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Background: Osteoarthritis (OA) is a degenerative disease closely related to

aging. Nevertheless, the role and mechanisms of aging in osteoarthritis remain

unclear. This study aims to identify potential aging-related biomarkers in OA and

to explore the role and mechanisms of aging-related genes and the immune

microenvironment in OA synovial tissue.

Methods: Normal and OA synovial gene expression profile microarrays were

obtained from the Gene Expression Omnibus (GEO) database and aging-related

genes (ARGs) from the Human Aging Genomic Resources database (HAGR).

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),

Disease Ontology (DO), and Gene set variation analysis (GSVA) enrichment

analysis were used to uncover the underlying mechanisms. To identify Hub

ARDEGs with highly correlated OA features (Hub OA-ARDEGs), Weighted Gene

Co-expression Network Analysis (WGCNA) and machine learning methods were

used. Furthermore, we created diagnostic nomograms and receiver operating

characteristic curves (ROC) to assess Hub OA-ARDEGs’ ability to diagnose OA

and predict whichmiRNAs and TFs theymight act on. The Single sample gene set

enrichment analysis (ssGSEA) algorithm was applied to look at the immune

infiltration characteristics of OA and their relationship with Hub OA-ARDEGs.

Results: We discovered 87 ARDEGs in normal and OA synovium samples.

According to functional enrichment, ARDEGs are primarily associated with

inflammatory regulation, cellular stress response, cell cycle regulation, and

transcriptional regulation. Hub OA-ARDEGs with excellent OA diagnostic ability

were identified as MCL1, SIK1, JUND, NFKBIA, and JUN. Wilcox test showed that

Hub OA-ARDEGs were all significantly downregulated in OA and were validated

in the validation set and by qRT-PCR. Using the ssGSEA algorithm, we discovered

that 15 types of immune cell infiltration and six types of immune cell activation
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were significantly increased in OA synovial samples and well correlated with Hub

OA-ARDEGs.

Conclusion: Synovial aging may promote the progression of OA by inducing

immune inflammation. MCL1, SIK1, JUND, NFKBIA, and JUN can be used as novel

diagnostic biomolecular markers and potential therapeutic targets for OA.
KEYWORDS

osteoarthritis, aging-related genes, immune infiltration, WGCNA, machine
learning, biomarkers
1 Introduction

Age is the paramount risk factor for osteoarthritis (OA), which

is one of the most common causes of chronic pain and disability in

the elderly. The prevalence of OA is rising due to an increase in the

number of elderly and obese people, negatively impacting patients’

quality of life and imposing a massive burden on families and

society (1, 2). The pathogenesis of OA is extremely complex,

involving mechanical overload, an increase in inflammatory

mediators, metabolic changes and cellular senescence, all of which

can interact to promote the development of OA (3). As a result,

studying the molecular biology of OA and looking for potential

biomarkers of OA is critical for early diagnosis and treatment

of OA.

Aging is a complicated biological process. Senescent cells

continue to accumulate in the human body as we age, leading to

a variety of age-related diseases such as osteoarthritis,

cardiovascular disease, Alzheimer’s disease, and so on (4–6).

Cellular senescence is one of the first signs of aging, characterized

by permanent cell cycle arrest and the release of harmful pro-

inflammatory factors into the surrounding microenvironment, a

feature known as Senescence-associated secretory phenotype, SASP

(7). The persistence of SASP factors causes chronic, low-grade

systemic inflammation, stimulates senescence in neighboring cells

and accelerates aging progression (8). SASPs such as IL-1, IL-6,

MMP-13, VEGF and other pro-inflammatory factors have been

found in OA cartilage and synovial fluid (9). Many synovial

fibroblasts positive for p16 and SA-b-Gal have been found in the

synovium of elderly and OA patients. Senescent synovial fibroblasts

can aggravate synovial inflammation and cause cartilage

degradation by secreting pro-inflammatory factors and matrix

metalloproteinases (10). Intriguingly, injection of senescent

fibroblasts into the knee joint cavity of mice resulted in

inflammation, cartilage erosion and osteophyte formation (11). In

post-traumatic mouse models, targeted removal of senescent cells in

mouse knee articular cartilage and synovium specifically marked by

P16 can effectively reduce the development of inflammatory

response and articular cartilage injury-related pain (12). Aging is

clearly involved in multiple pathways of OA pathogenesis, but the

precise mechanism remains unknown.
02
Bioinformatics is a multidisciplinary field. With the

development of high-throughput sequencing technology and the

application of machine learning in the medical field in recent years,

new ideas for studying the molecular mechanisms of various

diseases have emerged (13, 14). WGCNA and three machine

learning algorithms were applied in this study to screen the Hub

OA-ARDEGs of OA and an online database to predict their

potential miRNAs and TFs. The ssGSEA algorithm was often

used to investigate OA’s immune infiltration profile and its

relationship with Hub OA-ARDEGs. It provides a new direction

for the early diagnosis and treatment of OA. The overall workflow

of this study is depicted in Figure 1.
2 Materials and methods

2.1 Gene expression dataset screening
and processing

We downloaded the gene expression profile microarrays

(GSE55235, GSE55457, GSE12021, GSE1919, GSE89408) for

normal and OA synovial samples from the Gene Expression

Omnibus (GEO), with the information shown in Table 1. Probe

names were converted to gene names using Perl and with the help of

platform annotation fi les. Background correction and

normalization of each dataset using the R package limma and

integrating three synovial datasets from the same platform using

the R package sva to remove batch effects (15). Two-dimensional

PCA clustering plots were used to show the before and after

differences in removing batch effects from the samples. For

subsequent analysis, the merged dataset served as the training set

and the GSE1919 and GSE89408 dataset served as the validation set.
2.2 Download and collation of aging-
related genes

Human aging-related genes (ARGs), including GenAge (307)

and CellAge (279), were obtained from the Human Aging Genomic

Resources (HAGR, https://genomics.senescence.info/) database
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(16). After merging and deleting duplicate genes, 543 ARGs were

obtained for subsequent analysis. The list of aging-related genes is

detailed in Table S1 of the Supplementary Material.
2.3 Identification of aging-related
differentially expressed genes

ARGs expression matrices were extracted from the training set

and analyzed for differences using the R package limma, with |

logFC|>0.5; FDR<0.05 as the criterion for screening to obtain aging-
Frontiers in Immunology 03
related differential genes (ARDEGs) in normal and OA synovial

samples (17). A heat map of gene expression was created to visualize

the top 30 genes with the most significant differences.
2.4 Construction of protein-protein
interaction networks network

To evaluate the gene interactions among the ARDEGs, a

protein-protein interaction (PPI) network was constructed using

the Search Tool for the Retrieval of Interacting Genes (STRING,
FIGURE 1

Flowchart for Comprehensive Analysis of Aging-Related Genes in Osteoarthritis.
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https://cn.string-db.org/) database (18), with a confidence score of

>0.7 as the cut-off criterion.
2.5 Functional enrichment analysis

R package Clusterprofiler and DOSE were used to perform

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and Disease Ontology (DO) enrichment analysis of

ARDEGs, with q-value<0.05 set as a screening criterion to

investigate their biological functions, signaling pathway

enrichment, and disease similarities.
2.6 Gene set variation analysis

Gene set variation analysis (GSVA) is an unsupervised, non-

parametric method for assessing transcriptome gene set enrichment

(19). We used the gene sets “Hallmark.all.v2022.1.Hs.symbols” and

“ c2.cp.kegg.symbols “ from the Molecular Signature Database

(MSigDB) as reference sets. To assess the enrichment of normal

and OA synovium samples, the R package GSVA was used to score

the HALLMARKS and KEGG pathways. Significant enrichment

was defined as FDR<0.05.
2.7 WGCNA and screening for ARDEGs
with highly correlated OA features

Weighted Gene Co-expression Network Analysis (WGCNA) is

an algorithm that finds biologically significant co-expressed gene

modules and explores the relationship between gene networks and

disease (20). We used the R package WGCNA to build a weighted

co-expression network on the training set, analyzing the genes with

the highest 50% expression variance in all expression profiles. The

goodSamplesGenes function was used to check for missing values in

the data, and the “pickSoftThreshold” function was used to filter

and validate the best soft threshold. The Pearson correlation

coefficient was used to create the adjacency matrix, which was

then transformed into a topological overlap matrix (TOM) with

appropriate power values and phase anisotropy (1-TOM). TOM

classified the genes into different modules. The genes most

associated with OA traits in the module were selected as
Frontiers in Immunology 04
cor.MM>0.7 and cor.GS>0.5. 0.5 is the screening condition for

Hub genes in the module, and the intersection of Hub genes and

ARDEGs in the module is taken to obtain OA-ARDEGs. The

Pearson correlation test assessed the interaction of OA-ARDEGs

at the mRNA level.
2.8 Identification of Hub ARDEGs with
highly correlated OA features

LASSO regression, SVM-RFE, and random forest are methods

for screening and identifying Hub OA-ARDEGs. The least absolute

shrinkage and selection operator (LASSO) regression is a common

data mining method (21). R package glmnet was applied to

incorporate OA-ARDEGs into the diagnostic model, set the a
value of the glmnet function to 1, obtained the best l by ten

cross-validations finally obtained the Aging signature genes based

on the best l. Support vector machine recursive feature elimination

(SVM-RFE) is a common machine learning method based on

embedded methods (22). The R package e1071 helped us find the

best variables and remove the feature vectors generated by the SVM,

thus obtaining the Aging signature genes. Recursive Feature

Elimination (RFE) of the Random Forest algorithm is a

supervised machine learning method (23). Aging signature genes

were identified by relative importance greater than one when the

decision tree was set to 500. The intersection of the three machine-

learning filtered Aging signature genes was defined as Hub OA-

ARDEGs using R package Venn. The GSE1919 and GSE89408

dataset could validate the receiver operating characteristic curve

(ROC) analysis of the diagnostic value of Hub OA-ARDEGs

for OA.
2.9 Patients samples

The synovial tissue from six patients who underwent total knee

replacement surgery for osteoarthritis (OA) and normal synovial

tissue from six patients with meniscus injuries were obtained for

this study. All patients signed informed consent forms, and the

collection, processing, and analysis of the samples were conducted

under the guidance of the Ethics Committee of the Guangzhou Red

Cross Hospital, affiliated with Jinan University (Ethics Approval

No. 2023-001-01).
TABLE 1 Descriptive statistics.

GEO (ID) Platform Tissue (Homo sapiens) Samples (number) Attribute

Normal OA

GSE55235 GPL96 Synovium 10 10 Training

GSE55457 GPL96 Synovium 10 10 Training

GSE12021 GPL96 Synovium 9 10 Training

GSE1919 GPL91 Synovium 5 5 Validation

GSE89408 GPL11154 Synovium 28 22 Validation
GPL96 (Affymetrix Human Genome U133A Array). GPL91(Affymetrix Human Genome U95A Array). GPL11154 (Illumina HiSeq 2000 (Homo sapiens).
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2.10 qRT-PCR

The total synovial tissue RNA was extracted using Trizol

(Servicebio), followed by reverse transcription of the total RNA

into complementary DNA (cDNA) using Takara Prime Script® RT

Master Mix. Quantitative real-time polymerase chain reaction

(qRT-PCR) was conducted using 2× SYBR Green qPCR Hub Mix

(without ROX) (Service). The primer sequences for the Hub

osteoarthritis-associated differentially expressed genes (Hub OA-

ARDEGs) can be found in Table S16 of the Supplementary

Material. The GAPDH gene was utilized as an internal reference

gene. Each biological sample was subjected to three

technical replicates.
2.11 Construction of Hub OA-ARDEGs risk
prediction model

To improve clinical applicability, we use the R package rms to

create a nomogram with Hub OA-ARDEGs, where “Points”

represents the score of candidate genes and “Total Points”

represents the sum of the scores of all the genes listed above. The

accuracy of the nomogram model was determined by calibration,

clinical decision, and Clinical impact curve.
2.12 miRNA-TF-mRNA regulatory network
of Hub OA-ARDEGs

To improve prediction accuracy, we used the miRTarBase (24),

Starbase (25), and Targetscan (26) databases to predict the miRNAs of

Hub OA-ARDEGs. The Enrichr database (http://amp.pharm.mssm.edu/

Enrichr/) was also applied to predict the transcription factors (TF) of

Hub OA-ARDEGs, with a p-value of 0.05 as a screening condition.

Construction of miRNA-TF-mRNA regulatory networks and

visualization of the networks using Cytoscape (3.9.1).
2.13 Immunological characteristics of OA

Single sample gene set enrichment analysis (ssGSEA), an

extension of the GSEA method, is widely used in bioinformatics

studies related to immune infiltration (27). We calculated

enrichment scores for normal and OA synovial samples in 28

immune cells and 13 immune functions using the R package

GSVA and visualized the results using the R package vioplot.

Spearman correlation analysis was used to correlate Hub OA-

ARDEGs with immune cells and immune function.
2.14 Statistical analysis

All statistical analyzes were performed in R (version 4.2.2).

Comparisons among two groups were made using Wilcox test.
Frontiers in Immunology 05
Spearman’s correlation analysis was used to understand the

relationship between the expression levels of Hub OA-ARDEGs

and immune cells and immune function. Differences were deemed

statistically significant where P < 0.05. Statistical analyses of qRT-

PCR were presented as the mean ± standard deviation for at least

three individual experiments, and the statistical significance of

differences was determined with the unpaired, two-tailed Student

t-test. (*P < 0.05; **P < 0.01; ***P < 0.001). P < 0.05 was considered

as statistically significant.
3 Results

3.1 GEO data processing

We integrated three synovial datasets, GSE55235, GSE55457,

and GSE12021, containing a total of 29 normal synovial and 30 OA

synovial samples. As is shown in Figure 1 of the Supplementary

Material, the gene expression level and principal component

analysis (PCA) of each sample before and after eliminating the

batch effect.
3.2 Identification and PPI analysis of
ARDEGs

We identified 87 ARDEGs using the R package limma and

screening criteria of |logFC|>0.5 and FDR<0.05, of which 32 genes

were upregulated in OA and 55 genes were downregulated in OA.

Table S2 of the Supplementary Material contains a detailed list of

differentially expressed Aging-related genes. The heat map and

volcano map were used to depict the differences (Figures 2A, B).

PPI protein network interaction analysis revealed that ARDEGs

interact closely at the protein level (Figure 2C). The results of the

PPI protein network interaction analysis are available in the

Supplementary Material: Table S3.
3.3 Functional enrichment analysis
of ARDEGs

To better understand the potential mechanisms of ARDEGs in

OA, we performed GO, KEGG, and DO enrichment analysis on

ARDEGs using the R package clusterProfiler. GO enrichment

analysis revealed that the first five ARDEG enrichments were

primarily involved in the response to extracellular stimulus,

neuron death, gland development, response to nutrient levels,

and regulation of neuron death. The top 5 enriched items in

Cellular Components (CC) and Molecular Functions (MF) are

shown in Figure 3A. Furthermore, KEGG pathway analysis

revealed that these ARDEGs were enriched in the HIF-1

signaling pathway, the FoxO signaling pathway, Kaposi

sarcoma-associated herpesvirus infection, the PI3K-Akt

signaling pathway, and the MAPK signaling pathway, and the

pathways interacted closely (Figures 3B, C). DO enrichment
frontiersin.org
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analysis reveals disease types with similar pathogenic mechanisms

of ARDEGs in OA, such as prostate cancer, male reproductive

organ cancer, hepatitis B, female reproductive organ cancer, and

hepatitis C (Figure 3D). Tables S4–6 show detailed results for GO,

KEGG, and DO enrichment of ARDEGs.
3.4 GSVA enrichment analysis

We investigated HALLMARKS and KEGG pathway

enrichment in OA through the GSVA method. TNFA signaling

via the NFKB pathway, apoptosis, and the P53 pathway were

significantly upregulated in OA when compared to the control

group, according to HALLMARKS pathway enrichment results.

At the same time, DNA repair, oxidative phosphorylation, and bile

acid metabolism were all significantly reduced (Figure 4A). As is

shown in the KEGG pathway enrichment results, the first three

pathways were significantly upregulated in small cell lung cancer,

adipocytokine signaling pathway, and chronic myeloid leukemia

in OA. In contrast, leishmania infection, the pentose phosphate
Frontiers in Immunology 06
pathway, and fatty acid metabolism were all significantly

downregulated (Figure 4B).
3.5 WGCNA

We used the R package WGCNA, expression variance in the

first 50% of genes as a screening condition to eliminate less volatile

genes, and 6538 genes for co-expression network construction. The

value 18 was selected as the optimal soft threshold (R2 = 0.9) to

establish a scale-free network (Figure 5A). Following that, cluster

analysis was used to identify highly similar modules, with the

minimum module size set at 60. Using dynamic hybridization

shearing, eight gene modules were obtained, with one red module

(217 genes) having the highest correlation (cor) with OA (cor =

0.86; P = 3e-18) (Figure 5C). Furthermore, there was a strong

correlation between GS and MM within the red module (cor = 0.72;

P=5.8e-36) (Figure 5D). The genes in the red module with

cor.MM>0.7 and cor.GS>0.5 were chosen as the Hub genes and

intersected with ARDEGs to yield 20 with OA-ARDEGs
B

C

A

FIGURE 2

Identification and PPI analysis of ARDEGs. (A) heat map of the first 30 ARDEGs, with the left half representing normal synovial samples, the right half
representing OA synovial samples, red representing upregulation and blue representing downregulation. (B) ARDEGs volcano plot. Red nodes
indicate upregulated DEGs, blue nodes indicate downregulated DEGs, and grey nodes indicate genes that are not significantly differentially
expressed. (C) Interaction map of 87 ARDEGs PPI protein networks.
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(Figure 5E). The results of co-expression modules for datasets can

be found in the Supplementary Material: Table S7.
3.6 Correlation and enrichment analysis of
OA-ARDEGs

We evaluated the correlation between OA-ARDEGs by the

Pearson correlation coefficient. MCL1 was found to be highly

correlated with ZFP36 (cor=0.87) and BHLHE40 (cor=0.74)

(Figure 6A). Figure 6B depicts the chromosomal location of

OA-ARDEGs. Supplementary Material: Table S8. KEGG
Frontiers in Immunology 07
pathway enrichment analysis revealed that the first five

pathways enriched by OA-ARDEGs were primarily involved in

Kaposi sarcoma-associated herpesvirus infection, IL-17

signaling pathway, Human Tcell leukemia virus 1 infection,

AGER-AGE signaling pathway in diabetic complications, and

TNF signaling pathway (Figure 6C). GO enrichment analysis

shows that OA-ARDEGs are enriched in biological processes

such as regulation of transcription from RNA polymerase II

promoter in response to stress, regulation of DNA-templated

transcription in response to stress, myeloid cell (Figure 6D). The

specific results of KEGG and GO enrichment were shown in

Supplementary Material: Table S9, 10.
B

C D

A

FIGURE 3

ARDEG functional enrichment analysis. (A) GO enrichment analysis with BP, CC, and MF included. The bubble plots depict the five most significantly
enriched functions, where the size of the bubbles represents the number of DEGs (the larger the circle, the greater the number of DEGs) and the
color represents the corrected p-value (the redder the color, the smaller the corrected p-value). (B) Analysis of KEGG enrichment, with bubble plots
displaying the top 20 most significant pathway enrichments. (C) Map of KEGG pathway interactions. (D) DO enrichment analysis is depicted as a
bubble diagram.
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BA

FIGURE 4

GSVA. (A) Differences in HALLMARKS pathway enrichment between OA and control groups. (B) Differences in KEGG pathway enrichment between
OA and control groups.
B

C D E

A

FIGURE 5

WGCNA. (A) Determine the best soft threshold. The soft threshold value of 18 was determined as the optimal choice for constructing a scale-free
network based on the position of the red line (R2 = 0.9). (B) The variance is in the top 50% of the gene cluster dendrogram, with each branch of the
graph representing a gene and each color below representing a co-expression module. (C) Heat map of module-trait relationships, where each
color represents a co-expression module and the values represent module-trait correlation coefficients and p-values. It can be seen that the red
module has the highest correlation with OA. (D) Scatterplot of correlations between gene significance (GS) and module membership (MM) in red
modules. (E) Venn diagram of the intersection of ARDEGs and Key genes in the red module.
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3.7 Identification and validation of Hub
OA-ARDEGs

To improve the accuracy of Hub OA-ARDEGs diagnostic OA,

we used three machine learning algorithms, LASSO (Figures 7A, B),

SVM-RFE (Figures 7C, D), and Random Forest (Figures 7E, F), to

screen OA-ARDEGs. After combining the results of the three

algorithms, a total of five Hub OA-ARDEGs were obtained,

namely, MCL1, SIK1, JUND, NFKBIA, and JUN (Figure 7G).

Results of three machine learning identification Hub OA-

ARDEGs are shown in the Supplementary Material: Table S11.
3.8 Construction of Hub OA-ARDEGs risk
prediction model

We developed a diagnostic nomogram for OA based on the

expression of Hub OA-ARDEGs in order to obtain a more clinically

applicable diagnostic model for OA. By constructing clinical calibration

curves (Figure 8B), clinical decision curves (Figure 8C), and Clinical

impact curve (Figure 8D) for the model, it is clear that the model has a

high predictive power for OA. The scores of each gene expressed in the

nomogram accurately predict the risk of OA disease (Figure 8A). The

Hub OA-ARDEGs expression information and nomoscores of all

samples are detailed in the Supplementary Material: Table S12.
Frontiers in Immunology 09
3.9 Hub OA-ARDEGs expression and
diagnostic value

Based on the expression levels of Hub OA-ARDEGs in the

training set and validation set, we found that Hub OA-ARDEGs

were significantly downregulated in all OA synovial samples

(Figure 9A–C). ROC curve analysis showed that the 5 Hub OA-

ARDEGs and nomogram had high diagnostic values for OA in the

training set. MCL1 and nomogram had the highest diagnostic value

(AUC=1.000), and the other genes had the following diagnostic

values: JUN (AUC=0.960), SIK1 (AUC=0.955), NFKBIA

(AUC=0.976) and JUND (AUC=0.968) (Figure 9D). Figures 9E, F

displays the ROC analysis results for the external validation set

GSE1919 and GSE89408. The AUC for all five Hub OA-ARDEGs

and nomogram in the validation set were greater than 0.5. As a

result, the five Hub OA-ARDEGs can be used as reliable biomarkers

for the diagnosis of OA and have a high diagnostic value.
3.10 qRT-PCR

We performed qRT-PCR on total mRNA from synovial

membranes of six patients with meniscal injuries and six patients

with OA to further validate the mRNA expression levels of Hub

OA-ARDEGs. The results showed that all five Hub OA-ARDEGs
B

C D

A

FIGURE 6

Correlation and enrichment analysis of OA-ARDEGs. (A) Correlation analysis of OA-ARDEGs, *P<0.05, **P<0.01, ***P<0.001. (B) Chromosome distribution
of the 20 OA-ARDEGs. (C) KEGG enrichment analysis circle diagram. (D) Chord diagram of the top 20 GO entries for OA-ARDEGs GO enrichment.
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were significantly downregulated in the OA synovial samples (p-

value less than 0.05), consistent with the expression in the training

set (Figures 10A–E).
3.11 Construction of the miRNA-TF-mRNA
regulatory network

By predicting miRNA and TF on Hub OA-ARDEGs, we used

Cytoscape (3.7.1) to visualize the regulatory network, which

contained 80 miRNAs, 12 transcription factors, and five genes,

and obtained a total of 196 miRNA-TF-mRNA regulatory

relationships (Figure 11). Details of miRNA-TF-mRNA regulatory

networks were shown in Supplementary Material: Table S13.
3.12 Immune infiltration analysis

We used the ssGSEA algorithm to discover that the infiltration

levels of Activated B cell, Immature dendritic cell, Macrophage,

Regulatory T cell, Central memory CD4 T cell, Memory B cell, and

Effector memory CD4 T cell were significantly increased in OA

samples. In contrast, the infiltration of Eosinophil, Type 2 T helper

cell, and Central memory CD8 T cells in OA samples was significantly

reduced (Figures 12A, C). The Spearman's correlation was applied to

analyze the interaction between immune cells. The results revealed

there are significant correlations between most immune cells, e.g.

Macrophage and MDSC were significantly positively correlated (r =
Frontiers in Immunology 10
0.89) (Figure 12B). Checkpoint, HLA, parainflammation, T cell co-

inhibition, T cell co-stimulation, Type I IFN Response, and other

immune functions were significantly activated in OA samples

(Figure 12D). HLA gene expression levels were higher in OA

samples, including HLA-DMA and HLA-DRA (Figure 12E), which

indicates that the immune response plays an essential role in the

development of OA. JUND, JUN, MCL1, NFKNIA, and SIK1

correlated well with a variety of immune cells and immune functions

(Figures 12F, G). For example, JUN was positively correlated with

Activated CD4 T cells, Type 2 T helper cells, and aDCs, and negatively

correlated with Macrophage, Mast cells, Memory B cells, and Check-

point. JUND was negatively correlated with Gamma delta T cells and

APC co-inhibition. MCL1 was positively correlated with Natural killer

T cell, Activated CD4T cell, and negatively correlated with CD56 bright

natural killer cell and APC co-inhibition. NFKBIA was negatively

correlated with Activated B cell, Activated CD8 T cell, etc. SIK1 was

positively correlated with Central memory CD4 T cell, Central memory

CD8 T cell, and Cytolytic activity, and negatively correlated with

Neutrophil, Regulatory T cell, Natural killer cell, Macrophage, APC

co-inhibition, Type II IFN Response, and HLA. Data of results were

shown in the Supplementary Material: Table S14, 15.
4 Discussion

OA is a chronic disease characterized by pain, cartilage loss, and

joint inflammation, with aging playing a significant role in its

progression. To date, OA cartilage has been extensively studied in
B C D

E F G

A

FIGURE 7

Machine Learning Screening Hub OA-ARDEGs. (A) LASSO coefficient analysis. Vertical dashed lines are plotted at the best lambda. (B) Ten cross-
validations of the choice of adjustment parameters in the LASSO model. Each curve corresponds to one gene. (C, D) Maximum accuracy and
minimum error plots of the SVM-RFE algorithm for screening optimal OA-ARDEGs. (E) Ranking of the relative importance of OA-ARDEGs. (F)
Relationship between the number of random forest trees and the error rate. (G) LASSO, Random Forest, and SVM-RFE algorithms for screening Venn
diagrams of the intersection of Aging signature genes.
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terms of aging. Oxidative stress, for example, causes chondrocyte

senescence by increasing p53 and p21 expression and activating the

p38 MAPK and PI3K/Akt signaling pathways (28). Mechanical stress

causes chondrocyte senescence and accelerates cartilage catabolism by

downregulating FBXW7 (29). Sirt6 slows chondrocyte aging by

inhibiting IL-15/JAK3/STAT5 signaling (30). However, a growing

body of research has recently recognized that synovial aging plays an

important role in OA, but the exact role and mechanisms remain

unknown (31). As a result, the purpose of this study was to identify

potential biomarkers of aging in OA and to investigate the role and

mechanisms of Aging-related genes and immune infiltration in OA

synovial tissues, thereby providing new directions and ideas for

potential mechanisms and early OA diagnosis.

In normal and OA synovial samples, we discovered 87 ARDEGs.

According to the GO and KEGG enrichment analysis results,

ARDEGs are primarily involved in response to extracellular

stimulus, response to nutrient levels, and HIF-1 signaling pathway,

FoxO signaling pathway, PI3K-Akt signaling pathway, and MAPK

signaling pathway, which is consistent with previous studies (32–35).
Frontiers in Immunology 11
It has been proposed that ARDEGs may be involved in inflammatory

regulation, cellular stress response, cell cycle regulation, transcriptional

regulation, and other mechanisms that promote OA progression. The

results of the GSVA enrichment analysis revealed that TNFA signaling

via the NFKB pathway, apoptosis, MAPK signaling pathway, and the

P53 pathway were all significantly upregulated in OA. This is

consistent with the functional enrichment of ARDEGs in OA. Using

WGCNA analysis and three machine learning screenings, we were

able to identify five Hub OA-ARDEGs (MCL1, SIK1, JUND,

NFKBIA, JUN). Our findings suggested that Hub OA-ARDEGs had

an excellent diagnostic ability to predict OA and were significantly

downregulated in synovial samples from OA patients.

MCL1 (MCL1 Apoptosis Regulator, BCL2 Family Member) is an

anti-apoptotic member of the BCL-2 family of proteins, which is

involved in the regulation of apoptosis, cellular senescence, and

inflammation and is essential for the maintenance of cell survival

and viability (36). MCL1 expression is significantly downregulated in

OA and senescent chondrocytes, and miR-34a-targeted inhibition of

MCL1 can induce chondrocyte apoptosis as well as promote
B

C D

A

FIGURE 8

Hub OA-ARDEGs risk prediction model. (A) Nomogram of Hub OA-ARDEGs in the diagnosis of OA patients. (B) Calibration curve used to estimate
the predictive accuracy of the nomogram (the closer to the ideal dashed line, the more reliable the result). (C) Accuracy of the clinical decision curve
detection model (the further the red line endpoints are from the grey line, the higher the accuracy). (D) Clinical impact curve (The solid red line
indicates the number of people identified by the model as being at high risk for different probability thresholds; the dashed blue line indicates the
number of people identified by the model as being at high risk for different probability thresholds and actually having an outcome event).
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inflammatory response and ECM degradation (37). RHEB

overexpression can, surprisingly, upregulate MCL1 to alleviate

chondrocyte senescence and oxidative stress, which may be related

to MCL1 inhibiting ROS production and P27 expression (38). MCL1

downregulation in OA synovial tissue and a positive correlation with

natural killer cells suggest that MCL1 downregulationmay be involved

in synovial senescence and synovitis. However, more experimental

support is required. SIK1 (Salt Inducible Kinase 1) is a member of the

AMPK kinase subfamily that regulates cell cycle, gluconeogenesis, and

lipogenesis (39). SIK1 has been shown in studies to inhibit TLR4-

induced NF-B activation and reduce the expression of pro-

inflammatory cytokines (40). However, SIK1 has not been reported
Frontiers in Immunology 12
in the OA literature. NFKBIA (NFKB Inhibitor Alpha) is an NFKB

inhibitor that reduces the inflammatory response by inhibiting the

activity of the dimeric NF-kappa-B/REL complex. Multiple studies

have shown that abnormal NF-B activation is associated with

chondrocyte catabolism, chondrocyte senescence, and synovial

inflammation, and NF-B inhibition may be a potential therapeutic

target for the treatment of OA (41, 42). Interestingly, the number of

chondrocytes activated by NF-B signaling was significantly increased

in aged articular cartilage, and activation of IKK-NF-B signaling in

chondrocytes accelerated the occurrence of age-related joint tissue

degeneration (43). Overexpression of NFKBIA in OA synovial

fibroblasts effectively inhibits the expression of destructive enzymes
B C

D E F

A

FIGURE 9

Hub OA-ARDEGs expression difference and ROC curve. (A) Violin plot of Hub OA-ARDEGs expression in normal and OA synovial tissue in the
training set, *P<0.05; **P<0.01; ***P<0.001. (B, C) Box plot of Hub OA-ARDEGs expression in normal and OA synovial tissue in GSE1919 and
GSE89408 validation set. (D) ROC curve analysis of Hub OA-ARDEGs and nomogram in the training set, *P<0.05; **P<0.01; ***P<0.001.
(E, F) ROC curve analysis of Hub OA-ARDEGs and nomogram in the GSE1919 and GSE89408 validation set.
B C D EA

FIGURE 10

The qRT-PCR method was used to detect the mRNA expression levels of five Hub OA-ARDEGs. (A-E) MCL1, JUN, SIK1, NFKBIA, and JUND were
significantly downregulated. *P<0.05, **P<0.01.
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such as MMP-1, MMP-3, and MMP-13, as well as ADAMTS4,

reducing inflammation (44). These findings support our hypothesis

that NFKBIA downregulation is important in promoting OA. JUND

(JUND Proto-Oncogene, AP-1 Transcription Factor Subunit) is a

functional component of the AP1 transcription factor complex, which

is involved in cell proliferation, differentiation, and senescence,

primarily through the regulation of oxidative stress levels (45, 46).

JUND has been shown to protect cells from p53-dependent

senescence and apoptosis, making it an appealing molecular target

for preventing or delaying age-related cardiovascular disease (47, 48).

In osteoarthritis, JUND transcriptional activation acts on the LncRNA

LOXL1-AS1 to promote chondrocyte proliferation and inflammation,

leading to osteoarthritis progression (49). The precise role of JUND in

OA has yet to be determined. JUN (Jun Proto-Oncogene, AP-1

Transcription Factor Subunit) is a nuclear transcription-activating

protein l family member involved in a variety of physiological

processes such as cell cycle progression, differentiation, and

apoptosis (50). JUN was discovered to slow aging by suppressing
Frontiers in Immunology 13
p53 gene transcription, whereas JUN knockout mouse embryonic

fibroblasts (MEF) exhibit severe proliferation defects and early

senescence (51). JUN binds to BATF to form a complex that

regulates the expression of anabolic and catabolic genes in

chondrocytes, which is critical in the destruction of OA cartilage

(52). JUN overexpression has also been linked to reduced SOX9

transcriptional activity and type II collagen expression in

chondrocytes (53). We discovered significant JUN downregulation

in OA synovium, but it is unclear whether this promotes synovial

aging and inflammation. More research into the specific role and

mechanisms of Hub OA-ARDEGs in OA will hopefully lead to an

emerging target for OA treatment.

Long-term low-level chronic inflammation and innate and

adaptive immune system activation play critical roles in all

aspects of OA pathogenesis (54, 55). Using ssGSEA analysis, we

discovered that macrophages, natural killer cells, regulatory T cells,

activated CD8 T cells, central memory CD4 T cells, effector memory

CD4 T cells, activated B cells, and memory B cells were significantly
FIGURE 11

miRNA-TF-mRNA regulatory network. Diagram of miRNA-TF-mRNA regulatory network, where red circles represent genes; blue V-shapes represent
predicted miRNAs; green diamonds represent TF.
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infiltrated in OA. Checkpoint, HLA, parainflammation, and other

immune functions were significantly activated in OA samples.

Macrophages, the primary innate immune cells in the OA

synovium, are present in 76% of OA patients’ knee joints and are

significantly associated with knee pain, OA radiographic severity,

and osteophytes (56). Through the secretion of inflammatory,

growth factors and MMPs, activated macrophages cause

chondrocyte senescence and apoptosis (57). NK cells, as one of

the innate immune cells, play an important role in monitoring and
Frontiers in Immunology 14
killing senescent cells. In the liver, NK cells use perforin granule

exocytosis to target the clearance of senescent hepatic stellate cells

(58). The recruitment and activation of NK cells is thought to

accelerate the progression of OA in a mouse model of osteoarthritis

with cartilage damage (59). Similarly, the adaptive immune system

unquestionably plays a role in OA. Numerous studies have found a

significant infiltration of T cells in OA synovial and synovial fluid,

second only to macrophages in accounting for 25% of inflammatory

cells (60). CD8+ T-cell-induced tissue inhibitor of metalloprotein-1
B

C

D E

F G

A

FIGURE 12

ssGSEA immune infiltration. (A) Heat map of the differences in the distribution of 28 immune cells in each sample. (B) Correlation analysis between
28 immune cell species. (C, D) Violin plots of differences in the infiltration of 28 immune cells and 13 immune functions in normal synovial and OA
synovial samples. (E) Box plot of HLA gene expression differences in normal and OA synovial samples. (F, G) Correlation analysis of Hub OA-ARDEGs
with 28 immune cells and 13 immune functions, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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(TIMP1) expression aggravates osteoarthritis (61). The number of

synovial CD4+ T lymphocytes correlates with a visual analog pain

scale, promotes Th1 cell polarization, and increases the release of

immunomodulatory cytokines, accelerating the progression of OA

(62, 63). B cells and plasma cells have been found in synovial tissue

from OA patients. However, no studies have found a direct link

between B cell infiltration and OA progression or severity, and

further experimental confirmation of their specific role is required

(64). We used Spearman correlation analysis to show that the five

Hub OA-ARDEGs have a reasonable correlation with immune cells

and functions, implying that synovial immune inflammation may

collaborate with aging to contribute to the occurrence and

progression of OA.

However, there are limitations to this study:
Fron
1. The transcriptomic data for this study were sourced from

publicly available databases, which may limit access to

more clinically relevant information. The variability of

patient populations and clinical characteristics cannot be

ruled out as a possible influence on the study’s findings.

2. The limited sample size had a potential impact on the

accuracy of the results, emphasizing the need for a larger

sample size and a prospective study design to validate and

reinforce the model’s findings.

3. We conducted an extensive exploration and analysis of

databases and supplemented our findings with limited

experimental validations. However, it is important to note

that our study would benefit from additional experimental

support to further strengthen the conclusions.
5 Conclusion

In conclusion, this study preliminarily investigated the potential

mechanisms of aging-related genes in OA synovial tissue, which

revealed that synovial aging could be closely linked to immune

inflammation. In addition, five Hub OA-ARDEGs have excellent

diagnostic capabilities for OA and may be novel targets for the

diagnosis and treatment of OA. However, additional experimental

studies are required to support our findings.
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