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Multicellular organisms are constantly subjected to pathogens that might be

harmful. Although insects lack an adaptive immune system, they possess highly

effective anti-infective mechanisms. Bacterial phagocytosis and parasite

encapsulation are some forms of cellular responses. Insects often defend

themselves against infections through a humoral response. This phenomenon

includes the secretion of antimicrobial peptides into the hemolymph. Specific

receptors for detecting infection are required for the recognition of foreign

pathogens such as the proteins that recognize glucans and peptidoglycans,

together referred to as PGRPs and bGRPs. Activation of these receptors leads to

the stimulation of signaling pathways which further activates the genes encoding

for antimicrobial peptides. Some instances of such pathways are the JAK-STAT,

Imd, and Toll. The host immune response that frequently accompanies infections
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has, however, been circumvented by diseases, which may have assisted insects

evolve their own complicated immune systems. The role of ncRNAs in insect

immunology has been discussed in several notable studies and reviews. This

paper examines the most recent research on the immune regulatory function of

ncRNAs during insect-pathogen crosstalk, including insect- and pathogen-

encoded miRNAs and lncRNAs, and provides an overview of the important

insect signaling pathways and effector mechanisms activated by diverse

pathogen invaders.
KEYWORDS

insect, insect-pathogen crosstalk, immune system, signaling pathway, effector
mechanism, antimicrobial peptide
1 Introduction

Insects are often attacked by pathogens (bacteria, fungi, viruses,

etc.), and to defend themselves from these invaders, they have

developed cellular and molecular defense systems against infection

(1–5). Insects are equipped with physical barriers that prevent

invaders from penetrating their hemocoel (1, 6). At the

commencement of infections from bacteria, fungi, viruses, or

protozoa, insect’s early defense mechanisms includes the

production of antimicrobial compounds, identification of

microbes by pattern-recognition receptors (PRRs), and the

activation of diverse phagocytic cells which ultimately eliminates

the invaders (7). These preliminary mechanisms are collectively

referred to as “innate immune systems” (8). Insects’ innate immune

responses are activated and coordinated by immunological

components that have been remarkably conserved throughout

evolution. This immunity comprises cellular and humoral

responses (9). With particular receptors for microbial antigens,

cells in vertebrates, including mammals, make it easier to identify

microbes later on throughout the course of an infection (10). A

variety of B lymphocytes and T lymphocytes are involved in

adaptive immunity by recognizing infectious agents (11).

Although insects lack an adaptive immune system, their innate

immune system is still very effective at recognizing and targeting

foreign substances (12).

The integument and peritrophic membrane constitute physical

barriers. The cuticle forms the outermost covering of an insect’s

integument, which consists of a single cell layer (13). Chitin and

glycoprotein compose the peritrophic membrane, which covers the

insect midgut (14). By creating a physical barrier, it safeguards the

digestive system from harmful microorganisms and coarse food

particles (14). Mucus, made up of glycosylated proteins, is another

crucial physical structure (15). Also, the gut epithelial cells and

acidic gastrointestinal tract both serve as natural barriers against

microorganisms (16). Additionally, the differentiation of intestinal

stem cells continuously promotes the repair of the natural barrier

(17). A sophisticated and potent physical defense mechanism is

produced by the interaction of the gut physical structure and stem
02
cell development (14). The cellular and humoral immune responses

are triggered when pathogens breach these boundaries (18).

Antimicrobial peptides (AMPs) are produced as a part of

humoral immune mechanism (19). According to studies, the well-

studied insect signaling pathways are immune deficiency (Imd),

Toll, and Janus kinase/signal transducers and activators of

transcription (JAK/STAT). Effector molecules like AMPs that

have a tendency to annihilate pathogens invading insects may be

produced when these pathways are triggered (20). Nevertheless, it

was noted that pathogens may come into contact with these

signaling pathways, which might result in their replication and

proliferation (21). In contrast, cellular responses rely on insect

hemocytes, which are involved in processes such as nodulation,

encapsulation, phagocytosis, apoptosis, and autophagy (22). The

fluid found in the hemocoel, known as hemolymph, carries

nutrients throughout the insect body and is filled with a variety of

different kinds of mobile cells called hemocytes (23). Hemocytes

come in a variety of forms, such as granulocytes, spherulocytes,

plasmatocytes and oenocytoids (24). Furthermore, it is essential to

note that not every insect species possess all these hemocyte types

(25). A decrease in circulating plasmatocytes, which make up nearly

95% of all hemocytes in Drosophila melanogaster larvae, after an

infection illustrates the significance of hemocytes (26). Additionally,

adult Drosophila are more vulnerable to microbial infections after

having their phagocytic hemocytes eliminated either genetically or

mechanically (18).

Once the hemocoel is infected, cellular immune responses begin

almost immediately, while humoral immune responses take many

hours to begin (27). It is hypothesized that hemocytes obliterate

majority of the invading microorganisms before the remaining few

are finally destroyed by humoral responses (28). These defensive

systems interact with one another in order to function. Hemocytes,

for example, produce molecules that promote interactions with

microbes (29). These molecules aid in leukocyte phagocytosis in a

manner similar to that of opsonins (complement and antibodies)

(30). The production of antimicrobial peptides by fat body (the

insect liver) cells is also triggered by plasmatocytes following

bacterial infection in Drosophila (31). Further, plasmatocytes help
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to protect adult flies from bacterial infections by lowering their

sensitivity to pathogens including Bacillus subtilis, Escherichia coli

and most notably Staphylococcus aureus (28). These results

demonstrate definitively that an effective crosstalk exists between

cellular and humoral immunity in insects.

Subsequently, after infections, pathogens developed strategies to

avoid the host immune reaction, which may have enabled insects

advance the sophistication of their immune response systems (1).

During insect-pathogen interaction, a number of elements,

including the gut microbiota of the host insect, noncoding RNAs

(ncRNAs) and nutritional stress modulate the immune system (32).

Noncoding RNAs (ncRNAs) (nonprotein-coding RNAs) are RNA

molecules that are incapable of encoding proteins (33). Numerous

studies and reviews provided insights on how ncRNAs effect insect

immunity (34). Invading pathogens trigger a variety of signaling

pathways and effector mechanisms in insects, and this article

provides an overview of these processes. Although over years, the

studies on insects’ immunity, and related signaling pathways were

becoming dominant (Supplementary File), most of the studies were

published in research and review papers, and journals like journal of

biological chemistry and developmental and comparative

immunology were the forerunners in the insect immunity related

papers. Although in the recent era studies have been increased over

years, yet, this review focusses on following aspects, that would

further enlighten knowledge on immune signaling system of insects.

There is also a discussion of current results about the regulation of

the immune system through insect-pathogen communication by

ncRNAs, particularly microRNAs and long ncRNAs.
Frontiers in Immunology 03
2 Cellular mechanisms (hemocytes,
phagocytosis, encapsulation,
melanization and nodulation)
of insect immunity

When the hemocoel is invaded, cellular immune responses

happen right away, whereas humoral immune reactions take

many hours to manifest (35). Hemocytes are in charge of a

number of insect defensive mechanisms (36). Numerous

variations in hemocyte immunological responses result due to the

huge diversity of insect species (23). The majority of the examined

insects do, however, exhibit a variety of regular cellular immune

responses. Phagocytosis, encapsulation, nodulation, and

melanization are some of these reactions (Figure 1) (37).
2.1 Hemocytes

There are different forms of hemocytes documented in insects,

including prohemocytes, plasmatocytes, crystal cells, oenocytoids,

and granular cells (38). These hemocytes possess adhesion and

phagocytosis capabilities (39). While some forms of hemocytes

such as oenocytoids, may produce prophenoloxidase (proPO) (40).

The usual morphology-based categorization of hemocytes does not

necessarily correspond with cell function (41). As a result,

considerable effort has been put into classifying different

hemocytes. Flow cytometry permits the grouping of three primary
FIGURE 1

Represents Cellular mechanisms of insect immunity. (A) Phagocytosis is a process used by insects to neutralize and eliminate small pathogens. The
phagocytes (hemocytes or granulocytes) mediate this process. The mechanism involve several steps like Attachment of phagocyte to pathogen,
Digestion of pathogen, Formation of phagosome, Formation of phagolysosome, Destruction of pathogen and Elimination of waste material.
(B) During the process of nodulation, granulocytes (immune cells) bind to one other to form layers that encase many bacteria or fungus spores. The
bacteria are captured in a flocculent substance when the granulocytes discharge their contents. Melanization often happens after this stage.
(C) When pathogens are too big to be phagocytosed, insects adopt encapsulation (both cellular and melanotic). Cellular encapsulation takes place
without melanization, but melanotic humoral encapsulation depends on PO activity and may take place with or without the aid of hemocytes.
(D) The process of melanization is based on the conversion of PPO to PO, that produces the melanotic capsule (melanotic enzymes) which
facilitates the death of the foreign agent.
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kinds of hemocytes: big granular cells, tiny semi granular cells and

small hyaline cells (42). Additionally, some monoclonal antibodies

can differentiate hemocytes based on their immunogenicity rather

than their physical attributes (43). Also, these antibodies may also be

able to inhibit other types of cellular responses (44). Three distinct

hemocyte types inD. melanogaster have been characterized in further

details: plasmatocytes, lamellocytes, and crystal cells (45). The large

cells, known as crystal cells, earn their moniker from the crystalline

inclusions they contain. During melanization, they release proPO, a

zymogen that is essential for various physiological processes,

including the closure of parasite eggs and the repair of damaged

skin (22). About 95% of the hemocyte pool is comprised of

plasmatocytes. They have relatively tiny (10 µm in diameter) cells,

yet they produce enormous lamellipodial protrusions and active

filopodia (46). Plasmatocytes are the persistent cells, that appear to

remain throughout a fly’s life (47). Mature plasmatocytes were

reported to express scavenger receptor ortholog Croquemort (Crq),

phagocytic receptors, and the extracellular Peroxidasin (48). The

lamellocytes were reported to only show up in the parasitized larval

stages. One of the principal purposes of a hemocyte is to encase the

parasitic wasp egg (49).With infection or sterile damage to wasp eggs,

lamellocytes appear to develop from a pool of plasmatocytes that

served as their predecessors (50). The first stage of the immune

response in insects is the adhesion of granular hemocytes and

plasmatocytes to the surface of the invading organism or to other

cells (51). Phagocytosis, nodule formation, and encapsulation all

result from hemocyte adhesion. Further the function of these

innate cellular mechanisms are also explained.
2.2 Phagocytosis

Macrophages are a type of white blood cell that play a crucial role

in the immune system, as they engulf and digest harmful particles and

cells in the body (52). Recent advances in research have shed light on

the evolution of macrophages, particularly the transition from

invertebrate to vertebrate organisms (53). It is now believed that

macrophages evolved from primitive, sessile cells found in

invertebrates, which were then modified into motile cells in

vertebrates (54). Additionally, studies have shown that different

types of macrophages have evolved in different organisms, and that

they play different roles in immune function (55). Understanding the

evolution and function of macrophages can help improve our

understanding of the immune system and the development of

therapies for diseases (56). The principal role of macrophages

entails the process of phagocytosis, which involves the engulfment

and subsequent digestion of extraneous particles, including bacteria,

viruses, and cellular remnants. This mechanism facilitates the

eradication of pathogens by macrophages and their involvement in

tissue repair processes. Moreover, macrophages are responsible for

the synthesis and secretion of signaling molecules known as

cytokines, which play a crucial role in the regulation of immune

responses and facilitate communication among various immune cells

(57). Gaining a comprehensive understanding of the complex

functions of macrophages and their interactions with other

immune cells yields significant insights into the pathogenesis and
Frontiers in Immunology 04
advancement of diverse pathological conditions. The dysregulation of

macrophage activity has been linked to a variety of conditions, such

as infectious diseases, autoimmune disorders, cancer, and chronic

inflammatory diseases (58). Through the analysis of the molecular

mechanisms that govern macrophage function, researchers have the

opportunity to devise precise therapeutic interventions aimed at

regulating macrophage activity. This approach holds promise for

the treatment and prevention of various diseases. The phagocytosis of

melanized bacteria and other small pathogens is common (Figure 1)

(59). Phagocytosis is a cellular immunological mechanism that has

been used by both vertebrate and invertebrate species throughout

evolutionary history to prevent the spread of disease-causing

microorganisms (60). It may phagocytose hundreds of bacteria at

once and hydrolyze foreign bodies in a matter of seconds (61).

Phagocytes including plasmatocytes and granulocytes, which can be

either circulating or sessile are responsible for identifying foreign

matter in Hemiptera, mosquitoes, Lepidoptera (granulocytes) and

fruit flies (plasmatocytes) (62). The latter is taken up by a membrane-

bound phagosome, which further fuses with a lysosome before being

destroyed by enzymatic hydrolysis (46). The intracellular

mechanisms driving phagocytosis are poorly understood, but it all

starts with the binding of a cell-surface and humoral PRR on a PAMP

(63). Nimrod proteins, Thioester-containing proteins, b-integrins,
DSCAM and PGRPs are PRRs that have been experimentally shown

to be associated with phagocytosis (64). There are several specifics

among PRRs. For instance, NimC1 mediates the phagocytosis of S.

aureus and, to a lesser degree, E. coli, whereas in D. melanogaster

PGRP-LC mediates the phagocytosis of E. coli but not S. aureus (65).
2.3 Encapsulation

Encapsulation, a cellular immunological response, is deployed

by insects to combat infections that are too huge to be phagocytosed

(Figure 1) (66). Insects were found to exhibit two forms of

encapsulation: melanotic humoral encapsulation (Diptera) and

cellular encapsulation (Lepidoptera) (67). The latter may take

place even in the absence of melanization (68). Contrarily,

phenoloxidase (PO) activity is necessary for melanotic

encapsulation, which may take place with or without hemocyte

support (40). Granulocytes and plasmatocytes play a key role in

encapsulation in Lepidoptera, whereas plasmatocytes and

lamellocytes do so in Drosophila (69). In Lepidoptera,

encapsulated substances were enclosed by both an external layer

of plasmatocytes and an internal layer of granulocytes (36). Insects,

such as lepidopteran and dipteran larvae, often utilize this response

when infected with parasitoid wasp eggs (70). Encapsulation in

Lepidoptera begins with the integrin dependent attachments of

granulocytes to certain sites designated by an Arg-Gly-Asp (RGD)

sequence (31). The granulocyte cells surrounding the pathogen are

covered by several layers of plasmatocytes, and these plasmatocytes

are further enclosed by an adhesive layer of more granulocytes (71).

In contrast, plasmatocytes and lamellocytes are the cells engaged in

a similar process in Drosophila (72). The capsule may subsequently

get melanized depending on the infection and insect.
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2.4 Melanization and nodulation

The insect immune system relies in part on melanization, an

enzymatic process that serves a number of purposes (Figure 1) (73).

To achieve this, serine proteases, its inhibitors, pattern recognition

receptors, and enzymes involved in melanin synthesis should act

together (36). In response to recognition of PAMPs by PRRs (C-

type lectins, b-1,3 glucan recognition proteins and Gram-negative

binding proteins), the serine protease cascade is activated, resulting

in the conversion of pro-phenoloxidase (PPO) to phenoloxidase

(PO), which in turn leads to melanotic capsule formation (74, 75).

The pathogen’s proteinaceous capsule, in conjunction with damage,

oxidative stress, or starvation, serves as a mediator in its

annihilation (1). Additionally, melanization aids in the removal of

infections (76). Oenocytoids, which are the main producers of PPO,

are one kind of hemocytes that produce a number of enzymes and

PRRs that trigger the process of melanization (1). Another crucial

component of the insect’s immune system’s resistance against

fungal infection is through melanization (77). Melanin, a dark

pigment, is deposited at the site of infection. Upon detecting

fungal pathogens, insects initiate their immune response, resulting

in the release of specialized immune cells known as hemocytes.

Hemocytes identify and phagocytose the invading fungi, initiating

subsequent biochemical reactions (78). One reaction involves the

activation of phenoloxidase, an enzyme that converts phenolic

compounds to quinones. Quinones are subsequently polymerized

and oxidized to generate melanin. Melanin deposition restricts the

dissemination of fungal pathogens and hinders their capacity to

induce harm (79). Moreover, melanin produces harmful by-

products that negatively affect fungal cells. It is essential for

containing and delaying the development and spread of the

invasive mosquito pathogen Beauveria bassiana (80).

Although, the detailed molecular mechanisms defining this

defensive process are still incompletely understood, nodulation

depends on eicosanoid-based communication and the protein

Noduler, which resembles an extracellular matrix (81). The first

step in this procedure is the adhesion of granulocytes to one another

to form layers that enclose many bacterial or fungal spores (1).

When the granulocytes discharge their contents, a flocculent

substance is created that traps the microorganisms. The nodule’s

surface is then covered with an accumulation of plasmatocytes.

Melanization often occurs after this stage (82).
3 The inducible humoral response
of insect immunity upon
pathogen invasions

The synthesis of antimicrobial peptides (AMPs) by insects is

one of their earliest known defensive strategies (83). In response to

microbial infection, the body secretes a combination of short

peptides and proteins into the hemolymph (84). From almost

undetectable in organisms to micromolar concentrations, AMP

levels in the hemolymph of infected organisms rise sharply (85).

Although hemocytes also contribute to the production of these
Frontiers in Immunology 05
AMPs, fat-body cells are the primary source of their expressions

(86). Lysozyme, discovered in Galleria mellonella, was the first

insect antimicrobial protein to be characterized (87). This enzyme

found in the cell walls of Gram-positive bacteria is similar to C-type

lysozyme of chicken that can hydrolyze peptidoglycans (88).
3.1 Antimicrobial peptides
of insect immunity

As a result of biochemical analysis of the hemolymph of the

fruit fly Drosophila melanogaster and other Dipterans, seven

different types of AMPs have been revealed in insects (89). Based

on their primary biological targets, they may be divided into three

categories and exhibit a broad range of effects against microbes (90).

Drosocin, attacins, cecropins and diptericin may all be used to

combat Gram-negative bacteria. While, metchnikowin and

drosomycin are antifungal medications (91). A characteristic

feature of insect defensins is the presence of three or four

stabilizing intramolecular disulfide bonds (92). The term derives

from their chemical resemblance to mammalian a and b defensins

(93). Insect defensins fall into two categories: those that include

peptides with mixed a/b-helix-sheet structures and those that have

triple-stranded antiparallel b-sheets (94). It has been revealed that

numerous Lepidopteran species contain defensins with antibacterial

and antifungal properties (95). Likewise, cecropins are short, basic

peptides having an amphipathic a-helix shape, ranging in size from

31 to 37 amino acids (96). Cecropin is the first insect-derived

amphipathic antimicrobial peptide discovered in the hemolymph of

the silkworm Hyalophora cecropia (93). Cecropin was also observed

to decrease proline absorption and cause membrane permeability

by disrupting pathogen cell membranes and breaking the

amphipathic peptides (97). Numerous Lepidopteran species have

cecropin-family genes that have been identified. 13 cecropin genes

have been discovered in Bombyx mori (98). Another category of

amphipathic -helical antimicrobial peptides, moricins were initially

identified in the silkworm, B. mori (99). Furthermore, nine moricin

genes were found in the B. mori genome, while eight moricin

homologs with antibacterial, antiyeast, and antifilamentous fungal

activity were found in the G. mellonella genome (100, 101).

Different terms, such as bactericidin, lepidopterin, and sarcotoxin,

have been given to cecropins derived from insects besides H.

cecropia (102). D. melanogaster produces the antimicrobial

peptide drosocin, which is 19 amino acids long (93). The

peptide’s antibacterial action has been traced to an O-glycosylated

threonine residue since its absence significantly reduces the

peptide’s potency compared to the original molecule (96).

The first known source of the 20 kDa AMPs called attacins,

which are glycine-rich, was the hemolymph of H. cecropia. The

acidic and basic isoforms of attacin have been cloned from H.

cecropia. By primarily binding to lipo-polysaccharide (LPS), these

attacins increase the permeability of the bacterial outer membrane

(103, 104) and these AMPs were also reported to inhibit the

synthesis of outer-membrane proteins by preventing the bacterial

transcription (105). As a result, basic attacin was found to be more

effective against E. coli than acidic attacin. Spodoptera exigua, the
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beet armyworm, is one of the several species of Lepidoptera whose

attacins have been cloned (106). The Lepidopterans also have

glycine-rich AMPs known as globerins and lebocins (107). These

peptides prevent outer membrane protein production, which is

essential for bacterial growth (108). The effectiveness of glomerins

against bacteria, fungi, and even viruses has been demonstrated, and

it has been hypothesized that they may also be able to inhibit viral

replication (31).

Diptericin is a glycine-rich AMP that insects produce in

response to bacterial infection or injury (109). It is basically a

heat-stable peptide with an 8.6 kDa molecular weight with high

concentrations of Asx, Pro and Gly (93). Although this treatment

appears to work by rupturing the cytoplasmic membrane of

growing bacteria, only a small subset of Gram-negative bacteria

are susceptible to it (18). In addition to inhibiting bacterial growth,

studies claim that diptericin also prevents oxidative stress (110).

Through an increase in antioxidant enzyme activity in D.

melanogaster, diptericin may “scavenge” or trap free radical

anions as well as reduce oxygen toxicity (111). Drosomycin is a

44-residue antifungal peptide that was originally isolated from D.

melanogaster exposed to microorganisms (112). It has been

observed to be secreted from insect’s fat body into the

hemolymph. It is quite effective against fungi but has little effect

on bacteria. Drosomycin is a member of the cysteine-stabilized a‐
helical and b‐(CSab) superfamily. It consists of a three-stranded a‐
helix and a b‐sheet stabilized by four disulfide bridges (113).

Moreover, it is highly similar to a class of 5 kDa cysteine-rich

plant antifungal peptides identified in the seeds of diverse

Brassicaceae species (114). Drosomycin has a narrow antibacterial

range and is effective against just a few numbers of filamentous

fungi (115). In E. coli, recombinant drosomycin was found to have

antiyeast and antiparasitic activities (93). Drosophila produces the

proline-rich peptide metchnikowin (26 residues) in response to

infection (116). This peptide is produced in the adipose tissue in

response to an immune challenge and its production may be

initiated by the Toll or Imd pathways (117). Metchnikowin, a

Drosophila based antimicrobial peptide (116) was recently

demonstrated to have higher potential against Gram-positive

bacteria and fungi. Further, transgenic barley containing the

metchnikowin gene was successful in suppressing Fusarium head

blight and powdery mildew like diverse ascomycetes fungal

infections (118).
3.2 Signaling pathways activating
antimicrobial peptide-encoding genes

After pattern recognition receptors (PRRs) identify a

microorganism, a series of signaling chemicals within the cells

trigger various actions (Figure 2) (93). The eventual cellular

response is determined by the molecule’s interactions with certain

signaling pathways (119). Production of AMPs by the fat body

through the Toll, immunological deficiency (Imd), and JAKSTAT

pathways predominantly mediates humoral immune responses
Frontiers in Immunology 06
(120). The Toll signaling pathway is typically activated by gram-

positive bacteria and fungi, while the Imd signaling system is

generally triggered by gram-negative bacteria (121).

3.2.1 The Toll signaling pathway
The Toll pathway was first discovered as a developmental pathway

in D. melanogaster (122) and it included signaling to nuclear factor

kappa B (NF‐kB), which is crucial for immunity and embryonic

development (Figure 2) (123). The study of this pathway enables the

characterization of toll-like receptors (TLRs), and by using this

knowledge, it changed how we perceive the mammalian immune

system (124). Insects depend on an intricate array of immune

receptors for the detection and response to microbial infections. The

Toll signaling pathway is a vital component of this network, as it plays a

critical role in the defense against Gram-positive bacterial infections.

The Toll pathway necessitates the involvement of additional pattern

recognition receptors (PRRs). One example of a pattern recognition

receptor (PRR) is Spatzle, an extracellular cytokine-like polypeptide

that plays a crucial role in the activation of the transmembrane receptor

Toll. Boraschi et al. (125) found evidence supporting the theory that

Toll activation is dependent on the collaboration of other pattern

recognition receptors (PRRs). Xiao et al. (126) discovered that a

mutation in the peptidoglycan recognition protein (PGRP-SA), a

specific pattern recognition receptor (PRR), inhibits the activation of

the Toll signaling pathway by Gram-positive bacteria. This mutation

significantly impairs the insect’s defense against Gram-positive

bacterial infections. While PGRPs are responsible for mediating Toll

activation, Gram-negative binding protein GNBP1 and GNBP3 were

reported to be responsible for Gram-positive bacterial infections and

fungal infections respectively (127). Subsequent studies on the Toll

signaling pathway have provided further understanding of its

mechanism of activation. Shang et al. (128) discovered that the

protease Persephone, which is present in Drosophila, plays a vital

role in the activation of the Toll pathway. Persephone undergoes

proteolytic maturation through the action of fungal virulence

proteins that are secreted. After reaching maturity, Persephone

subsequently triggers the Toll receptor. This finding offers a novel

understanding of the complex interaction between the host and

invading fungi in the context of an infection. Additionally, Boraschi

et al. (125) have highlighted that the cleaved version of the extracellular

cytokine-like polypeptide Spatzle binds to the Toll receptor, thereby

initiating Toll signaling. These findings provide insight into the

complex activation mechanism of the Toll pathway, which includes

protease maturation and the interaction between cleaved Spatzle and

the Toll receptor. This interaction induces dimerization of

intracytoplasmic TIR domains, which in turn induces binding of

adaptor protein MyD88 via its own TIR domain (93). Pelle, a

protein kinase, is employed when MyD88 links to the adaptor

protein Tube (129). These interactions are established through direct

contact between the death domains of the involved proteins.

Autophosphorylation of Pelle upon binding causes it to promote the

phosphorylation and degradation of cacti (an inhibitor of IB) and the

nuclear translocation of the NFB transcription factors Dorsal and

Dif (130).
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3.2.2 The Imd signaling pathway
Decreased AMP synthesis in response to E. coli and Micrococcus

luteus infection led researchers to the D. melanogaster Imd

(immunodeficiency) pathway (Figure 2) with this mutation alone

(131). The antifungal Drosomycin, however, remained to be

inducible in these flies. Subsequent studies demonstrated that the

Toll pathway controlled Drosomycin induction after fungal infection,

while the Imd mutation blocked the response to the majority of Gram-

negative bacteria (132). The Imd pathway was reported to be activated

by the binding of peptidoglycan recognition protein (PGRP)-LC and

PGRP-LE to meso-diaminopimelic acid (DAP)-type peptidoglycan in

the cell wall of most Gram-negative bacteria (133). These receptors

trigger signaling to the NF-B transcription factor Relish via the death-

related ced3/Nedd2 like protein (DREDD), Fas-associated protein with

death domain (FADD), and transforming growth factor beta (TAK1),

inhibitor of B kinase (IKK) signaling pathways (130). These receptors

apparently dimerize after being coupled to peptidoglycan and connect

to the adaptor protein Imd (93, 134). Imd activates the DREDD
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caspase and dFADD (Drosophila FADD) (135). IAP2 (Inhibitor of

Apoptosis 2) is a ubiquitination system component that is activated

when DREDD cleaves Imd, which is then K63ubiquitinated (129).

K63polyubiquitin chains are thought to bind, recruit, and activate

TAK1 via using the ubiquitin-binding domain of its regulatory

companion TAK1-associated binding protein 2 (TAB2) (136). TAK1

then activates the IKK complex, allowing Relish to enter the nucleus.

DREDD is also needed to help with the cleavage of the relish

precursor (93).

3.2.3 The JAK‐STAT signaling pathway
Similar pathways to Toll and Imd pathways were then discovered

in mammals but the principal components of these pathways have

stayed unchanged throughout evolution (137). The Janus kinase-

signal transducer and activator of transcription (JAK-STAT)

signaling pathway (Figure 2), on the other hand, was the first to be

recognized as being pivotal in regulating a variety of aspects of human

immunity, such as the control of inflammation and the activation of
FIGURE 2

Depicts inducible humoral response of insect immunity upon pathogen invasions. (A) Protease cascades are crucial for activating Toll. When serine
protease cascades cleave proSpätzle, Spätzle is produced as the Toll ligand. The circulating pathogen recognition receptor Gram-negative binding
protein 3 (GNBP3) recognises the b‐1,3-glucan component of the cell walls of fungi, while the receptors peptidoglycan recognition proteins PGRP-
SA and PGRP-SD, together with GNBP1, identify the peptidoglycan of Gram-positive bacteria. These interactions start protease cascades that
culminate at the level of the serine protease ModSP, which subsequently triggers the protease Grass, that in turn activates the Spätzle digesting
enzyme (SPE). The protease Persephone may also identify certain microbial proteases (virulence factors) produced by harmful fungus or bacteria.
Persephone’s cleavage results in SPE activation and the development of active Spätzle. It takes a proteolytically cleaved version of Spätzle to activate
the transmembrane receptor Toll. A signaling complex is put together when a dimer of Toll molecules recognises Spätzle. The TIR domains of Toll
bind Myd88, while the death domains of Myd88 bind Tube and Pelle. In order to phosphorylate cactus (an IkB inhibitor), the kinase Pelle must first
be activated by autophosphorylation. This marks the molecule for destruction. As soon as the NF-kB transcription factors Dorsal or Dif are liberated,
they go to the nucleus and start the transcription of antimicrobial peptides (AMP). (B) Polymeric DAP-type peptidoglycan (poly PGN), which is
identified by a dimer of PGRP-LC to activate Imd signaling, is found in several Gram-positive species as well as Gram-negative bacteria. The caspase
DREDD (FADD death-related ced3/Nedd2 like protein) is then recruited when Imd attaches to FADD (Fas-associated protein with death domain).
Imd is broken down by DREDD and activated by K63 ubiquitination. The TAK1-associated binding protein TAB2 and TAK1 (transforming growth
factor beta (TGF‐b)-activated kinase 1) are both attracted to and activated by the K63 polyubiquitin chains. The IKK complex is then triggered by
TAK1, which phosphorylates the nuclear factor Relish that is similar to NF-kB. In order to mediate the cleavage of the precursor relish, DREDD is also
necessary. Free Relish may go into the nucleus after being broken down and phosphorylated, where it triggers the production of certain
antimicrobial peptides (AMP). The intracellular receptor PGRP-LE may bind to monomeric peptidoglycan and trigger the Imd pathway. (C) Three
cytokine-like proteins known as unpaired (upd), upd2, and upd3 transmit signals through the Domeless (Dome) receptor, that binds to a single JAK,
hopscotch (hop). Following receptor activation, hopscotch phosphorylates itself as well as certain tyrosine residues on the cytoplasmic portion of
the receptor. These phosphorylated tyrosines serve as docking sites for the Stat92E transcription factor, which is a component of the STAT family.
Hopscotch phosphorylates Stat92E at tyrosine residues, enabling it to form dimers and translocate into the nucleus, where it binds the promoters of
its target genes. This pathway is also under the control of a negative feedback loop involving the suppressor of cytokine signaling (SOCS) protein
Socs36E, which is upregulated by STAT-JAK signaling. Moreover, eye transformer (ET), a nonsignaling receptor for upd, may interact with both
Dome and hop as part of the receptor complex. Thus, it seems that ET inhibits intracellular signaling.
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diverse leukocytes like neutrophils and macrophages (138). Although

determining the in vivo roles of the JAK/STAT pathway and its

regulators in mammalian systems has been difficult, scientists have

conducted detailed studies by using fruit fly as the key model (93).

The traditional model suggested that in JAK-STAT pathway, when

the receptor binds to cytokine, it gets dimerized and activated (139).

The activated JAKs further phosphorylate particular tyrosine residues

that ultimately act as docking sites for the Src homology 2 (SH2)

domains of STAT molecules (140). The JAK tyrosine

phosphorylation of STATs was found to induce dimerization and

nuclear translocation, and they finally get attached to the promoters

of their respective target genes (141). This pathway is exceedingly

intricate in humans due to the wide range of cytokines that can

activate it, as well as JAKs and STATs’ ability to form homo- and

heterodimers and bind with a number of transcription factors and

coactivators (142). Four JAKs (JAK1, JAK2, JAK3, and TYK2) and

seven STATs (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B,

and STAT6) were reported to be present (143). Only three cytokine

like proteins termed unpaired (upd), upd2, and upd3 are recognized

as JAK-STAT pathway ligands in Drosophila (144). A single JAK,

hopscotch (hop), and a single STAT transcription factor, Stat92E, are

bound by a single receptor, domeless (Dome), and are employed to

signal by all three upd molecules (145). Additionally, the membrane-

spanning signal transducer protein gp130, as well as negative

feedback loops involving suppressor of cytokine signaling (SOCS)

proteins, regulate the JAK-STAT pathway at the receptor level in

mammals (93). Similar regulatory mechanisms have been discovered

in Drosophila. The receptor complex contains the eye transformer

(ET), a no signaling protein that mimics gp130 and interacts with

both Dome and hop (146). Consequently, ET seems to prevent

intracellular signaling (147). Additionally, the SOCS family has

three members in Drosophila: Socs16D, Socs36E, and Socs44A.

Among these, Socs36E is the main regulator of the negative

feedback loop and is substantially triggered by JAK/STAT signaling

(93). In Drosophila, the Toll and Imd pathways play a major role in

regulating the humoral immune response, which results in the

synthesis of antimicrobial peptides (110). Additionally, the JAK/

STAT pathway triggers the fat body to produce other proteins,

such as stress response proteins and cytokines. The ligand upd3

triggers the activation of this pathway. Hemocytes are induced to

release upd3 under a variety of stress situations, including injury, heat

shock, and dehydration (148). Additionally, it has been demonstrated

that the JAK/STAT pathway plays a role inDrosophila viral response.

Many viruses, including TotM, upd2, and upd3, boost the expression

of well-known JAK/STAT pathway target genes (149). Finally, the

JAK/STAT pathway stimulates the production of antimicrobial

peptides in the stomach, including drosomycin-like peptide (dro3)

(150). Rather than the pathogen, the recognition of cell injury appears

to be the mediating mechanism in this response.
4 Receptors sensing infections

Insect’s innate immune responses are triggered when hemocyte

receptors or plasma proteins attach to certain chemicals found on

the surface of many different types of bacteria, such as lipids or
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sugars (18). Pattern-recognition proteins may be divided into a

number of categories, such as peptidoglycan recognition protein

(PGRP), b‐1,3-glucan recognition protein (bGRP), C-type lectins

and hemolin (Figure 3) (151).
4.1 Peptidoglycan recognition proteins

Peptidoglycan recognition proteins (PGRPs), which play a key role

in inflammation and antibacterial defense by recognizing bacterial

peptidoglycan, are essential proteins associated with innate immunity

(Figure 3) (152). They are polymorphonuclear leukocyte-expressed

(PGRP1), liver-expressed (PGRP2) or secreted proteins (PGRP3 and

PGRP4) (93). Up to 19 PGRPs exist in insects, categorized as short (S)

and long (L) variants (153). The short versions are found in

hemolymph, cuticle and fatbody cells, while the long forms are

mostly expressed in hemocytes (154). Insect PGRP expression is

frequently elevated when subjected to bacterial exposure. These

receptors cause proteolytic cascades that result in the production of

antimicrobial compounds, activate the Toll or Imd signal transduction

pathways, or both (155). The following are PGRPs in Drosophila that

have known uses: The hemolymph’s PGRP-SA binds to Lys-type

peptidoglycan, and together with the PGRP-SD and GNBP-1, this

causes the Toll pathway to be activated (28). In reaction to yeast,

GNBP3 also causes the Toll pathway to be activated (156). These

pattern recognition proteins trigger a series of serine protease cascades

that ultimately activate the Spatzle-processing enzyme (SPE), which

cleaves proSpatzle to create free Spatzle, the ligand for Toll (157). In a

similar way, the Imd pathway is triggered by the binding of DAP-type

polymeric peptidoglycan to the PGRP-LCx homodimer complex or

DAP-type monomeric peptidoglycan to the PGRP-LCx/PGRP-LCa

heterodimer (158). Both monomeric and polymeric DAP-type

peptidoglycans are capable of being bound by PGRP-LE (159). It has

been shown that extracellular PGRP-LE activates the Imd pathway

through PGRPLC transmembrane receptors and is also important in

activating the prophenoloxidase (proPO) cascade ahead of the proPO-

activating enzyme (PPAE) (160). By binding to the Imd adaptor

protein, PGRP-LE inside the cell is able to activate the Imd pathway

in response to the recognition of DAP-type peptidoglycan from

bacteria within the cell. Furthermore, PGRP-LE produced within the

cell may stimulate autophagy in a way that is independent of the Imd

signaling pathway (161). PGRP-LF inhibits the Imd pathway because it

binds to PGRP-LCx instead of peptidoglycan. By doing so, it inhibits

the development of an active dimer of PGRP-LC. DAP-type

peptidoglycan is cleaved into inactive pieces by PGRPLB and SC1a/

1b/2, which prevents Imd pathway activation (162). As a result of its

specialized amidase activity on DAP-type peptidoglycans, PGRP-SB1 is

very lethal to bacteria (163).
4.2 Beta‐1,3‐glucan recognition proteins

A family of plasma proteins known as insect b‐1,3-glucan
recognition proteins (GRPs) and Gram-negative bacteria binding

proteins (GNBPs) have glucan-binding domains at their amino and

carboxyl ends that are comparable to those of b‐1,3-glucanases (164).
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All bGRPs may trigger the proPO cascade (Figure 3) by attaching to

b-1,3-glucans on bacterial surfaces. Manduca sexta bGRP1 gene

expression is constant in the fat body, but bGRP2 gene expression

is elevated during the initial wandering stage just before pupation or

after an immunological attack (165). These bGRPs bind to the

hemolymph proteinase-14 precursor (proHP14), which causes

HP14 to autoactivate and start a proteinase cascade that activates

proPO (166). Helicoverpa armigera larval midgut extract was used to

identify a bGRPwith glucanase activity. This enzyme likely serves as a

digestive enzyme rather than an immune stimulator since it

hydrolyzes b-1,3-glucan but not b-1,4-glucan (167).
4.3 Hemolin and C‐type lectins

The plasma protein known as hemolin, which is frequently

found in the adhesion molecules of vertebrates, contains four

immunoglobulin (Ig) domains (168). Hemolin is present in many

Lepidopteran species, especially B. mori (101), Antheraea mylitta

(169), Plutella xylostella (170) and Samia cynthia (171), yet it hasn’t

been seen in insects from other orders. Lipoteichoic acid and LPS

from bacteria are bound by hemolin (172). Hemolin also binds to

hemocytes, acting as a link between hemocytes and microorganisms

and triggering phagocytosis or nodulation (37).

Animal C-type lectins (CTLs) are a vast class of molecules that

recognize carbohydrates and bind ligands in a calcium-dependent

way (173). Lepidopterans have been reported to include a number

of C-type lectins, including immulectins 1, 2, 3 and 4 as well as LPS-

binding protein (also known as CTL20), CTL10, CTL11, CTL19 and
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CTL21 (174). These lectins all contain two carbohydrate

recognition domains, and based on their genes, it seems that

Lepidoptera is the only insect group that has these particular

sorts of lectins (175). The majority of Lepidopteran CTLs bind to

lipoteichoic acid and bacterial LPS, causing bacterial and yeast

agglutination. This is likely because each of the two carbohydrate-

binding domains binds to sugar residues on the surface of nearby

microbial cells (176). This microbial aggregation may help

hemocytes fight off pathogens by phagocytosing them and

forming nodules. By phagocytosing the pathogens and forming

nodules, this microbial aggregation could aid hemocytes in their

fight against them.
5 Antiviral insect immune response

Viruses may infect insects just like any other kind of organisms

(12, 177). Some viruses only infect insect cells and are confined to

them, whereas other viruses are spread to mammals by insects that

bite them (8).Thus, understanding how insect’s innate immune

systems protect themselves against viruses is of paramount

importance from a medical and economic standpoint. The RNA

interference (RNAi) pathway, which identifies double-stranded

RNA (dsRNA) produced from viruses and produces small

interfering RNAs (siRNAs), is the main mechanism of antiviral

defense (178). These siRNAs in turn aim to degrade viral RNA,

which prevents the virus from replicating (179). In addition, it has

been shown that various innate antimicrobial pathways, including

the Imd, Toll, and JAK-STAT pathways, are crucial for insect
FIGURE 3

Denotes immune responses in insects when hemocyte receptors or plasma proteins attach to certain chemicals found on the surface of many
different types of bacteria. Pattern-recognition proteins may be divided into a number of categories, such as peptidoglycan recognition protein
(PGRP), b‐1,3-glucan recognition protein (b-GRP), C-type lectins and hemolin. Peptidoglycan recognition proteins (PGRPs), conserved from insects
to humans, are innate immunity proteins that can identify bacterial peptidoglycan. When the PGRP-LCx homodimer complex contacts polymeric
peptidoglycan (poly PGN) or the PGRP-LCx/PGRP-LCa heterodimer binds monomeric peptidoglycan, the Imd pathway is triggered. PGRP-LE is
capable of binding polymeric and monomeric peptidoglycan. The prophenoloxidase (proPO) cascade is activated by extracellular PGRP-LE, which is
also implicated in activating the Imd pathway via PGRP-LC transmembrane receptors and proPO cascade upstream of the proPO activating enzyme
(PPAE). By identifying intracellular monomeric peptidoglycan and activating Imd signaling or autophagy without the help of Imd, intracellular PGRP-
LE may also activate the Imd pathway. The Imd pathway is inhibited by PGRP-LF. The DAP-type peptidoglycan is broken down by PGRP-LB and
SC1a into inactive fragments, which prevents the Imd pathway from being activated. Furthermore, PGRP-SC1a functions as an opsonin for bacterial
phagocytosis. Due to its particular amidase activity for DAP-type peptidoglycans, PGRP-SB1 is immediately bactericidal.
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antiviral responses. For instance, it seems that the JAK-STAT

pathway has a role analogous to that of the mammalian

interferon system (180). Bystander cells that are not infected by

the virus receive a signal from a virus-infected cell that activates this

pathway, resulting in antiviral action. In summary, it has been

demonstrated that a number of viral infections involve the

autophagy process (181).
5.1 RNA interference pathway based
immune response

The RNA interference (RNAi) pathway provides the most

potent insect response to viral infection. Dicer2 (an

endoribonuclease belonging to the RNase III family) and the

protein R2D2 collaborate to detect double-stranded viral RNA

(182). Later, Dicer2 snips the dsRNA into manageable duplex

DNA pieces (of around 21 nucleotides) (183). The duplex is

unwound, and a guide strand is chosen according to its

complementarity with the other strands. The RNA-induced

silencing complex (RISC), which has the RNase Argonaute as

part of it, is subsequently loaded with the siRNA guide strand

(184). Argonaut destroys target viral RNA by disintegrating the

complementary guide strand. Several viruses produce RNAi

suppressor proteins (1A proteins in Nodaviridae or B2 proteins in

Dicistroviridae) that limit the action of the RISC during infection,

thus indicating the significance of the RNAi pathway in the

regulation of viral infections (185). The FHV B2 protein is a

dimer that binds to dsRNA to inhibit Dicer2 from digesting it

(186). DCV A1 protein functions similarly to FHV B2 by attaching

to dsRNA (187); while Argonaute suppresses the RNAse activity of

the 1A protein of the cricket paralysis virus (CrPV) by binding to it

(188). When a virus lacks these proteins, the reproduction is

inhibited thus enabling the insects to easily remove the infectious

microbe propagule. Clearly, the flavivirus NS4B protein of Dengue

virus 2 (DENV2) inhibits siRNA pathways in human and insect

(Sf21) cells as well (93).
5.2 The autophagy immune pathway

Insects also use autophagy as an antiviral strategy; unlike Toll, Imd,

and JAK-STAT pathways, this one does not rely on them (1). During

autophagy, double-membrane vesicles called autophagosomes are

formed inside of cells (189). Newly synthesized membranes,

including fragmented organelles and protein clumps, are used to

form these vesicles (190). Lysosomes then work along with the

autophagosome to digest its cargo. Autophagy is activated in

response to a wide variety of stress signals, including as food

deprivation, infection, and the need for cellular repair (191).

Consequently, autophagy, a form of cellular degradation, aids in

nutrient recycling and keeps cells in balance (192). The autophagy

signaling system includes the phosphoinositide 3-kinase (PI3K)-Akt

pathway, which elevates levels of the autophagy inhibitor target of

rapamycin (TOR) (193). Under normal development conditions, TOR
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is active and phosphorylates the Autophagy-Related (Atg) 13 protein

several times. Reduced Atg1 kinase activity prevents Atg13 from

interacting with Atg1, preventing this crucial autophagy regulator

from doing its job (194). In the presence of hunger, Atg13 is rapidly

dephosphorylated, allowing it to form a complex with Atg1 and

activate it; this in turn reduces TOR activity. Atg1 then binds to

more Atg proteins to form the PAS, which in turn initiates autophagy

(195). Under normal development settings, different Atg proteins

assemble at the PAS to generate cytoplasm to vacuole targeting (Cvt)

vesicles, but under famine conditions, different Atg proteins assemble

at the PAS to generate autophagosomes (196). When infected with

vesicular stomatitis virus (VSV), Drosophila exhibit a reduction in the

PI3K-Akt-TOR signaling pathway (197). Dueto the increased

autophagy, viral replication is inhibited (198). The viral surface

glycoprotein (VSV-G) was hypothesized to be the PAMP that

induced this cellular response (199). Toll7, the Drosophila TLR

ortholog, was found to detect VSV on the cell surface, according to

recent studies (200). Toll7 signaling was triggered by VSV infection,

and blocking this signaling led to elevated viral protein levels in vitro

and pathogenicity in vivo (201).
5.3 Apoptosis

Apoptosis may be thought of as a sort of programmed cell death

(202). A molecular complex is formed between the adaptor protein

Ark and the caspase Dronc (203). Effector caspases like Drice and

Dcp1 are activated by Dronc, and when they cleave proteins, they

ultimately cause programmed cell death (1). Apoptosis has a role in

the defense against baculoviruses in Lepidoptera (204). This process

seems to be important in mosquitoe’s defense mechanisms against

the West Nile Virus and the Sindbis virus (205), Additionally,

phagocytosis of apoptotic cells was found to impart defense against

the Drosophila C virus (129).
6 Role of ncRNAs in insect immunity
during microbial invasions

Using high-throughput sequencing techniques and advanced

bioinformatics tools, researchers have made significant progress

in discovering and identifying novel insect ncRNAs and their

controlled transcripts (206). There is substantial evidence that

ncRNAs play a role in insect immunity, and that their expression

levels are among the first to shift in response to microbial

infections (Figure 4) (1). Here, we go beyond just discussing

the differential up- or downregulation of these components in

insects to emphasize the immunological targets of these changes

and the impact they have on insect defenses against pathogen

invasions. We will also discuss the role that pathogen-encoded

ncRNAs play in modulating insect immunity. Insect-pathogen

interaction has also been studied in terms of conserved and new

microRNAs and long noncoding RNAs originating from insects

and pathogens.
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6.1 Role of miRNAs in insect immunity
during microbial invasions

The interactions between a host and a pathogen are significantly

influenced by miRNAs. Insects rely on the dynamic miRNA-mRNA

for immunological response to pathogen attacks (Figure 4), as it is

responsible for regulating the potent insect signaling pathways that

either enhance or suppress innate immune responses ensuring

homeostasis (1). For instance, an extensive variety of signaling

pathways were enhanced after infection of Drosophila with

Micrococcus luteus due to differentially produced miRNAs and

mRNAs. These pathways included Toll and Imd (207).

6.1.1 During fungal pathogen invasion
The insect-pathogen crosstalk is utilized to change the

expression levels of miRNAs. It would be helpful to identify and

characterize the miRNA’s cellular targets for a better understanding

of the immunological modulatory function of these miRNAs. Insect

immune systems can either combat infections by eliminating them

from the host organism or neutralize them by preventing the

production of toxins and virulence factors that promote invasion

and destructive behavior of an intruder inside the host (Figure 4)

(1). The virulence factors of invaders are suppressed by insect-

encoded miRNAs, which seem to primarily deal with fungal

diseases. This silencing disrupts several translation components

connected to mRNAs with 5’-cap to 3’-tail structures (208). In a
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recent study, it was shown that when the fungus B. bassiana invades

mosquito hemocoel, mosquitoes express higher amounts of let-7

and miR-100 miRNAs (209). The virulence-related genes sec2p and

C6TF, which encode for a Rab guanine nucleotide exchange factor

and a Zn (II) 2Cys6 transcription factor, respectively, are silenced

by both miRNAs after they translocate into the fungal hyphae (209).

According to theories, the insect miRNAs may be transported to the

fungus-causing pathogen through extracellular vesicles (EVs).
6.1.2 During bacterial pathogen invasion
Inhibiting immune signaling pathways is one way that miRNAs

help restore immunological homeostasis in insects. Small

interfering RNAs (Figure 4) (miRNAs), which inhibit the

development of key components of the host’s immunological

signaling pathways, play a role in this function individually or in

concert. The tube is a critical effector molecule in the Toll pathway,

together with the transcription factors Dl and Toll. During immune

response of Drosophila to M. luteus infection, the miR-959-962

cluster acts synergistically with other miRNAs to target the 3’UTR

of tube, dl, and Toll mRNAs, potentially inhibiting the synthesis of

AMPs in the late stage of the infection. As a result, fewer flies would

make it through the winter (210). Similar findings suggested that

miR-960 may influence antibacterial defense only after a late 12-

hour infection has set established. At 6 and 12 hours, miR-959 has

the potential to persistently repress Dr expression. Yet, miR-961

may be more effective than miR-962 at dampening the immune
FIGURE 4

Deciphers how both insect and pathogen-encoded ncRNAs, particularly miRNAs play a role in immune regulation during insect-pathogen
interaction. miRNAs alter the immunological response of insects to harmful pathogens. Insect miRNAs may silence fungal virulence genes, such
C6TF and Sec2p, and prevent their replication in response to fungal invasion. Following bacterial invasion, insect miRNAs work alone or in concert to
positively regulate the essential elements of the Toll pathway, which activates the AMP gene effectors and prevents bacterial replication. The
expression of the AMP gene, which is necessary for insect immunological homeostasis, may be adversely modulated by those components in the
late stage of infection. On the other hand, insect miRNAs (such as those found in the pea aphid Acyrthosiphon pisum) may block the JNK signaling
pathway and indirectly those under its control (ROS, PO, and phagocytosis), which can boost bacterial multiplication. Finally, when viruses invade
insects, IBP2 is markedly upregulated. In contrast, insect miRNAs prevent the replication of viruses by downregulating URMs, which are involved in
the ubiquitination process.
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system’s ability to fight off microorganisms. A potential miRNA,

miR-958, was also identified via in silico screening when the

Gal80ts-Gal4 driver system was used. This microRNA can

regulate the signaling of the Toll pathway in vitro and in vivo by

targeting the molecule Dif and the protein Toll in a negative

fashion. There are four miR-958-binding sites in the Toll 3’UTR,

and at site 3, miR-958 exhibits strong and specific inhibition (211).

Toll signaling response in Drosophila was negatively regulated by

miR-317, which acted in a manner similar to that shown here by

targeting only the Dif-Rc isoform of the Dif four (212). Previous

work by the same authors, however, showed that miR-317 controls

the Drosophila Toll system by targeting the three extra Dif isoforms

(Dif-Ra/b/d) (212). Several studies demonstrated that miR-317

plays a critical role in regulating reproductive responses and

ovary development in Drosophila larvae (213, 214). Flies with

transiently overexpressed miR-317 have a dismal chance of

surviving. On the other hand, miR-317 knockout/wild-type

(KO/+) flies fared better against Gram-positive bacterial infection

than the control group did (212), suggesting a novel appreciation

for miRNA’s part in the survival/immunity tango in Drosophila. In

addition, four Drosophila miR-310 members (miR-310, miR-311,

miR-312, and miR-313) directly cotargeted the 3’UTR of Drs and

decreased the expression of Drs during Gram-positive bacterial

infection, which had a negative effect on the Toll mediated immune

response (211). In conclusion, insect-expressed miRNAs may act

singly or in concert to dampen AMP expression and antibacterial

defenses, thereby preserving immunological homeostasis (1). These

methods not only facilitate the identification of hitherto unknown

miRNAs, but also allow for the expansion of the insect repertoire of

Toll-related immune-modulating miRNAs. They frequently involve

regulating elements of the Toll pathway (1). Some hemipteran

insect species, benefit from the conservation of genes creating

immune effectors; however, other species, like the pea aphid

Acyrthosiphon pisum, show diminished immunological responses

due to a lack of these genes (215). It has been hypothesized that the

pea aphid immune response employs the ubiquitous Jun N-

terminal kinase (JNK) pathway (1). Ma et al. (216) looked at how

this pathway regulates the pea aphid immune response to bacterial

invasion and found that miRNA-184a/b suppressed the expression

of JNK-3’UTR, which led to an increase in bacterial carriage and

aphid mortality. After infection with M. luteus and Pseudomonas

aeruginosa, miRNA-184a and miRNA-184b expression drastically

dropped, reaching a minimum 24 hours after infection. This

demonstrated a negative correlation between JNK expression and

miRNA levels (1). Indirect evidence reveals that miRNA-184

controls the JNK pathway in the pea aphid, which is significant

because it is regulated by PO, reactive oxygen species, and

phagocytosis, all of which are involved in the aphid’s antibacterial

immune response (1). Finally, the RNA hybrid programme

predicted that JNK is a target of miRNA-184 in a wide variety of

organisms, including insects, zebrafish, frogs, mice and humans.

This finding suggests that miRNA-184 regulates the JNK pathway

in a wide range of organisms (216). Those with UPEC strains in

their bladders experience painful UTIs, while those with

commensal-like E. coli strains in their bladders have chronic

asymptomatic bacteriuria (ABU) (1). When studying human
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illnesses like UPEC, G. mellonella is used as a stand-in insect

model host (217). As G. mellonella miRNA expression levels were

considerably different the larvae challenged with UPEC strain

CFT073 and ABU strain 83972, it is possible that miRNAs

mediated by the insect immune response can distinguish between

harmful and commensal E. coli invasions (1).

6.1.3 During viral pathogen invasion
Host miRNAs play a crucial defensive role against viral attacks,

which has an impact on the progression of the infection (Figure 4)

(1). For instance, when A. aegypti is infected with the chikungunya

virus (CHIKV), increased A. aegypti miR-2b binds to the 3’UTR of

the ubiquitin related modifier (Urm), reducing translation. Finally,

this causes A. aegypti to have lower CHIKV replication (218). On

the other hand, there are also instances when insect miRNAs may

encourage viral replication by suppressing the expression of virus-

induced host genes (1). This is true for the insulin-related peptide-

binding protein 2 (IBP2), which is well-known to be markedly

increase in B. mori infected with viruses (219), but has been

inhibited in vitro and in vivo by miR-278-3p, causing BmCPV

replication. But the precise role of miR-278-3p and IPB2 in BmCPV

replication has remained unclear, necessitating additional research

in the future (220).
6.2 Role of lncRNAs in insect immunity
after microbial invasions

6.2.1 During fungal pathogen invasion
Mostly insect lncRNA responses to fungal stress were the focus

of some papers that did examine interactions between fungus and

insects (Figure 5) (1). The western honeybee, Apis mellifera, has a

wide range of domestic uses, including the production of honey and

crop pollination. Nosema ceranae, a fungus that forms spores and is

obligately intracellular, may infect many different kinds of insects,

including honeybees (221). Infection with N. ceranae significantly

changed the expression of lncRNAs in A. mellifera, showing 4,749

conserved and 1,604 new lncRNAs (1). Some differentially

expressed long noncoding RNAs (lncRNAs) controlled gene

expression in cis and trans or acted as miRNA precursors or

competitive endogenous RNAs (ceRNAs) functioning as miRNA

sponges, activating the host’s vital signaling pathways and infection

control (222). One of the most important ideas was that the

differentially expressed lncRNAs in A. mellifera may restrict N.

ceranae by interacting with miR-25-x, miR-30-x and miR-30-y due

to their sponge ability. But additional experimental research is

needed since the bioinformatic prediction of this lncRNA and

miRNA binding is restricted (1).

6.2.2 During bacterial pathogen invasion
There is some evidence that lncRNAs can modulate insect

immunological responses, namely the Toll immune response to

bacterial infections (Figure 5) (1). Dif and Dorsal genes are crucial

components of Toll immune signaling in insects (223). These two

effectors can initiate the transcription of AMPs, which can then be

used to eliminate infections.Drosophila lncRNA CR46018 expression
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was approximately ten-fold higher after M. luteus infection (1). The

bulk of upregulated genes were enriched in the Toll and Imd

signaling pathways, as shown by RNA-seq study of Drosophila

infected with M. luteus and overexpressing the lncRNA CR46018.

The Toll pathway was strengthened by the interaction of CR46018

with the transcription factors Dif and dorsal, as predicted by

bioinformatics and verified by RNA-immunoprecipitation studies

(1). These data point to lncRNA-CR46018 being a positive regulator

of the Toll signaling pathway and a vital component for Drosophila

survival. Furthermore, lncRNA-CR46018 can up-regulate genes

involved in the phagosome pathway and down-regulate genes

involved in metabolic regulation. The latter pathway appears to be

an appropriate target for insect-derived lncRNAs during insect-

pathogen interactions. Previous research has shown that M. luteus

infection inDrosophila links immunity and metabolism by way of the

Drosophila lncRNA CR44404 (lncRNA-IBIN) (224). Further study is

needed to determine how lncRNAs of insect origin regulate this

pathway to improve insect defenses. Alternately, lncRNAs may

downregulate immune effectors in order to exert unfavorable

control over insect immunological responses and avert potentially

damaging immune activation late in an infection. In order to

minimize unchecked immunological activation, a recent study

found that the lncRNA-CR11538 inhibited the transcription of

AMPs in the latter stage (24 h) of Drosophila infection with M.
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luteus by decoying Dif/dorsal away from the AMP promoter and

adversely influencing the Toll signaling pathway (225).

6.2.3 During viral pathogen invasion
Insects rely heavily on the RNA interference (RNAi) pathway in

their immune system to fight off viral infections (Figure 5). The RNAi

pathway, however, has been demonstrated in multiple studies to be

ineffective against viral replication (226). It is obvious that by encoding

RNAi suppressors, viruses can escape being hampered by insect RNAi

defense mechanisms. Examples of RNAi cancellers have been found in

a variety of plant and insect RNA viruses (227). However, no RNAi

suppressors were previously associated with arboviruses until the recent

study by Zhang et al. (228). During Drosophila infection with

Drosophila C virus (DCV), the antiviral lncRNA VINR accumulated

in the nucleus due to the viral RNAi suppressor’s failure to prevent the

upregulation of antiviral lncRNAs (1). LncRNA VINR’s capacity to

bind to cactin, preventing its degradation by the ubiquitin-proteasome

and promoting noncanonical antiviral and AMP defense, reduced viral

multiplication (228). Viral suppression of primary antiviral RNAi

immunity in Drosophila may have prompted a counter-counter-

defense strategy involving lncRNAs. Long noncoding RNAs regulate

gene expression through cis and trans-acting mechanisms (229). A

comprehensive examination of lncRNAs associated with Rice black-

streaked dwarf virus (RBSDV) infection in the midgut of Laodelphax
FIGURE 5

Insect immune defense is altered by lncRNAs in response to microbial invasions. Many insect lncRNAs, which control nearby genes in cis and trans,
interact with miRNAs, or function as miRNA precursors, were altered as a result of the fungal invasion of insects. The majority of those trans- and
cis-acting molecules stimulate cellular and humoral immunity as well as mechanisms for the metabolism of materials and energy, aiding in the
management of the infection. By the enhancement of the Toll pathway, phagosome pathway, or metabolic process, lncRNAs prevent bacterial
replication. Insect lncRNAs also mask the essential Toll pathway elements, reducing the production of AMPs and preventing immunological
overactivation in response to bacterial invasion. Insect lncRNAs favorably trans-regulate insect genes implicated in cellular and humoral immune-
related pathways (PI, ATG3, IBP2 etc.) during the viral invasion of insects (HPV, autophagy, immunity etc.). In order to compensate for the failure of
the RNAi pathway, viral suppression can also be achieved by activating a noncanonical pathway. Deployed lncRNAs either directly target the
transcription factor Deaf1 and the RNA polymerase II (RNAPII) for the transcription of AMPs to control the viral replication or indirectly target the
virulence suppressor of RNAi (VSR) and the ubiquitination of cactin in the nucleus.
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striatellus revealed that 176 differentially expressed lncRNAs affected all

predicted and differentially expressed mRNA targets in a trans manner

(230). Although KEGG pathway analysis identified significantly

enriched pathways like valine, leucine and isoleucine degradation,

purine metabolism, fatty acid elongation and others as the most

significantly enriched pathways of those trans-regulated genes during

RBSDV infection, the Human papillomavirus infection pathway

(which is essential for viral infection) was significantly enriched (1).

Consequently, it may have a role in the infection of L. striatellusmidgut

by RBSDV (230). The expression levels of eight lncRNAs were

discovered to be altered and RT-qPCR confirmed the expression of

two coexpressed targets in the KEGG-predicted Human

papillomavirus pathway (230). Another important function of one of

the lncRNA’s targets, a protease inhibitor (PI), is in antiviral and cancer

prevention (231). It’s intriguing that both the lncRNA MSTRG15394

and the PI that it targets were strongly expressed. Knockdown of

MSTRG15394 or PI substantially enhanced the expression patterns of

RBSDV replication-related genes, S5-1, S6 and S9-1, suggesting that

these proteins could impede the accumulation and proliferation of

RBSDV in the L. striatellus midgut (230). As a result of B. mori

cypovirus (BmCPV) infection, lncRNAs produced by BmCPV mostly

affected trans-regulation of the expression of mRNA targets in

silkworm larvae (9). Many genes involved in vital processes,

including autophagy (ATG3), apoptosis (PDCD6) and

immunological response (IPB2), were simultaneously targeted by

these differentially expressed lncRNAs, as shown by analysis of the

network of differentially expressed lncRNAs and mRNAs (1).

MSTRG.20486.1, the most abundant lncRNA, may trans-target

several genes, including ATG3, PDCD6, MFB1, IPB2 and VPS52 (9).
7 Conclusions and future perspectives

It’s obvious that insects have highly effective immune systems.

Phagocytosis and parasite encapsulation are the examples of cellular

responses, whereas the release of antimicrobial peptides into the

hemolymph is an example of humoral response. Invading

pathogens are recognized by receptors such as peptidoglycan

recognition proteins (PGRPs), b-glucan recognition proteins (b
GRPs) and Toll-related proteins (Trps). These receptors activate

many signaling pathways, such as the Toll, Imd and JAK-STAT

pathways. However, the precise mechanism used by each infection

and the final outcome of each case remains mostly unclear.

Particularly true with viral illnesses. It follows that there will be

numerous revelations to be made by future research on insect

immunity. Insect-pathogen interactions now involve a new player:

ncRNAs. Although the host evolves new defense strategies, the

pathogens keep coming up with new ways to sneak in. This is

because of the long history of coevolution between hosts and

infectious agents. Because of this, illustrating the significance of

ncRNAs in insect-pathogen interaction at the immunological level

is of great scientific importance. In conclusion, we provided a brief

overview of the main signaling routes and auxiliary immune

systems in insect defense mechanisms. We also reviewed the most

up-to-date information on the function of ncRNAs, in particular
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microRNAs and long noncoding RNAs, in regulating the

immunological response of insects to pathogen invasion.

The innate immune response is a major aspect of insect disease

defense, which also relies on other systems. Lack of learned or

acquired defenses is what is meant by the term “innate immunity.”

However, there is some evidence that Drosophila which have been

exposed to Streptococcus pneumoniae at a sublethal dose once may

be able to survive a second lethal dose. Although not all microbial

challenges trigger this primed response, the naturally existing fly

pathogen Beauveria bassiana may also confer a distinct protection

against the fungus upon a second encounter (18). These results

point to the flexibility of insect immune systems and the possibility

that insect hemocytes exhibit an activation response similar to that

of human leukocytes. Drosophila research has contributed the

majority of our understanding of insect innate immunity through

genetic studies of the antimicrobial peptide response, paving way

for the study of Toll-like receptors, which play an important role in

the innate immune response of mammals. New host antiviral genes

and receptor molecules that detect viral infection can be found with

the use of genetic screening in the future. Insects and their

pathogens have coevolved, thus understanding their interactions

is essential. As a result, it is essential to replicate findings from

studies conducted with the fruit fly Drosophila in other insect

species (232).
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