
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Damien Chaussabel,
Jackson Laboratory for Genomic Medicine,
United States

REVIEWED BY

Jean-Pol Frippiat,
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The transcriptome response
of astronaut leukocytes to
long missions aboard the
International Space Station
reveals immune modulation
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1Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada, 2Bone and
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Introduction: Spaceflight leads to the deconditioning of multiple body systems

including the immune system. We sought to characterize the molecular

response involved by capturing changes in leukocyte transcriptomes from

astronauts transitioning to and from long-duration spaceflight.

Methods: Fourteen male and female astronauts with ~6-month- long missions

aboard the International Space Station (ISS) had 10 blood samples collected

throughout the three phases of the study: one pre-flight (PF), four in-flight (IF)

while onboard the ISS, and five upon return to Earth (R). We measured gene

expression through RNA sequencing of leukocytes and applied generalized linear

modeling to assess differential expression across all 10 time points followed by

the analysis of selected time points and functional enrichment of changing genes

to identify shifts in biological processes.

Results: Our temporal analysis identified 276 differentially expressed transcripts

grouped into two clusters (C) showing opposite profiles of expression with

transitions to and from spaceflight: (C1) decrease-then-increase and (C2)

increase-then-decrease. Both clusters converged toward average expression

between ~2 and ~6 months in space. Further analysis of spaceflight transitions

identified the decrease-then-increase pattern with most changes: 112

downregulated genes between PF and early spaceflight and 135 upregulated

genes between late IF and R. Interestingly, 100 genes were both downregulated

when reaching space and upregulated when landing on Earth. Functional

enrichment at the transition to space related to immune suppression increased

cell housekeeping functions and reduced cell proliferation. In contrast, egress to

Earth is related to immune reactivation.
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Conclusion: The leukocytes’ transcriptome changes describe rapid adaptations

in response to entering space followed by opposite changes upon returning to

Earth. These results shed light on immune modulation in space and highlight the

major adaptive changes in cellular activity engaged to adapt to extreme

environments.
KEYWORDS

astronauts, spaceflight adaptation, leukocytes, immune gene expression, fluid shift,
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Introduction

The journey to space and sojourn in this extreme environment

expose astronauts to health hazards such as cosmic radiations and

microgravity (1). Short- and long-term spaceflight negatively affects

most physiological functions: musculoskeletal, cardiovascular,

respiratory, metabolic, endocrine, cognitive, gastrointestinal,

microbial, genito-urinary, dermatological, ocular, and immune (1–3).

A rapid physiological change occurring immediately upon entering

space is the prompt redistribution of blood from the lower to upper

part of the body (4). In response, plasma shifts toward extravascular

tissues including the lymphatic system, resulting in diuresis and

reduction in blood volume by ~10%-15% within the first days in

microgravity (5). An opposite response occurs upon return to Earth;

blood redistributes to the lower limbs, requiring an increase of total

blood volume achieved by increasing fluid intake (6). These fluid shifts

represent opposite physiological adaptationswhen transitioning to and

from microgravity environments.

At the cellular level, plasma volume redistribution during

spaceflight alters blood cell concentration –triggering mechanisms

to restore homeostasis. An analysis of astronaut blood samples

collected onboard the International Space Station (ISS) reported a

~17% elevation in white blood cell counts persisting during long-

term spaceflight and accompanied by impairments of immune cell

functions upon returning to Earth (7, 8). Early studies have also

reported that, within 1 week in microgravity, red blood cell mass

decreases ~10% (9). In a recent study, a temporal analysis including

before, during, and after mission measurements of hemoglobin

from 14 astronauts sojourning onboard of the ISS for ~6 months

documented ongoing hemolysis in space (10). At the molecular

level, studies have focused on the transcriptomic changes of

astronauts during spaceflight. The National Aeronautics and

Space Administration (NASA) Twin Study monitored

simultaneously one twin experiencing spaceflight for ~1 year and

compared data to his twin brother in the terrestrial environment.

Transcriptional changes were found in multiple immune cell types

including Peripheral Blood Mononuclear Cells (PBMCs), CD4 and

CD8 T lymphocytes, and CD19 B lymphocytes. Gene expression in

lymphocytes remained disrupted even after spaceflight (11). Those

studies offered valuable insight into the molecular interactions

occurring during spaceflight but suffer from small astronaut

sample sizes and lack an integrated time-dependent analysis.
02
Genome-wide expression analysis provides a rich source of

information to characterize molecular processes that underlie

physiological adaptions associated with spaceflight (11). Peripheral

blood cells are an ideal candidate to probe systemic effects due to their

contact with multiple- organ systems through blood circulation.

Transcriptional changes in circulating blood cells may thus reflect

multisystem changes rich in information to assess astronaut health in

response to the space environment and guide the design of

personalized interventions. In the current study, we took advantage

of the rare opportunity to sample a cohort of 14 astronauts onboard

the ISS for ~6-month missions. We harvested the circulating

leukocytes of ISS crewmembers before, during, and after

spaceflight to establish the transcriptional composition and

dynamic changes. This hypothesis-generating study combined an

integrated time-course analysis followed by a time-point analysis at

phase transitions to ISS missions. This approach captured the

longitudinal changes in transcript levels and characterized the

effect of transitioning to and from space, the adaptation in space,

and state up to 1-year post-flight. We predict that the greatest

transcriptional changes will occur at phase transitions entering

spaceflight and returning to Earth, whereas minimal changes will

be observed later in spaceflight.
Methods

Participant selection, study design,
and ethics

Twenty astronauts scheduled to travel to the ISS voluntarily

attended a presentation of the Marrow Adipose Reaction: Red Or

White (MARROW) project approximately 1 year before an

astronaut’s scheduled flight. Inclusion criteria included male or

female astronauts that were non-smokers, without any metal

implants, and were scheduled to remain on the ISS for a

minimum of four months. Fourteen astronauts, 11 men (46.7 ±

7.3 years old) and three women (39.7 ± 2.1 years old) consented to

participating in the study on the temporal analysis of the leukocyte

transcriptomes from blood samples collected throughout the three

phases of their mission: pre-flight (PF), in-flight (IF), and return to

Earth (R). All participants gave informed consent and were

monitored by a medical team at NASA. Ethics approval was
frontiersin.org
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obtained from the NASA Human Research Multilateral Review

(#Pro1283), Johnson Space Center Institutional Review Board (JSC-

IRB), European Space Agency Medical Board, Japanese Aerospace

Exploration Agency, and the Ottawa Health Science Network

Research Ethics Board #2009646-01H.
Blood sample collection and storage

Ten blood samples were collected from each astronaut: one

sample at PF between 90 and 60 days before liftoff, four samples IF

onboard the ISS (IF1: between days 4 and 6; IF2: between days 8 and

12; IF3: between days 65 and 95; IF4: 30 to 1 day before returning on

Earth), and five samples upon return to Earth (R) (R1: day 1; R2:

between days 3 and 7; R3: between days 12 and 15; R4: between days

23 and 37; R5: between days 335 and 395) (Figure 1). Approximately

4 ml of venous blood was collected after an overnight fast in a

Vacutainer with plasma separator tube gel and 83 units of lithium

heparin (#8362534, Becton Dickinson, Franklin Lakes, NJ, USA).

Immediately after harvesting, blood tubes were inverted, centrifuged

at 1,500g for 15 min at room temperature, and stored at −80°C. PF

and post-flight blood samples were collected and centrifuged at the

NASA Johnson Space Center in Houston Texas (USA) by a certified

phlebotomist, and IF samples were collected, centrifuged, and frozen

by crewmembers. The protocol for blood collection, centrifugation,

and storage was the same for all blood samples including those

collected onboard of the ISS. Frozen samples were shipped to our

institution within 2–3 months after collection. A total of 139 blood

samples were collected from 14 crewmembers during 12 different ISS

missions (Supplementary Figure 1).
Leukocyte capture, RNA isolation, library
preparation, and sequencing

Frozen blood samples were thawed at room temperature for

~15 min, and leukocytes layered on top of the gel were resuspended

by gentle inversion of the tube. Total RNA was isolated from

leukocytes using the LeukoLOCK™ total RNA isolation system

and manufacturer’s protocol (#AM1923, ThermoFisher Scientific,
Frontiers in Immunology 03
Waltham, MA, USA). Total RNA was suspended in 20 m l of

RNAse-free water, and quality was assessed using the Agilent

BioAnalyzer 2100 (Model G2939B, Agilent, Santa Clara, CA,

USA). All 139 samples had RNA integrity number (RIN) ≥8.0.

RNA sequencing libraries were depleted of rRNA using the

NEBNext® ribosomal RNA (rRNA) Depletion Kit (Human/

Mouse/Rat) (#6310L, Ipswich, MA, USA) or using the NEBNext®
Ultra™ II Directional RNA (rRNA) Library Prep Kit for Illumina®
(#E7760L, Ipswich, MA, USA). Library quality was assessed using

the Agilent BioAnalyzer 2100, and 72 samples passed the quality

metrics for sequencing including a concentration above 10 nM

(Supplementary Figure 1). Details of the inventory of libraries

included with randomly assigned astronaut identifiers and time

points that passed quality metrics are provided in Table 1. Libraries

(125 pM) were multiplexed and sequenced with 100-base paired-

end reads to a depth of ~50 million reads per sample using the

Illumina NovaSeq 6000 System (Illumina, San Diego, CA, USA).

Library preparation, quality assessment, high-throughput

sequencing, and de-multiplexing step were performed at Genome

Quebec Innovation Center (Montreal, Canada).
RNA-seq mapping

Reads were aligned to the publicly available human

transcriptome and genome (GRCh38.84) using HISAT with

default parameters (v2.0.13) (12). Transcript abundance

calculations were performed using HTSeq with default parameters

(v0.6.1) (13). For consistency with rRNA depletion library

preparation, rRNA genes were excluded leaving an expression

dataset that corresponded to 59,901 transcripts from coding and

non-coding genes measured at the individual study time points for

each astronaut.
Sample quality control

Gene read counts for the 59,901 genes from each sample were

normalized for sample read depth using DESeq2’s median of ratios

(14), and the variance stabilizing log2 transformation (VST) was
FIGURE 1

Experimental design. Fourteen astronauts (11 men and 3 women) sojourned aboard the ISS. Ten venous blood samples were collected from each
astronaut throughout the three phases of their mission: one sample at pre-flight (PF) between 90 and 60 days before liftoff, four samples in-flight
(IF) onboard the ISS (IF1: between days 4 and 6; IF2: between days 8 and 12; IF3: between days 65 and 95; IF4: 30 to 1 days before returning on
Earth), and five samples upon return to Earth (R) (R1: day 1; R2: between days 3 and 7; R3: between days 12 and 15; R4: between days 23 and 37; R5:
between days 335 and 395). “n” is the sample size of male and female astronauts that participated in the study. “s” is the number of RNA samples
with libraries that passed quality metrics and used for sequencing at each timepoint.
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applied reducing variance of low read counts for principal

component analysis. Principal component scores were calculated

using the prcomp() function in R for all 72 samples. Samples were

then plotted along PC1 and PC2 to visualize the variance explained

by the individual astronauts and study time points. This showed

significant deviation of the PF sample a2068.1 from other samples

(Supplementary Figure 2). Therefore, this sample was treated as a

technical outlier and excluded from further analyses leaving 71

samples for analysis in silico. All sequence analyses and result

visualizations were conducted using the R environment (https://

cran.r-project.org/doc/manuals/r-release/R-intro.html) and

custom scripts.
Differential expression analysis

Two separate differential expression analyses were completed

with both using the same fixed-effect generalized linear model

(GLM) within the DESeq2 package in R environment (14).

Model :  read counts 
e

 replicate þ  sex þ 

cumulative time in space  þ  time þ  e

This model measures the effect across time treating the “time”

variable as categorical and included all 10 time points of the study.

Confounding variables —sex and astronaut cumulative lifetime in

space— were controlled while also accounting for repeated

measures of biological replicates. The first differential expression

analysis tested the temporal effect through applying likelihood ratio

testing (LRT) on the “time” variable using the normalized read

counts of all 59,901 genes. The temporal analysis was conceptually
Frontiers in Immunology 04
similar to analysis of variance (ANOVA) but instead represented an

analysis of deviance (ANODEV) because DESeq2 estimates

dispersion not variance. Adjustment for multiple comparisons

was done through independent hypothesis weighting (IHW)

using the IHW package in R environment (15). This method

increased power by assigning weights to each hypothesis test

while controlling for the false discovery rate using the Benjamini–

Hochberg correction (16). Genes with adjusted p-values <0.1 were

considered statistically significant and identified as gene candidates

that were differentially expressed between any time point of

the study.

For more specific insight into the IF and post-flight specific

effects, differential expression analyses were done on a subset of

time points. This used the same GLM as in the temporal differential

expression analysis but instead applied the Wald’s test on log2 fold

changes (LFCs) for significance testing followed by LFC shrinkage

using the ashr method (17). Comparisons of selective time points

were conceptually similar to a post-hoc analysis testing the effect of

specific time points within the “time” variable. Adjustment for

multiple comparisons was done using only the Benjamini–

Hochberg correction (16). Genes with adjusted p-values <0.1 and

LFC values >|0.5| were identified as gene candidates differentially

expressed between a given time-point comparison.
Transcriptome expression visualizations

The normalized read counts of gene candidates identified as

differentially expressed between any of the 10 time points (temporal

analysis) were averaged among all astronauts at each time point and
TABLE 1 Sample inventory: libraries that passed quality metrics and used for sequencing.

Astronaut Time-point

n = 14 PF
(n = 3)

IF1
(n = 6)

IF2
(n = 3)

IF3
(n = 10)

IF4
(n = 8)

R1
(n = 8)

R2
(n = 9)

R3
(n = 8)

R4
(n = 8)

R5
(n = 8)

a2073 * *

a2017 *

a2029 * * * * * * * *

a2005 * * * * * * * *

a2096 * * * *

a2049 * * * * * * *

a2052 * * * * *

a2020 * * *

a2068 *1 * * * * * * *

a2036 * * * * * * *

a2084 * * * *

a2091 * * * * * * * *

a2057 * * * * * *

a2031 *
fron
1Sample excluded as an outlier (Supplementary Figure 1).
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scaled across genes as z-scores. These genes were then further

analyzed to extract gene clusters displaying similar patterns of

expression throughout the entire study. Briefly, the Euclidean

distance between each gene candidate was calculated using their

z-score scaled normalized read counts from each sample across

time. These values were then hierarchically clustered using the

hclust() function in R environment creating a tree dendrogram to

visualize the gene clusters, which were resolved by a static tree cut
Frontiers in Immunology 05
(Supplementary Figure 3). Gene z-scores of temporal gene clusters

were then plotted across time using lines and split violin plots

overlayed by box plots to visualize the relative expression of genes

over the course of the study (Figure 2).

As part of the temporal analysis, independent filtering of genes using

DESeq2 excluded geneswithmean normalized read counts <45 resulting in

a profile of 15,410 genes representing the expressed transcriptome across

time. The normalized read counts for this profile of expressed genes were
B

C

A

FIGURE 2

Temporal analysis of leukocyte transcriptomes before, during, and after spaceflight. (A) Gene expression levels plotted as scaled Z-scores across
individual time points. Z-scores represent the average normalized read counts scaled across the 276 temporal differentially expressed genes at each
individual time-point for the 14 astronauts. Black lines follow individual transcripts over time. Colored lines, split violin, and box plots represent the
profiles of temporal gene clusters identified through hierarchical clustering. The number of genes identified in each cluster is indicated. Above brackets
indicate the mission phases of time points. (B) RNA bio-type proportions for the two temporal gene cluster profiles displayed as stacked bar plots. RNA
bio-type, gene counts, and percentages are indicated. The “other” category includes miscellaneous RNA, pseudogenes,and RNA to be experimentally
confirmed (TEC). (C) Dot plot displaying the gene ontology (GO) terms obtained from the overrepresentation analysis (ORA) of temporal gene clusters
across all mission phases. Terms with >1.5 enrichment in each temporal cluster were plotted with the number of genes mapping to that specific GO
term indicated in brackets. The size of each dot is proportional to the enrichment factor (size scale) and the color represents the FDR adjusted p-values,
where darker points have lower values (color scale). Enrichment corresponds to the ratio of mapped gene counts to a given GO term between each
temporal gene cluster and the reference list of 15,410 genes. Enriched GO terms were grouped under “Biological Processes” at level 4. Using the
Benjamini–Hochberg correction for multiple comparisons, p-values with false discovery rate (FDR) <0.05 were considered statistically significant. The
heatmap displays the median log fold change (LFC) values throughout in-flight and post-flight time points relative to baseline for the genes associated
with each GO term. The color bar represents values of log2 fold changes ranging from +2 (red) to −2 (blue).
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scaled separately as z-scores. Gene z-scores for the 15,410 genes were then

plotted across time as violin plots (Supplementary Figure 4).
RNA bio-typing

Gene candidate profiles identified from both temporal and time-

point differential expression analyses were bio-typed according to the

functionality of RNA transcribed from these genes. Bio-type

annotation was done using the biomaRt package in R environment

(18, 19), which utilized the Vega archive gene classifications (https://

vega.archive.ensembl.org/info/about/gene_and_transcript_

types.html). The relative proportions of RNA bio-types within each

differentially expressed gene profile were then displayed as stacked

bar plots (Figures 2, 3C, F).
Log fold change heatmap

The LFC values relative to PF were calculated for a subset of

gene candidates identified from the differential expression analysis

of selective time points. This subset of genes was identified from the

Venn diagram overlap between the differentially expressed gene
Frontiers in Immunology 06
profiles for PF vs. IF2 and IF4 vs. R1 (Figure 4). LFC values relative

to PF were then displayed as a heatmap across all IF and post-flight

time points along with their gene identities (Figure 4).
Enrichment analysis

For insight into the broader biological functions of the

differentially expressed gene profiles, functional enrichment of

leukocyte transcriptomes using two separate overrepresentation

analyses (ORAs) (20) of gene ontology (GO) terms was performed:

one is to assess the temporal effect across all time points using the

differentially expressed gene clusters and the other is to assess the

spaceflight phase transitions using the differentially expressed genes

from the selective time-point comparisons. A custom R script was

used to detect significantly overrepresented GO terms between the list

of differentially expressed gene profiles and the 15,410 expressed

genes used as the reference list. ORA utilized clusterProfiler 4.0’s

groupGO() function (21) to map genes to their associated level 4 GO

terms grouped under “Biological Processes”. A Fisher exact test was

applied to test for significantly overrepresented GO terms between

genes and the reference list. After adjustment for multiple

comparisons using the Benjamini–Hochberg correction, GO terms

with FDR p-values <0.05 were considered statistically significant.
A B

D E

F

C

FIGURE 3

Genes differentially expressed at spaceflight phase transitions and functional enrichment. Cluster network of gene ontology (GO) terms was obtained
from the phase-specific overrepresentation analysis (ORA) of 112 downregulated genes between PF and IF2 (A, B), and 135 upregulated genes between
IF4 and R1 (D, E) with stacked bar plots (C, F) displaying the RNA Bio-type proportions for these genes. RNA Bio-type, gene counts, and percentages
are indicated. The “other” category includes miscellaneous RNA, pseudogenes, and RNA’s to be experimentally confirmed(TEC). Networks (B, E)
illustrate semantic similarity of GO terms using REVIGO. The size of each dot is proportional to the enrichment factor (size scale) and color represents
the FDR adjusted p-values, where darker points have lower values (color scale). Cluster headers are the GO term with the highest enrichment factor
within that cluster. Enrichment corresponds to the ratio of mapped gene counts to a given GO term between each differentially expressed gene profile
[PF vs. IF2 (A) and IF4 vs. R1 (D)] and the reference list of 15,410 genes. Enriched GO terms were grouped under “Biological Processes” at level 4. Using
the Benjamini–Hochberg correction for multiple comparisons, p-values with false discovery rate (FDR) <0.05 were considered statistically significant.
Asterisk (*) in bar plots (A, D) indicate the genes use in the enrichment analysis.
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Significant GO terms from the temporal gene clusters with >1.5

enrichment were displayed onto a dot plot. The median LFC values

relative to PF for the genes mapping to a specific GO term were

displayed as a heatmap across all IF and post-flight time points

(Figure 2). For differentially expressed genes between specific time
Frontiers in Immunology 07
points, significant GO terms were summarized by cluster networks

based on semantic similarity (Figures 3B) using REVIGO via a web

browser (https://revigo.irb.hr) (22). The GO term cluster networks

were further processed for clarity and aesthetics using Cytoscape

(v3.9.1.0) (23).
B

A

FIGURE 4

Log2 fold change of 100 genes displaying downregulation when reaching space and upregulation when landing on Earth after 6 months in space.
Heatmap illustration of the log2 fold changes (Log2FC) of expression relative to pre-flight across all in-flight and post-flight time points for the 100
genes both downregulated when reaching space and upregulated when landing on Earth. The Venn diagram (A) indicates the profile of genes being
displayed in the heatmap (B). Expression levels of individual genes relative to pre-flight values are expressed across in-flight and post-flight time
points as log2 fold changes displayed as a heatmap (B). The color bar represents values of log2 fold changes ranging from −2 (red) to +2 (green).
Gene identities are shown by their ensembl ID and corresponding HGNC symbol (if applicable) in brackets. Asterisk (*) indicates non-coding genes.
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Results
Temporal analysis of leukocyte
transcriptomes

To report the effects of space mission to the ISS, we determined

the composition of astronauts’ transcriptomes and measured

differential expression over time using a GLM within the DESeq2

package. LRT of all 10 time points identified 276 genes differentially

expressed between any time point of the study. In addition, we

found 15,410 genes represented the expressed transcriptome of

astronauts over all 10 time points and corresponded to genes with

average normalized read counts >45 according to DESeq2’s

independent filtering threshold.

Transcriptome changes at transition to and
from space

Temporal changes for the 276 differentially expressed genes are

shown in Figure 2, which plots the mean transcript level for each

gene across all 10 time points of the study. Transcript levels were

reported as z-scores, which centered and scaled the normalized read

counts for each gene by the mean and standard deviation across the

276 genes, ensuring comparable scaling and visualization for all

genes. A positive z-score was interpreted as above average gene

expression, a negative z-score indicated below average gene

expression, and zero corresponded to average levels. Hierarchical

clustering identified two gene clusters (C) based on the similarity in

z-score changes over time (Figure 2; Supplementary Figure 3). The

two gene clusters consisted of 247 (C1) and 29 (C2) genes,

respectively, and mirrored each other; average levels changed in

opposite directions at individual time points. Both showed inverse

patterns of expression changes at transition to space and at the

transition back to Earth (Figure 2). Specifically, gene C1 was

characterized by decreased expression after 8–12 days in space

(IF2) followed by increased expression on day 1 after return to

Earth (R1) (Figure 2). Conversely, gene C2 displayed increased

expression transitioning to space and decreased expression at return

to Earth (Figure 2). Gene expression changes in C1 were less

variable than C2 as shown by the narrower spread in violin plots

and smaller interquartile ranges (IQR) of box plots (Figure 2).

Protein-coding genes dominate temporal
gene clusters

Bio-typing of gene RNA revealed distinct bio-type proportions

of the two temporal gene clusters. C1 consisted mostly of protein-

coding genes (68.8%), 19.4% long non-coding RNAs (lncRNA), and

11.7% genes coding for other various RNA biotypes (Figure 2). C2

genes consisted mostly of protein-coding genes (93.1%), zero

lncRNA, and 6.9% other RNAs (Figure 2).

The two temporal gene clusters differ in
biological function

Functional enrichment of the two differentially expressed gene

clusters across all 10 time points produced terms describing

different biological functions. Shown in a dot plot are the GO

terms from each temporal gene cluster with an enrichment >1.5
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(Figure 2). In C1, seven of the top eight most enriched terms

described immune system and leukocyte functions. Among these,

the terms “regulation of immune system”, “lymphoid organ

development”, and “leukocyte and lymphocyte activation” had the

largest gene counts (Figure 2). In contrast, C2 was composed of

terms describing diverse biological processes including anatomical

structure and development and molecular regulation such as

“DNA-binding transcription factor” (Figure 2). Interestingly, the

second most enriched term of C2 was “regulation of body fluid

levels” (Figure 2). The heatmap in Figure 2 displays the median LFC

values relative to baseline for the genes associated with a given GO

term throughout IF and post-flight time points. LFC values

reiterated the opposite profiles of changes characterizing the two

clusters of genes: inverse pattern of expression at IF and post-flight

transitions (Figure 2A).

Gene expression converges toward average
levels after long-duration exposure to space

Gene expression between 2 and 6 months IF (IF3 and IF4)

converged toward average levels. This pattern was observed for the

276 temporally differentially expressed genes (Figure 2) and was

also evident with the profile of 15,410 genes obtained from

independent filtering in DESeq2 (Supplementary Figure 4). The

spread of average transcript levels for all expressed genes at IF3 and

IF4 displayed the smallest IQR compared to all other time points

(Supplementary Figure 4; Supplementary Table 1).
Leukocyte transcriptome at spaceflight
phase transitions

To assess the effects of space transitions on astronauts’

transcriptomes, four time-point comparisons were selected on the

basis of the most important changes in transcript levels displayed in

the temporal profiles of clusters (Figure 2). The time-point

comparisons included space phase transitions (PF vs. IF2 and IF4

vs. R1), transcriptional convergence after long-duration in space

(IF3 vs. IF4), and 1 year after return from space (B vs. IF5). The

differential expression results for PF vs. IF2 and IF4 vs. R1 are

shown in (Figures 3A, B, respectively). All four differential

expression results are summarized in Table 2.
TABLE 2 Summary of selective time-point differential expression results.

Test1 Differentially expressed genes (DEGs)

Total Upregulated2 Downregulated3

PF vs. IF2 120 8 112

PF vs. R5 0 0 0

IF3 vs. IF4 0 0 0

IF4 vs. R1 151 135 16
1Pairwise time-point significance testing using the Wald’s test and ashr log2fold change (LFC)
shrinkage.
2LFC > 0.5
3LFC < −0.5
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Differential expression was strongest during
transitions to space and return to Earth

Comparing transcriptomes at PF and IF2 timepoints,we identified

112 downregulated genes and eight upregulated genes (Figure 3). The

return to Earth was associated with 16 downregulated genes and 135

upregulated genes differentially expressed between IF4 and R1

transcriptomes. Substantial gene expression changes at space

transitions were dominated by genes downregulated during early

spaceflight (IF2) and upregulated during the return to Earth (R1).

These results confirm the decrease-then-increase pattern of gene C1

identified in the temporal gene cluster analysis (Figure 2). In addition,

RNA bio-typing of the differentially expressed genes at space

transitions (PF vs. IF2 and IF4 vs. R1) replicated results from the

temporal gene clusters with protein coding as most represented

RNA (Figures 3C).

Space transition responses differ in
biological function

Enrichment analysis of the 112 downregulated genes between PF

and IF2 and 135 upregulated genes between IF4 and R1 identified

biological functions differing between the transitions to and from space.

GO terms are summarized in a cluster network on the basis of semantic

similarity shown in Figures 3B, E. The transition to space enriched terms

is related to cellular growth such as “cell population proliferation” (most

enriched), “cell differentiation”, and “cellular component organization”

(Figure 3). In contrast, the return to Earth resulted in two clusters of

enriched terms both describing different biological processes than the

transition to space (Figure 3). One cluster consisted of terms related to

cellular transport such as “intracellular transport” and “protein transport

and localization” (Figure 3). The other cluster included terms describing

the regulation of immune system processes such as “leukocyte

activation” and “lymphoid organ development” (Figure 3).

One hundred genes were both downregulated
when reaching space and upregulated when
landing on Earth

Among the 112 downregulated genes when reaching space and

135 upregulated genes when returning to Earth, 100 were the same

genes (Figure 4). Figure 4 lists the 100 genes along with a heatmap

displaying the LFC values relative to PF for each gene. The three

most represented gene families were Zinc-Finger Protein (ZNF)

genes (n = 6), Cluster of Differentiation (CD) genes (n = 3), and

Long Intergenic Non-Protein Coding (LINC) RNA (n = 3).
Leukocyte transcriptome in-flight and 1-
year post-flight

No differential expression occurs during
late in-flight

Our results found zero genes differentially expressed between 65–

95 days IF and 30–1 day prior to return to Earth (IF3 vs. IF4) (Table 2).

The convergence toward no changes later in flight is also evident from

standardizing scaled expression to z-scores. The distribution of mean

scaled expression (z-scores) for all genes at each time point are shown
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in Figure 2; Supplementary Figure 4. Late IF time points corresponding

to IF3 and IF4 had the lowest IQRs compared to all 10 time points

(0.29 and 0.32, respectively) (Supplementary Table 1).

Transcriptome 1-year post-flight is similar
to pre-flight

Analysis between PF and 1-year post-flight time points (PF vs.

R5) revealed zero differentially expressed genes (Table 2). From the

15,410 expressed genes, transcriptional variability between PF and 1

year after returning from space appeared similar on the basis of the

spread of violin plots and IQR (Supplementary Table 1;

Supplementary Figure 4). However, Figure 2 shows C1 and C2

having reversed expression 1-year post-flight when compared to PF.

C1 genes had above average expression PF but had below average

expression 1-year post-flight, and vice versa for C2.
Discussion

We analyzed the leukocyte transcriptome of 14 female and male

astronauts before their launch to space, upon reaching the ISS, in

space for 6 months, at egress to Earth, and up to 1 year after landing.

Differential expression was measured using an integrated time-

course analysis followed by a focused analysis of mission phase

transition time points. The salient findings were as follows (1):

temporal analysis identified the decrease-then-increase expression

pattern at transitions to and from space as the main profile of

change with immune system processes most represented; (2) phase

transition analysis identified downregulated genes mainly

associated with “regulation of cell population” and upregulated

genes at the return to Earth associated with “regulation of immune

system process”; (3) 100 genes were both downregulated when

reaching space and upregulated upon returning to Earth; and (4)

transcript levels converged toward average levels displaying no

differential expression between ~2 and ~6 months IF.
Differential expression at mission
phase transition

The first analysis of the leukocyte transcriptomes provided an

overview of the relative transcriptional changes occurring at 10 time

points across the three phases of a space mission: PF, IF, and R.

Astronauts’ leukocyte transcriptomes showed opposite directions of

gene expression changes upon reaching the space environment

compared to the return on Earth. Cluster analysis grouped the

differentially expressed genes into two clusters characterized by

major changes in opposing directions: (C1) decrease-then-increase

and (C2) increase-then-decrease.

The biological processes represented among the 247 genes from

C1 were mainly specialized leukocyte functions and immune system

processes. Temporal transcriptome data indicated a reduction of

immune functions when transiting to space and the opposite when

returning on Earth: an increase of immune function. Our findings

are consistent with previous reports of decreased immunity in space
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including reductions in T- cell function, NK- cell function, altered

plasma cytokine profiles, and persistent inflammation (7, 8, 24–26).

Our analysis at both transition to a different gravitational

environment revealed novel genes and pathways not previously

documented in astronauts traveling to space. The decreased

expression of the cell surface receptor CD3E and CD3G genes,

both members of the CD3–T- cell receptor complex, is likely

contributing to the reduced immunity while in space. The CD3

complex is involved in the recognition of antigens and subsequent

signal transduction, leading to the activation of T lymphocytes (27,

28). The reduction of CD3 expression in response to microgravity

was previously observed in vitro in a human cell line of T

lymphocytes and Jurkat cells exposed to microgravity (29). Our

data from astronauts’ leukocytes provide additional evidence for the

CD3 complex dynamic response to microgravity and changes

occurring within the first few days after transitioning to and from

space. Considering the rapid changes of CD3 complex gene

expression, adaptive immunity such as the response to foreign

antigens is likely affected by changing microgravity environments,

rather than innate immune systems (30). The impact of the

differential expression on the adaptive immune system can not be

excluded as both immune systems are highly interconnected and

previously documented to be impacted by microgravity (31, 32).

Few studies have examined the dynamic changes of markers of

adaptive and innate immune response throughout ISS missions,

and published data are from either short-duration missions (8–15

days) or to comparisons between pre- and post- flight (33, 34). A

comprehensive study of eight astronauts sojourning ~6 months

onboard of the ISS reported no or very little effects on B cell

number, phenotype, and antibody output after returning on Earth

(35). In this study, total B cells and immunoglobulin A increased

after 90 days in flights and returned to baseline at return day. Our

data on leukocytes’ transcriptome agree with the previous

observations of transitional changes in immune cells while

transitioning to and from space and the return toward baseline

levels later after returning to Earth.

The lower number of genes in C2 (n = 29) limited the

conclusions for enrichment analysis and identification of

represented biological processes. Of interest, the biological term

“regulation of body fluid” represented in the short list of genes in C2

displayed a pattern of upregulation when reaching space. The gene

SLC4A1 associated with the term “regulation of body fluid” encodes

for an anion exchanger protein localized in the plasma membrane

of erythrocytes and mediates carbon dioxide transport to the lungs

(36). Increased expression of SLC4A1 gene when reaching space

may respond to the increase of carbon dioxide levels in conditions

of low red blood cell mass, with the latter being previously

documented in astronauts (10). The gene AQP3 with changes in

opposite directions at both phase transitions functions as a water

and urea exit mechanism of antidiuresis in collecting duct cells —a

mechanism regulating body fluids (37). Therefore, reaching space

promoted leukocyte gene expression related to basic housekeeping

cell functionality as well as specific space adaptations like headward

body fluid shifts leading to loss in plasma volume and

hemoconcentration (38). Restoring blood cells concentrations to

homeostatic levels requires a decrease in the number of circulating
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leukocytes and red blood cells whose population is decreased by

~10% in the first 10 days in space (39). Therefore, in addition to

immune functions, the leukocyte transcriptome identified cellular

functions and physiological systems affected by spaceflight.

The opposite directions of expression changes in the gene

clusters at space transitions replicated the results obtained from

participants subjected to a microgravity analogue (40). The 6° head-

down tilt bedrest model replicates the microgravity component of

spaceflight with many of the physiological changes happening in

space including fluid shift, muscle atrophy, bone loss, and hemolysis

(41–44). Transcriptome composition changed in opposite

directions at transitions between ambulation and bedrest and

between bedrest and re-ambulation in 20 healthy participants

submitted to 60 days of bedrest (40). While the space missions

were longer with an average of 6 months compared to the 60 days

period in bed, the transcriptome changes at phase transition

coincided. Comparable changes in the leukocyte transcriptome

may, therefore, indicate a characteristic response to the negative

mechanotransduction, inactivity, and fluid shift brought about by

prolonged exposure to both bedrest and space. Leukocyte

transcriptomes are therefore highly sensitive to changes in the

gravity vector and appear to mount an adaptive response toward

restoring homeostasis.

The next characteristic of leukocyte transcriptome temporal

changes observed was the transcriptional convergence toward

average levels displaying no differential expression after 2 months

of space exposure. This is a novel finding revealed through the

temporal analysis. The biological meaning is unclear but indicative

of global mechanisms yet to be identified that limit variations of

mRNA levels in leukocytes in space. Interestingly, the gene

expression convergence of astronauts replicated the results of

participants to the 60-day bedrest study (40), supporting that

gene expression convergence is related to inactivity and redirected

gravity isolated from other space specific stressors. In addition, this

might be compatible with a generalized loss of specialized cell

functions upon removal of normally oriented gravity and activity.

The lack of mechanotransduction and inactivity would then focus

cellular activity on core housekeeping functions.

The comparison of transcriptomes between PF and 1-year post-

flight showed that the two gene clusters were reversed in expression.

This may suggest that some molecular space adaptations acquired

while living in space for 6 months were maintained for at least 1

year after return to life on Earth. This may bear physiological

significance given the ~20% increases in hemolysis in the same

astronauts 1 year after returning from space (10, 39).
Shift in biological functions at spaceflight
transitions to and from microgravity

Transiting to and from microgravity was associated with the

differential expression of 120 and 151 genes from the reference list

of 15,410 genes expressed in leukocytes. The majority (93.3%) of the

differentially expressed genes when reaching space were down

regulated and 95.7% were up regulated when returning.

Differential expression measured at mission transitions is
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consistent with the temporal profile of C1 characterized by down-

and up- expression. Downregulated genes identified between PF

and early IF were associated with the biological term “regulation of

cellular population proliferation”. This transcriptomic response is

consistent with the head ward fluid shift and subsequent

hemoconcentration of blood cells occurring when entering space

(38). A decrease in circulating red and white blood cells restores

blood cell concentrations to maintain homeostasis, consistent with

the downregulation of genes involved in cellular proliferation (10).

A suppression of blood cell proliferation represents an adaptation to

the reduced blood volume in space.

At transition from space to Earth, transcriptomes were

characterized by an up regulation of expression, opposite to

changes measured when reaching space. Enrichment analysis of

the upregulated genes between late IF and return to Earth resulted

in biological processes describing the regulation of immune system,

leukocyte activation, and lymphoid organ development. Returning

to Earth’s surface gravity after ~6 months in microgravity reversed

the down regulation of genes involved in immune processes. Many

immune alterations persist during long-duration spaceflight (8).

Reactivation of immune- related genes in response to the re-entry to

Earth is needed to reverse immune dysregulation occurring during

spaceflight. The composition of the leukocytes’ transcriptome was

influenced by the transition to the different gravity environments.

Of the 112 genes downregulated early IF, 100 (89.3%) of those

same genes were upregulated immediately upon return to Earth. This

means that the same genes responded to both transitions to and from

microgravity despite the occurrence of different physiological

changes. To our knowledge, this represents a novel finding. Most

differentially expressed genes at space transitions coded for proteins

with the second most important being long non-coding RNAs. The

notable modulation of transcription factors (ZNF and CD) and

lncRNAs that regulate expression of downstream target genes may

explain why the same differentially expressed genes are regulating

different physiological responses. Zinc Finger proteins are

transcriptions factors that have a wide range of molecular functions

including DNA recognition, RNA packaging, transcriptional

activation, regulation of apoptosis, protein folding and assembly,

and lipid binding (45). Changes in ZNF expression would potentially

alter these molecular processes that would then manifest at the

cellular and physiological levels. For instance, we identified Zinc-

Finger Antiviral Proteins (ZAP) ZNF776, ZNF585B, and ZNF83 as

downregulated during early spaceflight and upregulated upon return

to Earth. ZAPs help prevent the spread of viruses by targeting viral

mRNA (46). The downregulation of these genes when reaching space

corresponds to reported reactivation of herpesvirus in astronauts

during spaceflight (27). Whereas, the following upregulation of ZAPs

when returning to Earth may be a response to suppress the

replication of herpes viral particles.
Contributions and limitations

Our access to unique astronauts’ blood samples and RNA

analysis of the leukocytes’ transcriptome using high- throughput

sequencing technique represents the strength of this study. The
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finding of genes responding to both the transition to and from space

with decreased and then increased profile of changes that related to

immune processes represents a novel finding. Our study also

identified additional expression changes at phase transitions in

genes unrelated to specific immune functions, such as cell

population regulation. This provides evidence of changes at the

molecular level by which the body adapts to the headward fluid shift

observed in microgravity environments. This study bears a number

of limitations. Blood draws were taken at 10 different time points

throughout astronaut missions; changes of interest to establish the

onset of transcriptional convergence in space timed in-between

blood draws may have been missed. Technical limitations onboard

the ISS hampered sample acquisition, processing, and analysis. For

instance, blood samples were collected within a window of days

rather than on a specific day that introduced variability. Leukocyte

and RNA isolation were not possible on the ISS and blood samples

were frozen at −80°C for their journey back to Earth, leading to cell

lysis and RNA degradation. This resulted in samples with

inadequate RNA quality for sequencing, which were rejected,

leading to an unbalanced final sample size. In addition, a

potential contribution of altered leukocyte subpopulations to gene

differential expression can not be excluded. RNA sequencing

removed ribosomal RNA and was biased toward protein-coding

genes; changes in other RNA biotypes would have been missed. The

limited sample size and heterogeneous cohort of 14 astronauts with

unequal sex distribution limited statistical power and prevented

sex-specific comparisons.
Conclusion

The analysis of transcriptome composition identified changes

during the transitions to and from space characterized mainly by a

decrease and an increase of transcript levels respectively. When

reaching space, the transcriptomic changes are indicative of

decreased immune functions and increased basic cellular activities

linked to adaptive changes. The transcriptomic changes egressing

back to Earth were in opposite direction —increased expression,

mainly for genes related to the immune system. These results shed

light on immune modulation in space, the timing of differential

expression at transition to and from space, and highlight the major

adaptive changes in leukocyte activity engaged to adapt to

extreme environments.
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SUPPLEMENTARY FIGURE 1

Astronaut sample inventory. Twenty astronauts listened to an informed

consent briefing session approximately one year before an astronaut’s

scheduled flight. Fourteen astronauts, 11 men and 3 women consented to
participating in the study. With 10 time-points () and 14 astronauts’, there

were 140 potential blood samples for collection. One sample was not
collected leaving 139 blood samples for RNA-sequencing. RNA quality

control excluded 67 samples (RIN <8.0) and one sample was removed as
an outlier (Supplementary Figure 2), leaving 71 samples for analysis in silico.

SUPPLEMENTARY FIGURE 2

Pre-flight sample outlier. Principal component analysis (PCA) of all 72 samples

passing RNA quality metrics (RIN ≥8.0). Sample principal component scores
were calculated from the variance stabilizing transformation (VST) of

normalized read counts for the 59,901 genes. Each point represents an
astronaut RNA sample () and colors indicate the time-point for sample

collection ().

SUPPLEMENTARY FIGURE 3

Gene cluster dendrogram of the 276 differentially expressed genes identified
from the temporal analysis leukocyte transcriptomes. The Euclidean distance

was calculated between each of the 276 gene candidates using their z-scores
scaled normalized read counts, which were then hierarchically clustered into

the resulting tree dendrogram revealing two distinct gene clusters

characterized by similar patterns of expression changes throughout the
study. The horizontal red line represents where the static tree cut was

made to separate and define the two clusters of differentially expressed
genes across time. Each cluster is represented in the colored bar and

identified by cluster number ().

SUPPLEMENTARY FIGURE 4

Expression profile of 15,410 genes expressed before, during and after long-
duration spaceflight. Relative gene expression levels for the profile of 15,410

expressed transcripts (genes withmean normalized read count >45) displayed
as violin plots of scaled z-scores across time. Z-scores represent the average

normalized read counts for the 14 astronauts scaled across the 15,410 genes
at each individual time-point. Medians indicated by white squares and upper

and lower quartiles indicated by black squares. Colors denote the

study phase.
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