR1 mRNA expression.

VEGFR1 is thus another HIF-1a target gene. Furthermore,

inhibiting the VEGF/VEGFR1 axis could limit hypoxia-

induced inflammation.

Macrophages, a heterogeneous cell population with a high

plasticity, may arise from HSPCs during embryogenesis to

become tissue-resident macrophages. Alternatively, during

inflammation, macrophages are differentiated from monocytes

(MDMs) (5). Macrophages exert a vast range of functions

characterized by an array of phenotypes with two extreme

polarized phenotypes, M1 and M2 (schematically pro-

inflammatory and anti-inflammatory/resolving macrophages) (6).
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HIF1a-dependent glycolysis favors the M1 phenotype, while M2

macrophages seems to be HIF-independent (7). Thomas et al.

discuss the bidirectional interaction between hypoxia/HIF-1a and

cholesterol metabolism in atherosclerosis. In atherosclerotic

plaques, cholesterol engulfed by macrophages trigger reactive

oxygen species (ROS) synthesis, responsible for HIF-1a
activation. The liver X receptor pathway stimulated by

cholesterol-derived oxysterols may interact directly with HIF-1a.
Conversely, hypoxia and HIF-1a favor the accumulation of

cholesterol in macrophage by increasing its uptake and limiting

its efflux. Hypoxia induces the accumulation of free cholesterol –a

pro-inflammatory trigger– in advanced atherosclerotic plaques.

Jeny et al. investigate the role of hypoxia in M-CSF-induced

human MDMs. Monocytes obtained from patients with pulmonary

sarcoidosis and healthy controls are differentiated, and exposed to

hypoxia (1.5% O2, 24 hours). Exposure of MDMs from patients

with active sarcoidosis (AS) to hypoxia activates HIF-1a and pro-

inflammatory cytokine synthesis without activating the NF-kB
pathway. Hypoxia confers also to MDMs of AS patients, a pro-

fibrotic profile with the increase of pro-fibrotic factors (e.g., VEGF-

A, and plasminogen activator inhibitor-1 [PAI-1]). This mixed

pro-inflammatory/pro-fibrotic profile induced by hypoxia

contrasts with the mild pro-fibrotic profile observed in MDMs

from healthy donors. Expression of HIF-1a and PAI-1 in the

nucleus of macrophage-derived epithelioid cells in pulmonary

biopsies of AS patients supports the clinical relevance of these

findings. Comparing atmospheric (~21% O2) to hypoxic

conditions (1.5% O2) is appropriate here; physiologically, lung

macrophages are exposed to atmospheric conditions. Contrarily,

sarcoidosis granulomas are hypoxic (8). In contrast to M-CSF that

generates less differentiated MDMs, GM-CSF promotes a pro-

inflammatory phenotype in MDMs (9). Emam et al. determined

the impact of host genetics (appreciated by single nucleic

polymorphisms [SNP]) on the ability of GM-CSF-induced

bovine MDMs to produce nitric oxide (NO) in response to

Escherichia coli. Among the 43,066 SNPs studied, 60 SNPs of the

bovine genome were statistically associated with NO production.

Four genes belong to the Gene Ontology term “response to

hypoxia”. The authors speculate that modulation of these genes

is indirectly related to hypoxia, but linked to respiratory/oxidative

burst (i.e., the fast release of the ROS). Indeed, this burst generates

hypoxia at the macrophage level and activates HIF-1a (10). This

last work is interesting for this editorial, since respiratory burst-

induced hypoxia activates macrophage EPO signaling to promote

inflammation resolution. This burst induces a local hypoxia that

activates HIF-1a. HIF-1a activation leads to EPO secretion that

stimulates EPO receptor in an autocrine manner. EPO pathway

increases apoptotic neutrophil elimination (the efferocytosis

process) promoting the resolution phase of inflammation (10).

Efferocytosis is critical, since neutrophils play a major role in

depleting local oxygen in inflamed tissue (2). Chronic hypoxia

increases efferocytic capacities of both murine and human

macrophages (11, 12). Thus, hypoxia could also promote

inflammation resolution (2).

In conclusion, this Research Topic provides additional

information on the relationship between hypoxia and inflammation.
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