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SARS-CoV-2 vaccination
of convalescents boosts
neutralization capacity
against Omicron subvariants
BA.1, BA.2 and BA.5 and can
be predicted by anti-S
antibody concentrations
in serological assays

Alina Seidel1†, Simone Hoffmann2†, Bernd Jahrsdörfer2,
Sixten Körper2, Carolin Ludwig2, Christiane Vieweg2,
Dan Albers1, Pascal von Maltitz1, Rebecca Müller3, Ramin Lotfi2,
Patrick Wuchter3, Harald Klüter3, Frank Kirchhoff1,
Michael Schmidt4, Jan Münch1‡ and Hubert Schrezenmeier2*‡

1Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany, 2Institute for Clinical
Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service
Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine,
University of Ulm, Ulm, Germany, 3Institute of Transfusion Medicine and Immunology, Medical
Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg–
Hessen, Mannheim, Germany, 4Institute of Transfusion Medicine and Immunohematology, German
Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
Background: Recent data on immune evasion of new SARS-CoV-2 variants raise

concerns about the efficacy of antibody-based COVID-19 therapies. Therefore,

in this study the in-vitro neutralization capacity against SARS-CoV-2 variant B.1

and the Omicron subvariants BA.1, BA.2 and BA.5 of sera from convalescent

individuals with and without boost by vaccination was assessed.

Methods and findings: The study included 313 serum samples from 155

individuals with a history of SARS-CoV-2 infection, divided into subgroups

without (n=25) and with SARS-CoV-2 vaccination (n=130). We measured anti-

SARS-CoV-2 antibody concentrations by serological assays (anti-SARS-CoV-2-

QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S) and neutralizing titers

against B.1, BA.1, BA.2 and BA.5 in a pseudovirus neutralization assay. Sera of the

majority of unvaccinated convalescents did not effectively neutralize Omicron

sublineages BA.1, BA.2 and BA.5 (51.7%, 24.1% and 51.7%, resp.). In contrast, 99.3%

of the sera of superimmunized individuals (vaccinated convalescents) neutralized

the Omicron subvariants BA.1 and BA.5 and 99.6% neutralized BA.2. Neutralizing

titers against B.1, BA.1, BA.2 and BA.5 were significantly higher in vaccinated

compared to unvaccinated convalescents (p<0.0001) with 52.7-, 210.7-, 141.3-

and 105.4-fold higher geometric mean of 50% neutralizing titers (NT50) in

vaccinated compared to unvaccinated convalescents. 91.4% of the
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superimmunized individuals showed neutralization of BA.1, 97.2% of BA.2 and

91.5% of BA.5 with a titer ≥ 640. The increase in neutralizing titers was already

achieved by one vaccination dose. Neutralizing titers were highest in the first 3

months after the last immunization event. Concentrations of anti-S antibodies in

the anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S

assays predicted neutralization capacity against B.1 and Omicron subvariants

BA.1, BA.2 and BA.5.

Conclusions: These findings confirm substantial immune evasion of the

Omicron sublineages, which can be overcome by vaccination of

convalescents. This informs strategies for choosing of plasma donors in

COVID-19 convalescent plasma programs that shall select specifically

vaccinated convalescents with very high titers of anti-S antibodies.
KEYWORDS

SARS-CoV-2, vaccination, convalescent plasma, neutralization, omicron
Introduction

The B.1.1.529 variant of SARS-CoV-2 was first reported to the

World Health Organization from South Africa on 24 November 2021

(1) and has been classified as a variant of concern (VOC), named

Omicron (1). Since then, several Omicron subvariants, e.g. BA.1, BA.2

and BA.5, evolved and have been circulating globally (2). The role of

passive immune therapy of COVID-19 by convalescent plasma (CCP)

is still under investigation. Data suggest efficacy of CCP in early

intervention (3–9), in particular among seronegative patients and

immunosuppressed patients (10–12). A significant antibody dose

response relationship has been observed in some of the CCP trials

(4, 5, 13, 14). Omicron might escape passive immune therapy since it

can evade neutralization by sera from vaccinated and convalescent

individuals and bymonoclonal antibodies in-vitro (15–21), and the risk

of reinfection with Omicron is higher compared to other VOC (15). In

this study, we assessed the neutralization capacity against B.1, BA.1,

BA.2, and BA.5 of sera from convalescents, some but not all of which

were vaccinated. The question was whether superimmunized

individuals, i.e. vaccinated convalescents, had cross-neutralization

capacity against Omicron sufficient to be considered as plasma

donors for passive immune therapy.
Methods

313 serum samples from 155 individuals with previous SARS-

CoV-2 infection (with or without SARS-CoV-2 vaccination) were

analyzed by two commercially available assays according to the

instructions of the manufacturer (anti-SARS-CoV-2-QuantiVac-

ELISA (IgG), Euroimmun, Lübeck, Germany and Elecsys Anti-

SARS-CoV-2 S, Roche, Mannheim, Germany). For individuals who

have been measured several times, the sera were obtained from

independent plasma donations performed at different dates.

Samples were collected after written informed consent was
02
obtained from convalescent plasma donors (22) and vaccinated

individuals. The studies were approved by the Ethical Committee of

University of Ulm and Ethical Committee II, Heidelberg University

(392/20, 488/20, 56/21 and 41/22).
Preparation of pseudotyped particles

Production of rhabdoviral pseudotypes has been previously

described (23). In brief, 293T cells (ATCC no. CRL-3216) were

transfected with expression plasmids encoding SARS-CoV-2 spike

variants B.1 (24), BA.1 (25), BA.2 (26), or BA.5 (27)(kindly

provided by Stefan Pöhlmann, Infection Biology Unit, German

Primate Center, Göttingen, Germany) by Transit LT-1 (Mirus).

One day after transfection, cells were inoculated with a replication-

deficient vesicular stomatitis virus (VSV) vector in which the

genetic information for its native glycoprotein (VSV-G) is

replaced by genes encoding enhanced green fluorescent protein

and firefly luciferase (FLuc) (kindly provided by Gert Zimmer,

Institute of Virology and Immunology, Mittelhäusern, Switzerland),

and incubated for 2 h at 37°C. Then the inoculum was removed,

cells were washed with phosphate-buffered saline (PBS) and fresh

medium containing anti-VSV-G antibody (I1-hybridoma cells;

ATCC no. CRL-2700) was added to block remaining VSV-G

carrying particles. After 16-18 h, supernatants were collected and

centrifuged (2.000 x g, 10 min, room temperature) to clear cellular

debris. Samples were then aliquoted and stored at -80°C.
SARS-CoV-2 spike pseudovirus
neutralization assay

Pseudovirus neutralization experiments were performed as

previously described (23). In brief, Vero E6 cells were seeded in

96-well plates one day prior (6000 cells/well, 2.5% FCS) infection.
frontiersin.org
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Sera were heat-inactivated (56°C, 30 min) and serially titrated (4-

fold titration series with 7 steps + buffer only control) in PBS,

undiluted pseudovirus stocks added (1:1, v/v) and the mixtures

incubated for 30 min at 37°C before being added to cells in

duplicates (final on-cell dilution of sera: 20, 80, 320, 1280, 5120,

20480, 81920-fold). After an incubation period of 16-18 h,

transduction efficiency was analyzed. For this, the supernatant

was removed, and cells were lysed by incubation with Cell

Culture Lysis Reagent (Promega) at room temperature. Lysates

were then transferred into white 96-well plates and luciferase

activity was measured using a commercially available substrate

(Luciferase Assay System, Promega) and a plate luminometer

(Orion II Microplate Luminometer, Berthold). For analysis of raw

values [relative luminescence units per s (RLU/s)], background

signal of untreated cells was subtracted and values normalized to

cells inoculated with pseudovirus preincubated with PBS only.

Results are given as serum dilution on cell resulting in 50%

pseudovirus neutralization (NT50), calculated by nonlinear

regression ([Inhibitor] vs. normalized response – Variable slope)

in GraphPad Prism Version 9.1.1. According to the serum dilution

factors tested, the upper and lower cutoff value of the assay was

81920 and 20, respectively. For quantitative analyses, NT50 values

<20 were set to a value of 10.
Statistical analyses

The p-values for the pairwise comparisons were calculated by

Kruskal-Wallis Test. Statistical significance between more than two

groups was evaluated using Kruskal-Wallis test followed by Dunn’s

Test as correction for multiple comparisons, as described in the

figure legends. Correlations were assessed using Spearman

correlation analysis. A p value of less than 0.05 was considered

statistically significant. Statistical analyses were performed using

GraphPad Prism Version 9.0.2, GraphPad Software, San Diego,

California USA, www.graphpad.comand NCSS 2021 Statistical

Software (2021). NCSS, LLC. Kaysville, Utah, USA, ncss.com/

software/ncss.
Results

We studied 313 serum samples from a cohort of 155 individuals

with a history of SARS-CoV-2 infection (Table 1). The cohort has

been subdivided in a group without vaccination (n=25) and a group

with vaccination (n=130).

Non-vaccinated individuals with a history of infection exhibited

B.1 neutralizing titers of 118 (geometric mean neutralizing (GMN)

titers, 95% confidence interval (95%-CI) 81-174) (Figure 1A).

Neutralization of Omicron BA.1, BA.2 and BA.5 was undetectable

(i.e. below a titer of 20) in 15/29 (51.7%), 7/29 (24.1%) and 15/29

(51.7%) of convalescent individuals with GMN titers of 19 (14–28),

40 (27–60) and 23 (16–34). However, convalescents who had
Frontiers in Immunology 03
received at least one vaccination dose exhibited significantly

higher neutralizing titers compared to non-vaccinated

convalescents even though their NT50 against BA.5 (2449, 2164-

2771) was lower than against B.1 (6246, 5607-6959), BA.1 (4122,

3519-4828) and BA.2 (5708, 4988-6534) (Figure 1A). Fold-

difference in GMN titers of vaccinated versus non-vaccinated

convalescents was 52.7-fold for B.1, 211-fold for BA.1, 141-fold

for BA.2 and 105-fold for BA.5 (Figure 1A). Neutralizing titers

against B.1, BA.1 and BA.2 did no longer differ significantly in

convalescents after vaccination (Figure 1A). Only three of the

superimmunized individuals did not neutralize Omicron variants.

One individual was completely unable to neutralize all SARS-CoV-2

variants. Another individual, most likely infected with B.1, could

not neutralize BA.1 and the neutralization for BA.5 was very close

to the cut-off (NT50 of 23.94). In general, the NT50 values of this

individual were not very high: NT50 against B.1 and BA.2 were 289

and 95.42. In contrast, the third individual had NT50 values of

470.5 and 1458 against BA.1 and BA.2 but did not neutralize BA.5.

Already one dose of vaccination in convalescent individuals was

sufficient to drastically increase their NT50 values (26.6-fold

increase for B.1, for Omicron BA.1, BA.2, and BA.5 an increase

of 51.4-, 54.6-, and 53.9-fold was measured). A higher number of

vaccinations yielded a further increase of NT50 (Figure 1B) with

significant increase after 3 vaccinations compared to only one

vaccination for BA.1 and BA.2. For B.1 and BA.5, neutralizing

titers were not significantly different between subjects who received

either one, two or three vaccinations, and for BA.1 and BA.2,

differences between neutralizing titers were only significant for

some of the comparisons: the increase from one vaccination

compared to three vaccinations, and the increase from two

vaccinations compared to three vaccinations (Figure 1B). A

similar development was observed when comparing IgG titers

with number of vaccinations: One dose of vaccination led to a 31-

fold increase in anti-SARS-CoV-2 antibody concentrations (non-

vax: 161.1 BAU/ml; 1 vax: 5000 BAU/ml, quantified via anti-SARS-

CoV-2-QuantiVac-ELISA) but a second dose did not significantly

change antibody concentrations (5023 BAU/ml). However, a third

vaccination significantly improved anti-SARS-CoV-2 antibody

titers (6749 BAU/ml) (Figure 1C). A similar trend was also

obtained with the Elecsys Anti-SARS-CoV-2 S ELISA

(Figure 1D). A more detailed comparison in terms of descriptive

statistics can be found in Table 2.

Neutralizing titers against all variants were higher, although not

significant, among those with an interval ≤90 days since the last

immunization event compared to intervals >90 days. The geometric

means of NT50 against B.1 were 6226 (≤90 days) and 5841 (>90

days), against BA.1 4545 (≤90 days) and 3302 (>90 days), BA.2 5928

(≤90 days) and 5051 (>90 days), and against BA.5 2593 (≤90 days)

and 2102 (>90 days) (Figure 1E).

As a control, we also investigated the neutralizing capacity of

several monoclonal antibodies. While variants BA.1, BA.2, and

BA.5 were neutralized by the polyvalent antibodies of

convalescent, vaccinated individuals (Figure 1A), they were
frontiersin.org
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TABLE 1 Characteristics of the study cohort of convalescent individuals.

Prior history of infection no vaccination (n=25) Prior history of infection + vaccination (n=130)

Median age, years (IQR) 47 (31.5-57) 41.5 (28-53)

Gender, no

Female/male 11/14 71/60

Median interval since infection, days
(IQR)

117.0 (85-131,5) 105 (58-325)

Variant (time of infection as proxy), n (%)

B.1 25 (100) 37 (28.5)

Alpha – 6 (4.6)

Delta – 40 (30.8)

BA.1 – 27 (20.8)

BA.2 – 18 (13.8)

unknown – 2 (1.5)

No. of vaccination doses, n (%)
0

25 (100%) –

1 – 19 (14.6)

2 – 41 (31.5)

3 – 70 (53.8)

Vaccination regimen, n (%)

Heterologous – 40 (30.8)

Homologous – 90 (69.2)

Vaccines homologous regimen, n (%) n.a.

BNT162b 74 (82.2)

mRNA-1273 10 (11.1)

ChAdOx1 5 (5.6)

COVID-19 vaccine Janssen 1 (1.1)

Vaccines heterologous regimen, n (%) n.a.

ChAdOx1/BNT162b 1 (2.5)

ChAdOx1/BNT162b/BNT162b 5 (12.5)

ChAdOx1/BNT162b/mRNA-1273 1 (2.5)

ChAdOx1/mRNA-1273/mRNA-1273 2 (5)

BNT162b/BNT162b/mRNA-1273 18 (45)

mRNA-1273/BNT162b 1 (2.5)

mRNA-1273/mRNA-1273/BNT162b 6 (15)

ChAdOx1/ChAdOx1/BNT162b 1 (2.5)

ChAdOx1/BNT162b/mRNA-1273 1 (2.5)

COVID-19 vaccine 1 (2.5)

Janssen/BNT162b/mRNA-1273 2 (5)

COVID-19 vaccine Janssen/mRNA-1273 1 (2.5)

COVID-19 vaccine Janssen/BNT162b/BNT162b

Median interval since last vaccination n.a. 126.5 (57 – 188)
F
rontiers in Immunology
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FIGURE 1

Neutralization of Spike variants by convalescent sera and monoclonal antibodies. (A) NT50 against B.1 (red symbols), BA.1 (blue symbols), BA.2 (green
symbols) and BA.5 (purple symbols) for individuals with a history of infection (inf, lighter colors) (n=25) and history of infection and vaccination (inf +
vax, darker colors) (n=130). The geometric means of NT50 were as follows: against B.1 (inf) 118.4, B.1 (inf+vax) 6247, BA.1 (inf) 19.56, BA.1 (inf+vax)
4122, BA.2 (inf) 40.41, BA.2 (inf+vax) 5709, BA.5 (inf) 23.24 and against BA.5 (inf+vax) 2449. Neutralization of Omicron sublineages BA.1, BA.2 and
BA.5 was observed in 51.7%, 24.1% and 51.7% resp., of convalescent individuals without vaccination. In contrast, 99.3% of the sera of superimmunised
individuals (vaccinated convalescents) neutralized the Omicron subvariants BA.1 and BA.5 and 99.6% neutralized BA.2. (B) NT50 against B.1 (red), BA.1
(blue), BA.2 (green) and BA.5 (purple) for vaccinated, convalescent donors stratified by number of vaccination doses: 1 vaccination dose (1 vax, lighter
colors) (n=19), 2 vaccination doses (2 vax, medium light colors) (n=41) and 3 vaccination doses (3 vax, darker colors) (n=71). The geometric means of
NT50 were as follows: against B.1 3389 (1 vax), 4610 (2 vax), 7546 (3 vax), against BA.1 1005 (1 vax) and 2347 (2 vax), 6073 (3 vax), against BA.2 2208
(1 vax) and 3859 (2 vax), 7448 (3 vax) and against BA.5 852 (1 vax), 1999 (2 vax), 2.973 (3 vax). (C) Anti-SARS-CoV-2-QuantiVac (IgG) titers of
convalescent donors stratified by number of vaccinations. The geometric means were as follows: non-vax 161.1 BAU/ml, 1 vax 5000 BAU/ml, 2 vax
5023 BAU/ml and 3 vax 6749 BAU/ml. (D) Anti-SARS-CoV-2 Elecsys (IgG) titers of convalescent donors stratified by number of vaccinations. The
geometric means were as follows: 171 U/ml for non-vax, 16262 U/ml for 1 vax, 23913 U/ml for 2 vax and 51127 U/ml for 3 vax. (E) NT50 against B.1
(red), BA.1 (blue), BA.2 (green) and BA.5 (purple) for vaccinated, convalescent donors stratified by interval between last immunization event and
collection of serum sample: ≤ 90 days (lighter colors) (n=113) and >90 days (darker colors) (n=171). The geometric means of NT50 were as follows:
against B.1 6226 (≤90 days) and 5841 (>90 days), against BA.1 4545 (≤90 days) and 3302 (>90 days), against BA.2 5928 (≤90 days) and 5051 (>90
days) and against BA.5 2593 (≤90 days) and 2102 (>90 days). (F) Inhibition of cell entry of B.1 (red symbols), BA.1 (blue symbols), BA.2 (green symbols)
and BA.5 (purple symbols) spike carrying pseudoparticles by monoclonal antibodies. Increasing doses of Bamlanivimab (squares), Casirivimab (up-
pointing triangles), Sotrovimab (down-pointing triangles) and Imdevimab (circles) were preincubated with pseudoparticles before addition to cells
(doses were titrated in 4-fold dilution from 2000 ng/ml to 0.49 ng/ml (referring to final concentrations on cells)). Infection rates in Figures (A,B,E,F)
were determined 16 hours post infection by measuring luciferase activity in cellular lysates. Data shown were derived from one experiment
performed in duplicates. The p-values for the pairwise comparisons shown in (A–D) were calculated by Kruskal-Wallis Test (not significant (ns)
p>0.05, ** p<0.01, *** p<0.001, **** p<0.0001). For Figure (B) Kruskal-Wallis Test was followed by Dunn’s test for correction for multiple
comparisons. The horizontal black lines denote the geometric mean of NT50 and the error bars the 95%-confidence interval of the geometric
mean.
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mostly resistant against the monoclonal antibodies Bamlanivimab,

Casirivimab and Imdevimab, as previously reported (25, 28, 29).

Only Sotrovimab neutralized all tested variants (25) (Figure 1F).

The Spearman correlation (SC) matrix of NT50 against B.1 and

respective Omicron subvariants, the anti-SARS-CoV-2-QuantiVac-

ELISA (IgG) and the Elecsys Anti-SARS-CoV-2 S revealed good

correlations between all assays, in particular between the two anti-

SARS-CoV-2 serological assays (SC 0.89) and between the NT50

against BA.1 and BA.2 (SC 0.84) (Figure 2). SCs between anti-

SARS-CoV-2-QuantiVac-ELISA (IgG) and NT50 against Omicron

BA.1, BA.2 and BA.5 were 0.66, 0.70 and 0.72 (Figures 3A, C, E, G).

The SC between Elecsys Anti-SARS-CoV-2 S and NT50 against

BA.1, BA.2 and BA.5 were 0.77, 0.78 and 0.76 (Figures 3B, D, F, H).

The SCs between the NT50 values of the respective subvariants

show good correlations: the SCs between NT50 against B.1 and

NT50 against Omicron BA.1, BA.2 and BA.5 were 0.72, 0.73 and

0.66, respectively (Figures 4A-C). The SCs between NT50 against

BA.1 and NT50 against BA.2 and BA.5 were 0.84 and 0.71

(Figures 4D, E). SCs between NT50 against BA.2 and NT50
Frontiers in Immunology 06
against BA.5 was 0.74 (Figures 4F). This indicates that

superimmunized individuals can cover novel variants.

Plasma units for immune therapy shall have very high

neutralizing titers and based on the outcomes of the CAPSID

trial, we adopted NT50≥640 (13, 22, 31). Receiver operating

characteristics (ROC) for BA.1, BA.2 and BA.5 demonstrate that

both anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys anti-

SARS-CoV-2 S excellently predict these neutralizing titers with

areas under the curve between 0.94, 0.99 and 0.95 for anti-SARS-

CoV-2-QuantiVac-ELISA (IgG) and between 0.98 and 0.99 and

0.98 for Elecsys Anti-SARS-CoV-2 S (Figure 5).
Discussion

Significant immune evasion by Omicron has raised concerns that

antibody-based therapies may no longer be effective against Omicron

variants (25, 28, 29). Here, we focused on convalescent individuals

and the implication of evasion from antibody-mediated

neutralization for future CCP programs. There is growing evidence

that CCP can be an important component in the therapeutic

armamentarium for COVID-19 if it is given early and at very high

dose (i.e. with high antibody content) to vulnerable patients who are

at risk of progression to severe COVID-19 (3, 6, 9, 32). The precise

threshold values necessary for a sample to qualify as high-titer

convalescent plasma for use in CCP therapy cannot be determined

based on the existing evidence, as no dose-response studies have been

conducted to establish these criteria. The neutralizing titers of CCPs

used in clinical trials has either not been reported or titers have been

measured with different (in-house) assays, the results of which are

difficult to compare between different trial centers (33). Antibody-

negative or immunocompromised recipients are more likely to

benefit from CCP. Among hospitalized patients who lacked SARS-

CoV-2 antibodies at baseline, CCP decreased the need for mechanical

ventilation or mortality compared with standard of care or

placebo (8, 34–38). There is evidence for efficacy of CCP in

immunocompromised patients both from cohort studies and

subgroup analyses of randomized clinical trials (10, 12, 39–42).

Further, several CCP studies have demonstrated a dose effect (3, 4,

13, 31, 43, 44). Therefore, in the recent clinical practice guidelines

from the Association for the Advancement of Blood and Biotherapies
FIGURE 2

Correlation of anti-S antibody concentrations and neutralization
capacity against spike variants. Correlation matrix of NT50 against
BA.1, BA.2, BA5 and B.1, and anti-SARS-CoV-2-QuantiVac (IgG)
ELISA and Elecsys SARS-CoV-2 based on Spearman Correlation.
TABLE 2 Comparison IgG titers measured by anti-SARS-CoV-2 Quantivac and Elecsys with number of vaccinations.

QuantiVac (IgG) (BAU/ml) Elecsys (IgG) (U/ml)

Non-vax 1 vax 2 vax 3 vax Non-vax 1 vax 2 vax 3 vax

Min. 35 595.5 510.8 1582 34.40 986.0 51.80 10279

Max. 801.7 52199 17639 18951 902 172400 148810 166430

Range 766.7 51604 17128 17370 867.6 171432 148758 156151

25% percentile 71.73 2501 3522 4934 92 6105 12442 39170

75% percentile 361.8 10210 7935 9664 309 47596 62169 72900

Geo. mean 161.1 5000 5023 6749 171 16262 23913 51127
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(AABB), CCP was recommended for outpatients with COVID-19

who are at high risk for disease progression, for hospitalized patients

with COVID-19 and pre-existing immunosuppression and for

hospitalized patients who do not have SARS-CoV-2 antibodies

detected at baseline (8). However, this evidence is based on clinical

trials which were conducted before the emergence of Omicron. This

raised concerns that new variants might escape immunotherapy with

CCP. Our data confirm in-vitro resistance of Omicron to several

monoclonal antibodies used in clinical practice (16–19) questioning
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their efficacy in Omicron infected patients (28). Also, Omicron BA.1,

BA.2 and BA.5 are no longer well neutralized in-vitro by sera of

convalescents from the first and second surge of the SARS-CoV-2

pandemic. However, in convalescents just one dose of SARS-CoV-2

vaccination restores in-vitro neutralization capacity against Omicron.

In contrast to other recent reports on significantly lower

neutralization capacity in vaccinated convalescent donors (17–19)

against Omicron compared to wild type, we observed a similar

neutralization capacity against B.1 and Omicron BA.1 and BA.2.
frontiersin.o
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FIGURE 3

Correlation between anti-S antibody concentrations and NT50 against B.1, BA.1, BA.2, and BA.5. (A) Correlation between anti-S antibody concentrations
measured by anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and NT50 against B.1 (Spearman correlation 0.78). (B) Correlation between anti-S antibody
concentrations measured by Elecsys Anti-SARS-CoV-2 S and NT50 against B.1 (Spearman correlation 0.79). (C) Correlation between anti-S antibody
concentrations measured by anti-SARS-CoV-2 QuantiVac-ELISA (IgG) and NT50 against BA.1 (Spearman correlation 0.66). (D) Correlation between anti-
S antibody concentrations measured by Elecsys Anti-SARS-CoV-2 S and NT50 against BA.1 (Spearman correlation 0.77). (E) Correlation between anti-S
antibody concentrations measured by anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and NT50 against BA.2 (Spearman correlation 0.70). (F) Correlation
between anti-S antibody concentrations measured by Elecsys Anti-SARS-CoV-2 S and NT50 against BA.2 (Spearman correlation 0.78). (G) Correlation
between anti-S antibody concentrations measured by anti-SARS-CoV-2 QuantiVac-ELISA (IgG) and NT50 against BA.5 (Spearman correlation 0.72).
(H) Correlation between anti-S antibody concentrations measured by Elecsys Anti-SARS-CoV-2 S and NT50 against BA.5 (Spearman correlation 0.76).
Figures (A–H) Results of non-vaccinated convalescents (inf) are shown as triangles, and results of vaccinated convalescents (inf + vax) are shown as filled
circles. The vertical dashed line at 176 BAU/ml for the anti-SARS-CoV-2 QuantiVac and at 210 U/ml for the Elecsys anti-SARS-CoV-2 represents the
threshold above which CCP is considered high-titer CCP according to the FDA’s recommendations for investigational CCP (30).
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This might be due to our high sample size, the neutralization assay,

the large proportion of donors with high anti-S antibody

concentration in our cohort and the vaccination scheme. Several

studies have demonstrated a strong correlation of VSV-based SARS-

CoV-2 Spike pseudovirus neutralization assays and the live virus

neutralization (45, 46). We did observe lower neutralization capacity

against Omicron BA.5 in superimmunized individuals compared to

B.1. However, a subgroup of superimmunized individuals still had

strong neutralizing activity also against Omicron BA.5. The

geometric mean of NT50 of the upper quartile was 7059. Thus, in

contrast to monoclonal antibodies, which mostly lost their activity

against new SARS-CoV-2 variants (16–19, 47), CCP with very good

in vitro neutralization capacity can still be obtained. Our findings

suggest that even without adaption of currently available vaccines, the

broader immune repertoire in superimmunized individuals can cover

novel variants (48), particularly in the first three months after the last

immunization event when the highest neutralizing titers are achieved.

The neutralization titers in superimmunized individuals are

highly variable. For BA.2 the geometric means of the lower and
Frontiers in Immunology 08
upper quartile were 282 and 19728, resp., and for BA.5 the

geometric means of the lower and upper quartile were 148 and

7059, resp., i.e. about a 50-70-fold difference. Thus, for CCP

programs it is key to perform a systematic screening of

convalescent, vaccinated donors. Here we demonstrate a good

correlation between commercially available high-throughput

serological assays (Anti-SARS-CoV-2-QuantiVac-ELISA (IgG);

Elecsys Anti-SARS-CoV-2 S) and neutralization titers. Thus, these

high-throughput serological assays can be used to identify plasma

donors with very high SARS-CoV-2 antibody concentrations, who

also have very high in-vitro neutralizing titers against B.1 and

Omicron BA.1, BA.2 and BA.5. Therefore, for future convalescent

plasma programs, priority should be given to superimmunized

donors with previous infection plus at least one dose of a SARS-

CoV-2 vaccination with very high SARS-CoV-2 antibody

concentrations as measured by serological assays.

By selection of recently immunized donors with very high

concentrations of anti-SARS-CoV-2 antibody concentrations it is

possible to generate CCP for passive immunotherapy which is
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FIGURE 4

Correlation between NT50 values of SARS-CoV-2 variants. (A) Correlation between NT50 against BA.1 and NT50 against B.1 (Spearman correlation
0.72). (B) Correlation between NT50 against BA.2 and NT50 against B.1 (Spearman correlation 0.73). (C) Correlation between NT50 against BA.5 and
NT50 against B.1 (Spearman correlation 0.66). (D) Correlation between NT50 against BA.1 and NT50 against BA.2 (Spearman correlation 0.84).
(E) Correlation between NT50 against BA.1 and NT50 against BA.5 (Spearman correlation 0.71). (F) Correlation between NT50 against BA.2 and NT50
against BA.5 (Spearman correlation 0.74).
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adaptive to viral evolution. A concept of early, very high titer CCP

from highly selected superimmunized donors in an era dominated by

new variants must be investigated in clinical trials (e.g. the ongoing

COVIC-19 trial, EudraCT 2021-006621-22; NCT05271929).
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FIGURE 5

Receiver operating characteristics analyses of serological assays and neutralization of spike variants. Receiver operating characteristics (ROC)
analyses of Elecsys Anti-SARS-CoV-2 S (red lines) and anti-SARS-CoV-2-QuantiVac-ELISA (IgG) (blue lines) prediction of neutralization of B.1 (A),
BA.1 (B), BA.2 (C) and BA.5 (D). A positive neutralizing titer was arbitrarily defined as ≥640. Area under the curve (AUC) is reported in the graphs,
p<0.0001 for all serological assays and all spike variants.
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