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Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer-

related deaths worldwide. Lysosomes are organelles that play an important role

in cancer progression by breaking down biomolecules. However, the molecular

mechanisms of lysosome-related genes in HCC are not fully understood.

Methods: We downloaded HCC datasets from TCGA and GEO as well as

lysosome-related gene sets from AIMGO. After univariate Cox screening of the

set of lysosome-associated genes differentially expressed in HCC and normal

tissues, risk models were built by machine learning. Model effects were assessed

using the concordance index (C-index), Kaplan-Meier (K-M) and receiver

operating characteristic curves (ROC). Additionally, we explored the biological

function and immune microenvironment between the high- and low-risk

groups, and analyzed the response of the high- and low-risk groups to

immunotherapy responsiveness and chemotherapeutic agents. Finally, we

explored the function of a key gene (RAMP3) at the cellular level.

Results: Univariate Cox yielded 46 differentially and prognostically significant

lysosome-related genes, and risk models were constructed using eight genes

(RAMP3, GPLD1, FABP5, CD68, CSPG4, SORT1, CSPG5, CSF3R) derived from

machine learning. The risk model was a better predictor of clinical outcomes,

with the higher risk group having worse clinical outcomes. There were significant

differences in biological function, immune microenvironment, and

responsiveness to immunotherapy and drug sensitivity between the high and

low-risk groups. Finally, we found that RAMP3 inhibited the proliferation,

migration, and invasion of HCC cells and correlated with the sensitivity of HCC

cells to Idarubicin.
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Conclusion: Lysosome-associated gene risk models built by machine learning

can effectively predict patient prognosis and offer new prospects for

chemotherapy and immunotherapy in HCC. In addition, cellular-level

experiments suggest that RAMP3 may be a new target for the treatment of HCC.
KEYWORDS

hepatocellular carcinoma, lysosome, machine learning, prognostic model, RAMP3,
immune infiltration, drug sensitivity
Introduction

Hepatocellular carcinoma is the seventh most common form of

cancer and the second most common cause of cancer-related death

in the world. Its incidence is on the rise and poses a serious threat to

human health (1), and in China, HCC is one of the four

leading causes of cancer-related death (2). There are various

treatment options for HCC, such as partial hepatectomy, liver

transplantation, radiofrequency ablation, hepatic artery

embolization chemotherapy, and targeted therapy (3), and in

recent years, as research progresses, new strategies of combining

multiple chemotherapeutic agents with immunotherapy have

emerged (4). Although some results have been achieved, overall,

the survival benefit is very limited unless patients are stratified

according to their gene expression profile (5–7). The search for

more precise and effective molecular markers is therefore extremely

necessary to improve clinical outcomes and reduce patient burden

in patients with liver cancer.

Lysosomes are membrane-encapsulated organelles, and

lysosomes were previously thought to be sites of degradation of

intracellular and extracellular substances. As a result, researchers

have called lysosomes the “rubbish disposals” of cells (8–10),

however, more in-depth studies have shown that this view is too

one-sided. Emerging evidence suggests that lysosomes may directly

or indirectly regulate cell signaling, metabolism and degradation of

protein aggregates and damaged organelles (11, 12). It has been

shown that lysosomes may play an important role in tumor

development through the above-mentioned biological processes,

and that both the functional state and spatial distribution of

lysosomes are closely related to cancer cell proliferation, energy

metabolism, invasive metastasis, immune escape, drug resistance

and tumor-associated angiogenesis (13), but there are still few

reports on the relevance of lysosomes in tumors, and more

importantly, we have not found any previous reports of

lysosome-related genes in hepatocellular carcinoma.

The aim of this paper is to analyze the expression of lysosome-

related genes in HCC and to build an optimal prognostic model

based on machine learning. The features were used to stratify HCC

patients by risk score. Immuno-infiltration analysis, immune

checkpoint gene correlation, chemotherapy drug sensitivity,

enrichment analysis and clinical relevance analysis were

performed for high and low-risk groups to validate the
02
stratification. In addition, we overexpressed RAMP3 and

preliminarily demonstrated the potential of RAMP3 as a new

therapeutic target by means of cell proliferation, cell migration,

invasion and drug sensitivity assays. In conclusion, the present

study may provide new options for the treatment and prediction of

hepatocellular carcinoma.
Materials and methods

Data sources

The mRNA sequencing data and corresponding clinical

information (TCGA-LIHC) for hepatocellular carcinoma were

obtained from TCGA (https://portal.gdc.cancer.gov/), which

included 374 liver cancer samples and 50 normal tissue samples;

and from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) to

obtain the hepatocellular carcinoma-related dataset GSE14520,

based on the GPL3921 platform (Affymetrix HT Human Genome

U133A Array), containing 225 hepatocellular carcinoma samples

and 220 normal samples; lysosomal-related genes (875) were

obtained from AmiGO2 (http://amigo.geneontology.org/amigo)

was obtained. Data were processed using R (4.2.0).
Differential gene analysis

The “edgeR” package (14) was used to identify genes

differentially expressed in TCGA-LIHC in liver cancer samples

and normal tissues; the Sanger assistant (15) was used to take

intersections for differential genes and lysosome-related genes; the

“corrplot” package and “tinyarray” package were used to plot

correlations as well as heat maps.
Gene function analysis

Enrichment analysis was performed using the online website

DAVID (https://david.ncifcrf.gov/tools.jsp) and P values less than

0.05 were considered significant and visualized by the Sanger

assistant. Gene expression in single cells of hepatocellular

carcinoma was analyzed using the single cell database TISCH

(http://tisch.comp-genomics.org/search-gene/).
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Machine learning

The liver cancer samples from TCGA-LIHC were filtered

(filtering criteria: remove samples with incomplete survival

information or survival time less than 30 days), and finally 343

liver cancer samples were obtained from TCGA-LIHC (training

set); clinical information of GSE14520 was obtained from (16),

which was also filtered (filtering criteria: remove samples with

incomplete survival information or survival time less than 30

days), and finally 343 liver cancer samples were obtained from

GSE14520 (training set); clinical information of GSE14520 was also

filtered (filtering criteria: remove samples with incomplete survival

information or survival time less than 30 days). samples), resulting

in 219 columns of liver cancer samples from GSE14520 (test set).

A preliminary screen for differential lysosomal-associated genes

in hepatocellular carcinoma was performed using a univariate Cox

(“survival” package) to derive lysosomal-associated genes associated

with overall survival (OS) for machine learning. Random forest

(RSF) analysis was performed using the “randomForest” package to

select (the top 8 ‘significant’ genes for subsequent analysis); Lasso

analysis was performed using the “glmnet” package, with the

optimal value of the penalty paraeter (l) determined based on a

ten-fold cross-validation used to select significant features; Stepwise

regression (stepwise) using the My. “Stepwise” package. The

algorithms were evaluated by combining the three algorithms in

pairs or individually on the training set, with the average C-index

value of the training and test sets.
Building the model

The signature was constructed using COX regression to

construct a risk model based on the following equation

riskscore = (0:173*CD68) + ( − 0:359*RAMP3) + (0:193*CSPG5)

+ (0:0657*FABP5) + (0:0276*CSF3R) + (0:189*CSPG4)

+ ( − 0:0434*PLD1) + (0:0792*SORT1)
Assessment model

Hepatocellular carcinoma samples were divided into high and

low-risk groups based on median risk and the effect of the model

was assessed using C-index,K-M,ROC.

Explore differences in biology, immune microenvironment,

immunotherapy and tumour chemotherapy sensitivity between

high and low-risk groups

The GSVA package and “msigdbr” package were used to

explore the functional differences in biology between the high and

low-risk groups. The reference gene set for KEGG analysis was

species = “Homo sapiens”, category = “C2”, subcategory = “CP:

KEGG”; the reference gene set for GO analysis was species = Homo

sapiens, category = “C5”.

The ssGSEA function in the “GSVA” package was used to

calculate the abundance of 28 immune cells in liver cancer samples;
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the “IMvigor210CoreBiologies” package (17) was used to predict

the responsiveness of high and low-risk groups to immunotherapy.

Common anticancer drug sensitivities between high and low-

risk groups were predicted using the “Prrophetic” package (18)

based on matrix padding and ridge regression models.
Cell culture

Human HCC cell lines (Huh7, HepG2, SNU387, MHCC97H,

Hep3B) were purchased from the Shanghai Cell Collection, Chinese

Academy of Sciences. Cells were cultured in an incubator

supplemented with 10% fetal bovine serum (Gibco, Grand Island,

USA), 100 U/mL penicillin and 100 mg/mL streptomycin (Gibco,

Grand Island, USA) at 37°C and 5% CO2.
Transfection

The plasmid was purchased from (GenePharma Co. Ltd., Shanghai,

China). Transfection reagent was purchased from (Thermo Fisher

Scientific, Shanghai, China). After the cells have reached 60-70%

growth, Lipofectamin 3000 was added to 100 µl of serum-free

medium, and the pcDNA and P3000 (1:1) were added to 100 µl of

serum-free medium, both were mixed and incubated for 15min at room

temperature. After incubation, the mixture is added to each well (12-well

plate) with 800 ul of serum-free medium and then 200 ul of P3000-

Lipofectamin3000-pcDNAmixture is added to each well and incubation

is continued at 37°C in a constant temperature incubator; after 24-36 h of

transfection, subsequent experiments can be carried out.
CCK-8 assay

A 96-well plate with 5000 cells per well was used and 5 replicate

wells were set up. CCK-8 reagent (BioSharp, Beijing, China) was

added at 0h, 24h, 48h and 72h for detection in an enzyme marker,

and cell growth curves were plotted using mapping software and

analysed for statistical significance.
Transwell migration

Matrigel (Corning,Shanghai,China) matrix gel was added to the

small chambers in advance and allowed to solidify. 200 µl of cell

suspension (5x105 cells) was added to the upper chamber and 800 µl

of complete medium containing 10% FBS was added to the 24-well

plate (lower chamber). The 24-well plates were placed in an incubator

and incubated for 48h before fixed staining. The cell migration assay

is performed as the cell invasion assay, except that no matrix gel is

required in the upper chamber and incubated for 36 hours.
Transwell invasion

The same as migration except that no matrix gel is added to the

upper chamber.
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RT-PCR

Total RNA was extracted using Total RNA Kit I (OMEGA

biotek, USA) and complementary DNA (cDNA) was synthesised

using a reverse transcription kit (Thermo Fisher Scientific,

Waltham, Massachusetts, EUA). The primers used for the

quantitative real-time PCR (GenePharma Co. Ltd., Shanghai,

China) were as follows: RAMP3 (5’-GGCATCCACAGGCA

GTTCTT -3’ and 5’-CGGGTATAACGATCAGCGGG-3’); b-actin
(5’-GAG AAA TCT GGC ACC ACA CC-3’ and 5’-GGA TAG CAC

AGC CTG GAT AGCAA-3’).
Western blotting

Equal amounts of protein extracts were separated by SDS-

PAGE and transferred to PVDF membranes using antibodies

against RAMP3 (R&D Systems, Shanghai, China) and Tubulin

(Abcam, Shanghai, China). The signals were detected using the

Immobilon western chemilum HRP Substrate (BioSharp, Beijing,

China), and images were obtained by a GEL-DOC2000 Gel Imager

system (BIO-RAD, California, USA).
Data analysis

Statistical analyses were performed using GraphPad Prism (8.0.2)

and R software (4.2.0). P < 0.05 was considered statistically significant.
Frontiers in Immunology 04
Results

Identification of differential
lysosome-associated genes
in hepatocellular carcinoma

The flowchart of the current study is shown in Figure 1. To

identify differential lysosome-associated genes in hepatocellular

carcinoma (HCC), we obtained 374 HCC samples and 50 normal

tissue samples from TCGA and performed differential analysis

using the edge package (threshold value for differential genes |

logFC | ≥ 1, p-value < 0.05). This analysis revealed 5620 genes (2593

up-regulated and 3027 down-regulated) that were differentially

expressed in HCC and normal tissue (Additional file 1: Table S1).

We then intersected these results with 875 lysosome-associated

genes from AmiGO2 (Additional file 1: Table S2) to obtain 148

genes (Figure 2A). The top 10 differential genes were subjected to

correlation analysis (Figure 2B), and a heat map was generated to

visualize their expression patterns (Figure 2C). Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis (Figures 2D, E) revealed that differentially

expressed lysosome-related genes were enriched in pathways

associated with tumor progression, including Lysosome,

Ferroptosis, Necroptosis, and inflammatory response. In

summary, we identified 148 differential lysosome-associated genes

in HCC and found that they were enriched in pathways associated

with tumor progression. These results provide insight into the role
FIGURE 1

The workflow of the current study.
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of lysosomes in HCC and lay the foundation for further analysis

and experimentation.
Model construction by machine learning

To construct a model using machine learning, we first screened

148 lysosome-related genes using univariate COX analysis with a

significance threshold of P<0.05. This resulted in 46 genes with

prognostic significance, which were used for further analysis. A
Frontiers in Immunology 05
common method for constructing models in previous studies was

the Lasso method (19, 20). In previous studies, the Lasso method

was commonly used to construct models, but we found that this

may not be the best approach for our data (21). Therefore, we chose

three common ways of constructing models (RSF, Lasso, stepwise)

(20, 22, 23) either separately or in two-by-two combinations to

analyze the 46 lysosomal-associated genes.We calculated the C-

index for both the training set (TCGA) and the test set (GSE14520)

separately and averaged the results (Figures 3A–C; Additional file 2:

Figures S1-S3). We also counted the number of genes used in the
B

C

D E

A

FIGURE 2

Expression of lysosome-related genes in hepatocellular carcinoma and normal tissues and demonstration of the biological functions involved.
(A)Venn diagram of intersection of differentially expressed genes in TCGA-LIHC and lysosomal genes in AIMGO; (B) scatter plot showing the
correlation between the top 10 differentially expressed lysosome-related genes; (C) hierarchical clustering of the top 10 differentially expressed
lysosome-related genes. Blue bars represent normal tissues and red bars represent liver cancer tissues. (D) GO results of lysosome-related genes
differentially expressed in liver cancer tissues and normal tissues, red bars represent Biological Process, green bars represent Cellular Component,
blue bars represent Molecular Function; (E) KEGG results of lysosome-related genes differentially expressed in liver cancer tissues and normal tissues.
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nine algorithms that were combined to construct the

model (Figure 3D).

The results of our study indicate that some algorithms, such as

stepwise and Lasso, performed well in the training set but did not

perform well in the test set. Therefore, we selected the genes identified

by RSF+Lasso to construct our model based on the combined

performance of the algorithms. (Figures 4A, B; Additional file 2:

Figures S2C, D). To test the predictive power of our model (LGRs),

we compared it with four published prognostic models, including FGBs

(Five-Gene-Based Prognostic Signature) (24), PRGs (Pyroptosis-

Related Gene Signature) (25), RRGs (Response-Related Gene

Signature) (26), and CRGs (Cuproptosis-Related Gene Signature)

(27). We used C-index to evaluate the predictive ability of the model,

and our analysis showed that our model had the highest C-index in

both the training and test sets (Figures 4C, D). In conclusion, our

constructed prognostic models based on lysosome-related genes

(LGRs) have superior performance compared with published models.
Evaluating the model

After constructing the risk model, we categorized the sample

into high and low-risk based on the median risk value and found
Frontiers in Immunology 06
that the eight genes (genes) used to construct the model were mostly

differentially expressed between the high and low-risk groups

(Additional file 3: Figures S4A, B). Risk factor plots (Additional

file 3: Figures S4C, D) showed that risk scores were negatively

associated with overall survival and survival status of patients.

Combining the risk score with clinical information from other

liver cancer samples in a multifactorial COX (Figure 5A) showed

that the risk score was indeed an independent prognostic factor for

patients with liver cancer and that the C-index at this point was

≥0.72. Based on the risk grouping, we then performed a Kaplan-

Meier (KM) survival analysis (Figure 5B), which showed that the

high-risk group had a poorer prognosis. In addition, we plotted

the corresponding ROC curves for each group using years 1,3,5 as

the endpoints of prediction time (Figure 5C), and the results

demonstrated good predictive power (AUC ≥ 0.69 in the training

set; AUC ≥ 0.63 in the test set).
Exploring biological function between
high-risk and low-risk groups

In order to gain insights into the biological mechanisms

underlying the differences between high-risk and low-risk
B

C D

A

FIGURE 3

C-index display of machine learning. (A) C-index display of the nine algorithms in TCGA-LIHC (training set); (B) C-index display of the nine algorithms in
GSE14520 (test set); (C) average C-index of TCGA-LIHC (training set) and GSE14520 (test set); (D) nine algorithms selected for the number of genes.
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groups, we performed enrichment analysis using the “GSVA”

and “msigdbr” packages. The top 10 pathways that emerged

from our analysis were visualized in Figures 6A–D. Our results

suggest that the differential genes between these two groups are

primarily involved in the SPLICEOSOME, CELL_CYCLE, and

DNA_REPLICATION pathways. These findings provide

important clues for further investigation into the mechanisms

underlying the development and progression of high-

risk cancers.
Frontiers in Immunology 07
Relationship between risk grouping and
immune microenvironment of liver cancer
and immunotherapy

In recent years, the success of immune checkpoint therapy has

highlighted the crucial role of the immune system in cancer treatment

(28). Lysosomes have been identified as a major site for the degradation

of immune checkpoint molecules, as they can temporarily store proteins

such as CTLA-4, PD-L1, TIM-3, CD70, CD200, and CD47 (29).
B

C D

A

FIGURE 4

Machine learning constructed models. (A) top 30 significant genes screened by random forest in the training set; (B) further screening of the top 8
significant genes screened by random forest by Lasso, l = lambda.min; (C) C-index of 5 prognostic models in TCGA-LIHC; (D) C-index of 5
prognostic models in GSE14520.
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Therefore, we analyzed the expression levels of immune checkpoints (27)

in the high and low-risk groups in both the training and test sets

(Figures 7A, B). We also visualized the correlation between riskscore and

PD-1, CTLA-4, and PD-L1 (Figures 7C, D). Our results indicate that

CD244, CD44, and TNFRSF14 (P < 0.05) were significantly different

between the high and low-risk groups. These findings suggest that

immune checkpoint molecules may play an important role in the

development and progression of high-risk cancers, and may be

potential targets for cancer immunotherapy.

According to the report lysosomes can also be involved in the

regulation of immune cell function (30), so we calculated the

abundance of immune cells in liver cancer samples by the ssgsea
Frontiers in Immunology 08
function in the GSVA package , and the box plot (Figure 8A) both

demonstrate the difference in immune cells between high and low-

risk groups, and the results show that there are natural killer cells

(NK), T helper 2 cell(Th2), T helper 1 cell(Th2), and Natural killer

T (NKT) cells between high-risk and low-risk groups differential

expression (P < 0.05), which is the same as that reported in the

literature (31). In addition, we compared the responsiveness of the

high-risk and low-risk groups to immunotherapy (32, 33) and

found that patients in the low-risk group responded better to

immunotherapy than those in the high-risk group (Figure 8B)

and that patients in the low-risk group had a better prognosis

than those in the high-risk group (Figure 8C).
B

C

A

FIGURE 5

Evaluation of the model. (A) Multi-factor COX for both the training set (Figure left) and the test set (Figure right) indicating that risk scores are
associated with prognosis; (B) Survival curves between the high-risk and low-risk groups for both the training set (Figure left) and the test set (Figure
right); (C) 1,3,5-year RCO curves between the high-risk and low-risk groups for both the training set (Figure left) and the test set (Figure right).
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Differences in drug sensitivity between
high–risk and low-risk groups

The emergence of drug resistance has greatly reduced the

therapeutic efficacy of oncological chemotherapeutic agents, and

the lysosome has recently emerged as a promising target for

overcoming chemotherapy resistance (33), and evidence suggests

that interfering with lysosomal function may be a way in which

chemotherapy can be sensitized, an effect that may arise by affecting

multiple mechanisms, such as trafficking in the FEFFLUX

transporter, drug sequestration and TFEB-regulated pathways

that including autophagy and DNA repair (34). Therefore, we

used the GDSC database to predict the sensitivity of 20

commonly used hepatocellular carcinoma drugs in high- and low-

risk groups (Additional file 4: Table S3), and there was a difference

in the sensitivity of 16 hepatocellular carcinoma drugs between

high- and low-risk groups (Figure 9).
Single cell analysis

To investigate the expression patterns of 8 genes (RAMP3,

GPLD1, FABP5, CD68, CSPG4, SORT1, CSPG5, CSF3R) in various

immune cell subpopulations of hepatocellular carcinoma, we

utilized the single-cell database TISCH (http://tisch.comp-

genomics.org/search-gene/) to analyze GSE140228, which

consisted of 62,530 cells. The results depicted in Figure 10

indicated that FABP5, CD68, SORT1, and CSF3R were

predominantly expressed in monocytes/macrophages, while

RAMP3 was primarily expressed in Treg cells. GPLD1, SORT1,

and CSPG5 showed low levels of expression in GSE140228.
Frontiers in Immunology 09
RAMP3 is associated with proliferative
capacity, migratory and invasive capacity
and drug sensitivity of hepatocellular
carcinoma cells

To identify key genes related to lysosomes, three basic

algorithms (RSF, Lasso, and stepwise) were used, and RAMP3

was selected for further study based on the results. The

expression of RAMP3 in tumor cell lines and normal cell lines

was explored in BioGPS (http://biogps.org/)(Additional file 5:

Figures S5A, B).

It has been shown that lysosomes are involved in regulating the

proliferation, migration and invasion of tumour cells (35, 36). We

hypothesized that RAMP3 might also be associated with the

proliferation, migration and invasive ability of hepatocellular

carcinoma cells. RAMP3 expression was detected by RT-PCR in

five common laboratory hepatocellular carcinoma cell lines (Huh7,

HepG2, SNU387, MHCC97H and Hep3B) (Additional file 5: Figure

S5C), followed by overexpression of RAMP3 in Hep3B and HepG2

(Additional file 5: Figures S5D, E), followed by separate CCK-8

proliferation, transwell proliferation, migration and invasion assays

on hepatocellular carcinoma cells. The results showed that the

proliferation; migration and invasion abilities were significantly

reduced in the RAMP3 overexpression group compared to the

control group (Additional file 5: Figures S5F–H).

Furthermore, analysis of the relationship between RAMP3

and chemotherapeutic drug sensitivity through the CellMiner

database (https://discover.nci.nih.gov/cellminer/home.do) (37)

(Additional file 6: Figure S6) showed that RAMP3 expression

correlated with multiple chemotherapeutic drugs (P < 0.05), with

the highest correlation being with Idarubicin (R = 0.474, P < 0.001).
B

C D

A

FIGURE 6

Results of GSVA analysis of high and low-risk groups in TCGA. (A–C) Biological processes, cellular localization and molecular function enrichment
pathways in GO for high and low-risk groups, blue for low-risk group and red for high-risk group; (D) Pathways enriched in KEGG for high and low-
risk groups, blue for low-risk group and red for high-risk group.
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Idarubicin is not only the most toxic drug to human hepatocellular

carcinoma cell lines, but also has the ability to overcome multidrug

resistance (38, 39), suggesting to us the possibility of RAMP3 being a

drug target.
Discussion

It is estimated that every year, around 841,000 new cases of

hepatocellular carcinoma (HCC) are diagnosed, with 781,631

patients dying from the disease in 2018 alone (40). Despite

advancements in early detection and drug development, the

clinical outcomes for advanced cases of HCC remain

unsatisfactory. Therefore, there is an urgent need to identify new

and effective molecular markers to improve clinical outcomes and

reduce the burden of HCC cases (38, 41).

Lysosomes are an important component of the inner membrane

system and participate in numerous cell biological processes, such

as macromolecular degradation, antigen presentation, intracellular

pathogen destruction, plasmamembrane repair, exosome release,

cell adhesion/migration and apoptosis (42). Recent studies have

shown that the functional state and distribution of lysosomes also
Frontiers in Immunology 10
regulate tumour development and progression. However, there are

still few reports on lysosomes in HCC. To address this gap, we

developed a prognostic model of lysosome-related genes using a

machine learning approach. We also investigated the relationship

between these genes and the immune microenvironment,

immunotherapy, and drug sensitivity. This research has the

potential to contribute to the development of new HCC

treatments and improve patient outcomes.

In this study, a machine learning approach was used to

construct a prognostic risk model consisting of eight genes

(RAMP3, GPLD1, FABP5, CD68, CSPG4, SORT1, CSPG5,

CSF3R). Several of these genes have been previously linked to

cancer, such as RAMP3, which has been shown to inhibit the

metastatic ability of liver cancer cells when lacking in cancer

fibroblasts. Targeting GPLD1 has been found to inhibit the

proliferation of non-small cell lung cancer cells mediated by p38

MAP kinase (43) Knockdown or silencing of FABP5 has been

shown to reduce the proliferation and invasiveness of PC cells in

vitro and reduce tumor growth and metastasis in vivo (44).

Additionally, hsa_circ_0110389 has been found to upregulate

SORT1 to promote gastric cancer progression by sponging miR-

127-5p and miR-136-5p (45). The risk model was evaluated in both
B

C D

A

FIGURE 7

Immune checkpoint differences between high and low-risk groups. (A, B), heat map showing immune checkpoint differences between high and
low-risk groups in the training and test sets; (C, D) chord plot showing correlations between risk scores and PD-L2, PD-1 and CTLA4 in the training
and test sets.
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training and test set samples by dividing the samples into two

groups based on the median value of risk. Patients in the low-risk

group had significantly longer survival, and the ROC curves

validated the predictive validity of the risk score. Multifactorial

COX demonstrated that the risk model was an independent

prognostic factor for liver cancer. Subsequent analysis of the

functional differences between the high and low-risk groups in
Frontiers in Immunology 11
TCGA using GSVA showed that the differential genes between the

two groups were mainly involved in the SPLICEOSOME,

CELL_CYCLE, and DNA_REPLICATION pathways.

In recent years, the use of immune checkpoint inhibitors (ICIs)

has revolutionized cancer treatment. However, many patients with

hepatocellular carcinoma (HCC) still do not respond well to ICBs

(46). Research has shown that lysosomes can be a primary site for

the degradation of immune checkpoint molecules. Therefore, we

investigated the relationship between risk models and immune

checkpoints and found significant differences in CD244, CD44

TNFRSF14, CD27, and other immune checkpoints between high-

and low-risk groups. The infiltration of immune cells is a critical

factor in the prognosis of HCC patients (47). Tumor infiltration and

the recurrence of circulating NK cells are positively associated with

survival benefits in HCC with prognostic significance (48). Our

results showed that NK cell levels were lower in the low-risk group

than in the high-risk group, which is consistent with previous

studies (31). Moreover, our analysis revealed that the low-risk group

had better results for immunotherapy and a more favorable

prognosis than the high-risk group in the immunotherapy cohort.

Additionally, risk scores were associated with multiple

chemotherapeutic drug sensitivities.
A

B C

FIGURE 8

Relevance of risk scores to immune cells and to immunotherapy. (A) GSVA analysis of immune cell differences between high and low-risk groups in
TCGA; (B) distribution of CR/PR and SD/PD between high and low-risk groups in the immunotherapy cohort; (C) survival curves between high and
low-risk groups in the immunotherapy cohort. *P < 0.05 **P < 0.01, ***P < 0.001, ****P < 0.0001. ns, no significance.
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RAMP3 has been selected by multiple algorithms and ranked

highly in random forests; therefore, we believe that RAMP3 is a key

gene in lysosomal-related genes and that RAMP3 has not been

studied in hepatocellular carcinoma. We demonstrated at the

cellular level that overexpression of RAMP3 significantly reduced

the proliferation, migration and invasion of hepatocellular

carcinoma cells. Furthermore, we found that RAMP3 was

associated with idarubicin, which has been shown to improve

remission rates in intermediate stage hepatocellular carcinoma

(49), suggesting the possibility that RAMP3, like other small

molecule drugs (50) being investigated, could be a new drug target.

Unfortunately, our study has some limitations. First, although

the predictive power of our model is better than some published

prediction models, the predictive power of LRGs is still inadequate

compared to some machine learning constructed prognostic models

(51, 52) for liver cancer. Second, further experiments are needed to

explore the pathological functions of the other seven lysosome-

related genes in HCC. Third, although we have demonstrated that

RAMP3 can inhibit the proliferation, migration and invasion of

hepatocellular carcinoma cells, the underlying mechanisms need to
Frontiers in Immunology 12
be further investigated in vivo. The above deficiencies will be the

focus of our future work.
Conclusion

Our study identifies a prognostic signature based on eight

lysosome-related genes and this model not only predicts patient

response to immunotherapy and chemotherapeutic agents, but also

has high accuracy in predicting overall patient survival.

Furthermore, we demonstrated at the cellular level that RAMP3

correlates with the proliferation, migration, and invasive ability of

hepatocellular carcinoma cells.
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SUPPLEMENTARY TABLE 1

Genes from TCGA that are differentially expressed in liver cancer tissue and
normal tissue.

SUPPLEMENTARY TABLE 2

Set of lysosome-related genes from AmiGO2.

SUPPLEMENTARY TABLE 3

IC50 prediction between high risk and low risk groups.

SUPPLEMENTARY FIGURE 1

C-index of Lasso, Lasso+RSF and Lasso+stepwise algorithms. (A) C-index of
the prognostic model constructed based on Lasso (TCGA on the left side of

the figure, GSE14520 on the right side of the figure). (B) C-index of the
prognostic model based on Lasso+RSF (TCGA on the left side of the figure

and GSE14520 on the right side of the figure). (C) C-index of the prognostic
model based on Lasso+stepwise construction (TCGA on the left, GSE14520

on the right).

SUPPLEMENTARY FIGURE 2

C-index of RSF, RSF+Lasso and RSF+stepwise algorithms are shown. (A) C-
index of the prognostic model constructed based on RSF (TCGA on the left of

the figure, GSE14520 on the right of the figure). (B) C-index of the prognostic
model constructed based on RSF+Lasso (TCGA on the left, GSE14520 on the

right). (C) C-index of the prognostic model constructed based on Lasso

+stepwise (TCGA on the left and GSE14520 on the right).

SUPPLEMENTARY FIGURE 3

C-index demonstrations for the 3 algorithms stepwise, stepwise+Lasso and

stepwise+RSF. (A) C-index of the stepwise based prognostic model (TCGA on
the left and GSE14520 on the right). (B) C-index of the prognostic model

based on stepwise+Lasso (TCGA on the left, GSE14520 on the right). (C) C-
index of the prognostic model constructed based on stepwise+RSF (TCGA on
the left, GSE14520 on the right).

SUPPLEMENTARY FIGURE 4

Gene expression between high and low risk groups. (A) Differences between
high and low risk groups of 8 genes in TCGA (B)Differences between high and

low risk groups of 8 genes in GSE14520 (C) Risk factor plot demonstrating the

relationship between gene expression and patient survival in TCGA. (D) Risk
factor plot showing the relationship between gene expression and patient

survival in GSE14520, with blue representing the low risk group and red
representing the high risk group.

SUPPLEMENTARY FIGURE 5

Overexpression of RAMP3 inhibits the proliferation, migration and invasion of

hepatocellular carcinoma cells. (A, B) Expression of RAMP3 in normal and
tumor cells (BioGPS). (C) RT-PCR to detect the expression of RAMP3 in five

hepatocellular carcinoma cell lines. (D, E) RT-PCR and Western Blot to detect
the overexpression of RAMP3 in HepG2 and Hep3B cells (F) CCK-8 curves

demonstrating the proliferation of overexpressed RAMP3 and control
hepatocellular carcinoma cells (G, H) transwell to detect the migration and

invasion of overexpressed RAMP3 and control hepatocellular carcinoma cells,

the following figure shows the statistics.

SUPPLEMENTARY FIGURE 6

Correlation analysis of RAMP3 expression with multiple chemotherapeutic

agents in cellMiner database.
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