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Single-cell RNA sequencing
reveals tumor immune
microenvironment in human
hypopharygeal squamous cell
carcinoma and lymphatic
metastasis

Ce Li, Rui Guan, Wenming Li, Dongmin Wei, Shengda Cao,
Chenyang Xu, Fen Chang, Pin Wang,
Long Chen and Dapeng Lei*

Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of
Otorhinolaryngology (Shandong University), Jinan, Shandong, China
Background: Human hypopharygeal squamous cell carcinoma (HSCC) is a

common head and neck cancer with a poor prognosis in advanced stages. The

occurrence and development of tumor is the result of mutual influence and co-

evolution between tumor cells and tumor microenvironment (TME). Tumor

immune microenvironment (TIME) refers to the immune microenvironment

surrounding tumor cells. Studying TIME in HSCC could provide new targets

and therapeutic strategies for HSCC.

Methods: We performed single-cell RNA sequencing (scRNA-seq) and analysis

of hypopharyngeal carcinoma, paracancerous, and lymphoid tissues from five

HSCC patients. Subdivide of B cells, T cells, macrophages cells, and monocytes

and their distribution in three kinds of tissues as well as marker genes were

analyzed. Different genes of IGHG1 plasma cells and SPP1+ macrophages

between HSCC tissues, adjacent normal tissues and lymphatic tissues were

analyzed. Additionally, we studied proliferating lymphocytes, T cells

exhaustion, and T cell receptor (TCR) repertoire in three kinds of tissues.

Results: Transcriptome profiles of 132,869 single cells were obtained and

grouped into seven cell clusters, including epithelial cells, lymphocytes,

mononuclear phagocytics system (MPs), fibroblasts, endothelial cells (ECs),

plasmacytoid dendritic cells (pDCs), and mast cells. Tumor metastasis occurred

in three lymphoid tissues. Four distinct populations were identified from

lymphocytes, including B cells, plasma cells, T cells and proliferating

lymphocytes. We found IGHA1 and IGHG1 specific plasma cells significantly

overexpressed in HSCC tissues compared with normal hypopharygeal tissues

and lymphatic tissues. Five distinct populations from MPs were identified,

including macrophages, monocytes, mature dendritic cells (DCs), Type 1

conventional dendritic cells (cDC1) and Type 2 conventional dendritic cells

(cDC2). SPP1+ macrophages were significantly overexpressed in HSCC tissues
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and lymphatic tissues compared with normal hypopharygeal tissues, which are

thought to be M2-type macrophages. Exhaustion of CD8+ Teff cells occurred in

HSCC tissues. At last, we verified that IgA and IgG1 protein expression levels were

significantly up-regulated in HSCC tissues compared to adjacent normal tissues.

Conclusion:Overall, this study revealed TIME in HSCC and lymphatic metastasis,

and provided potential therapeutic targets for HSCC.
KEYWORDS

single-cell RNA sequencing, hypopharygeal squamous cell carcinoma, tumor immune
microenvironment, IGHA1, IGHG1
Introduction

Hypopharyngeal cancer accounts for 3% to 5% of head and neck

squamous cell carcinomas (1). The vast majority of hypopharyngeal

cancers are hypopharyngeal squamous cell carcinomas (HSCC) (2).

Patients with HSCC are predominantly male and usually have a

history of smoking or heavy alcohol consumption (3).

Hypopharyngeal has the worst prognosis of all head and neck

cancers, with a reported 5-year overall survival rate of 30% to 35%

(4). Hypopharyngeal cancer is usually detected late, with 70% to

85% of cases diagnosed at stage III or IV, approximately 60% to 80%

of patients have ipsilateral cervical lymph node metastases (5), and

40% have contralateral cervical occult lymph node metastases (6).

Relapse is fairly common, with nearly 50% of patients relapse within

one year of diagnosis, often with distant metastases diagnosed (7).

For patients with locally advanced hypopharyngeal carcinoma,

surgery combined with chemoradiotherapy can significantly

improve local control rates and systemic efficacy (8). Although

the application of emerging therapeutic approaches such as

immunotherapy and targeted therapy have greatly improved the

prognosis of cancer patients, the survival of HSCC patients has not

been significantly prolonged (9).

Single-cell transcriptome sequencing (scRNA-seq) technology

is a technology which isolates single cells from cell populations in

tissue or body fluid samples, obtains relevant data through

unbiased, high-throughput and high-resolution transcriptome

sequencing, and finally performs informative analysis (10).
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ScRNA-seq can not only reveal the unique changes of each cell,

but also discover completely new cell types (11). Single-cell genome

sequencing can be applied to detect genomic stability and genomic

variation, thus providing new insights into human understanding of

the physiological and pathological functions of cells (12). ScRNA-

seq technology provides a powerful new way to characterize the

clonal diversity of tumor cells and explore the role of rare cells in

tumor development (13). ScRNA-seq has been used in a variety of

human tumors, including glioma (14), lung cancer (15),

hepatocellular carcinoma (16), nasopharyngeal carcinoma (17),

colorectal cancer (18), ovarian cancer (19), gallbladder cancer

(20), oral cancer (21), laryngeal carcinoma (22), etc. Chen et al.

constructed the first single cell transcriptome map of

hypopharyngeal cancer, revealed the complex crosstalk in HSCC

and found BMPR promotes HSCC cells proliferation and

migration (23).

The tumor microenvironment (TME) refers to the special

environment in which tumor cells grow by interacting with the

extracellular matrix during the growth process (24). Tumor

immune environment (TIME) is an important part of TME,

including tumor-associated macrophages (TAM), mast cells, T

lymphocytes, B lymphocytes, and natural killer (NK) cells,

myeloid-derived suppressor cells (MDSC), and other subgroups

(25). Single-cell RNA sequencing can accurately identify different

immune cell populations in the microenvironment based on the

single-cell level and biomarkers that can be used to characterize

such cells, providing the cellular composition and distribution

characteristics of the tumor immune microenvironment from a

holistic perspective, thereby revealing their functional states and

discovering potential immunotherapy targets (26). Studying the

tumor immune microenvironment by using single-cell sequencing

has been applied to melanoma (27), liver cancer (28), lung cancer

(29), breast cancer (30), colorectal cancer (31) and so on. However,

the immune microenvironment in HSCC has not been explored.

In the present study, TIME inHSCC and lymphatic metastasis was

revealed for the first time by performing scRNA-seq in

hypopharyngeal carcinoma, paracancerous, and lymphoid tissues

from HSCC patients, which may improve our current understanding

of the mechanisms of HSCC development and progression.
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Materials and methods

Sample collection and processing

HSCC tissues, adjacent normal tissues and lymph tissues from

five HSCC patients were collected and stored at -20°C. All patient

data used in the study were approved by the Ethics Committee of

Qilu Hospital of Shandong University. The patients participating in

the program were informed.
Tissue dissociation and preparation

Fresh tumor tissue was stored in GEXSCOPE® tissue preservation

solution (Singleron) and shipped on ice to the Singleron laboratory as

soon as possible. Samples were washed 3 times with Hanks’ Balanced

Salt Solution (HBSS) and cut into 1-2 mm pieces. The tissue sections

were then digested with 2 ml of GEXSCOPE® tissue dissociation

solution (Singleron) and placed in 15 ml centrifuge tubes at 37°C with

continuous agitation for 15 minutes. After digestion, the samples were

filtered through a 40 mm sterile filter, centrifuged at 1000 RPM for

5 min, the supernatant was discarded, and the pellet was resuspended

in 1 ml of PBS (HyClone). To remove erythrocytes, 2 ml of

GEXSCOPE® erythrocyte lysis buffer (Singleron) was added for 10

minutes at 25°C. Centrifuge at 500 × g for 5 min and suspend in PBS.

Samples were stained with trypan blue (Sigma) and evaluated under a

microscope. Cell activity and cell concentration were measured using a

fluorescence cell analyzer (Countstar Rigel S2). If there were a lot of

dead cells or debris, Biotec Dead Cell Removol Kit (Miltenyi Biotec)

were used for removal.
Single cell RNA sequencing

A single-cell suspension was prepared at a concentration of 1 ×

105 cells/mL in PBS (HyClone). The scRNA-Seq library was

constructed by the GEXSCOPE® Single Cell RNA Library Kit

(Singleron Biotechnologies) according to the Singleron

GEXSCOPE® protocol (32). Individual libraries were diluted to 4

nM and pooled for sequencing. 150 bp paired-end sequencing was

performed using Illumina HiSeq X.
ScRNA-seq quantifications and
statistical analysis

The batch-effect was assessed and corrected using the Harmony

algorithm. Raw reads are processed through an internal pipeline to

generate gene expression profiles. Briefly, cell barcodes and UMIs

were extracted after filtering reads in the absence of multiple t-tails.

Read 2 will be trimmed with splicing and poly A tails (FASTP V1)

and then aligned to GRCh38 using integrated version 92 gene

annotation (FASTP 2.5.3A and featurecount 1.6.2) (33). Reads for

the same cell barcode, UMI, and gene were combined to calculate

the number of UMIs per gene per cell. The UMI count table for each

cell barcode was used for further analysis. Cell type identification
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and cluster analysis were performed using the Seurat program (34,

35). The RNA sequencing data were analyzed using the Seurat

program (http://satijalab.org/seurat/, R package, v. 3.0.1). Loaded

the UMI count table into R using read table function, then set the

parameter resolution of the FindClusters function to 0.6 for cluster

analysis. Used the findmarker function to identify differentially

expressed genes (DEGs) between different samples or consecutive

clusters. GO function enrichment analysis was performed on gene

sets using ClusterProfiler software to find biological functions or

pathways significantly associated with specific expressed genes (36).
T cell receptor library preparation
and scRNA-seq

The single cell suspension (1×105 cells/mL) was loaded into

microfluidic devices. Subsequently, the scTCR-seq libraries were

constructed according to the protocol of GEXSCOPE Single Cell

Immuno-TCR Kit (Singleron Biotechnologies). In brief, the

magnetic beads with molecular labels captured the poly (A) tail

and the T-cell receptor (TCR) region on the mRNA to label the cells

and mRNA after the cells were lysed. Afterwards, the magnetic

beads in the chip were collected and then mRNAs captured by the

magnetic beads were reverse transcribed into complementary DNA

(cDNA) and amplified. Sequencing libraries suitable for the

Illumina sequencing platform were constructed after partial

cDNA fragmentation and splicing. The remaining cDNA was

enriched for the immune receptor (TCR), and the enriched

products were amplified by PCR to construct a sequencing library

suitable for the Illumina sequencing platform. Finally, each library

was sequenced on Illumina HiSeq X with 150 bp paired-end reads.
TCR library analysis

TCR clonotypes assignment was performed using Cell Ranger

(v4.0.0) vdj pipeline with GRCh38 as reference. In brief, a TCR

diversity metric was obtained, which contains the frequency of

clonotype and barcode information. Only cells with one productive

TCR a-chain (TRA) and one productive TCR b-chain (TRB) were

kept for further analysis. Each unique TRA(s)-TRB(s) pair was

defined as a clonotype. If one clonotype was present in at least two

cells, cells harboring this clonotype were considered to be clonal and

the number of cells with such pairs indicated the degree of clonality

of the clonotype. The TCR diversity index was calculated using the

vegan package in R, with the shanno and invsimpson indices being

computed through the diversity() function, while Chao and ACE

were calculated using the estimateR() function. After computing the

diversity for each sample based on the frequency of different

clonotypes, plotted the boxplot by R package ggplot2.
Primary analysis of raw read data

The raw reads were processed to remove low quality using

fastQC v0.11.4 (https://www.bioinformatics.babraham.ac.uk/
frontiersin.org
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projects/fastqc/) (37) and fastp (38). Poly-A tail and linker

sequences were removed by cutadapt (39). After quality control,

the reads were mapped to the reference genome GRCh38

(integrated version 92 annotation) using STAR v2.5.3 (40). Gene

counts and UMI counts were obtained by using featureCounts

v1.6.2 software (41). Expression matrix files were generated from

gene counts and UMI counts for subsequent analysis.
Quality control, dimension-reduction
and clustering

Cells with gene counts less than 200 or in the top 2% were

excluded, and cells with UMI counts in the top 2% were excluded.

Removed cells containing more than 20% mitochondria. Used

functions in Seurat V3.1.2 for reduction and clustering (42). All

gene expressions were normalized and scaled using NormalizeData

() and ScaleData(). FindVariableFautres() selects the top 2000

variable genes for PCA analysis. FindClusters() divides the cells

into 31 clusters using the top 20 principal components and a

resolution parameter of 1.2. For subclustering of seven cell types,

set the resolution to 0.8. Applied the Uniform Manifold

Approximationand Projection (UMAP) algorithm to visualize

cells in two-dimensional space.
Differentially expressed genes analysis

Seurat FindMarkers() selected genes expressed by more than

10% of the cells in the cluster with an average log (fold change)

greater than 0.25 as DEGs based on the Wilcox likelihood ratio test

with default parameters.
Cell type annotation

The cell type identity of each cluster was determined by the

expression of canonical markers found in DEGs combined with the

knowledge of the published literature (43). Seurat DoHeatmap

()/DotPlot()/Vlnplot() generated a heatmap/dotplot/violin plot

showing the markers used to identify each cell type.
Pathway enrichment analysis

To investigate the potential functions of subdivided cells, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses were used with the “clusterProfiler” R package

version (36). Pathways with P_ADJ values less than 0.05 were

considered significantly enriched. For GSVA pathway enrichment

analysis, the average gene expression per cell type was used as input

data using the GSVA software package (44). Reference Gene

Ontology genes include Molecular Function (MF), Biological

Process (BP), and Cellular Component (CC) categories. The
Frontiers in Immunology 04
protein-protein interactions (PPIs) of DEGs in different clusters

were predicted based on the interactions of known genes with

associated GO terms in StringDB (1.22.0) (45).
Trajectory analysis

To map the differentiation and transformation of cell subtypes

in HSCC tissues, adjacent normal tissues, and lymphatic metastatic

tissues, a spurious time trajectory analysis was performed using

Monocle2 (46). To construct trajectories, using differentially

expressed genes to rank cells in order of spatiotemporal

differentiation, we performed FindVairable Features and

dimensionality reduction by using DDRTree. Trajectories were

visualized by plot_cell_trajectory().
RNA velocity

For RNA velocity, BAM files containing tumor or epithelial cells

and the reference genome GRCh38 were used for analysis in Python

with velocyto (v 0.2.3) and scVelo (v 0.17.17), default parameters.

The results were projected onto the UMAP map from the Seurat

cluster analysis for visual consistency.
Expression programs analysis

Transcription programs were extracted using the cNMF algorithm,

the top 50 genes were used as meta-signatures, and the scores for each

program in each cell were calculated based on the meta-signatures. The

metaprogram performed computations and hierarchical clustering

based on artificial correlations between each program.
UCell gene set scoring

Gene set scoring Gene set scoring was performed using the R

package UCell v 1.1.0 (47). UCell scores are based on the Mann-

Whitney U statistic by ranking query genes’ in order of their

expression levels in individual cells. Because UCell is a rank-based

scoring method, it is suitable to be used in large datasets containing

multiple samples and batches.
Immunohistochemistry staining and
statistical analysis

Tissue sections were fixed, dehydrated, and antigenically

repaired. At first, the first antibody, a specific antibody that

recognizes the antigen was added, and then, the second antibody,

a biotin-labeled antibody that recognizes the FC segment of the first

antibody was added. After that, the lecitin, biotin, and horseradish

peroxidase complex was added, which was generally configured in

the first 30 minutes and finally displayed with the substrate of the
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enzyme. At last, Observed and photographed by using a

microscope. IgA antibody (ImmunoWay, YT2281, 1:200) and

IgG1 antibody (ImmunoWay, YT2293, 1:200) were used for IHC

staining. SPSS 22.0 statistical software package was used for

statistical analysis. The two-tailed Student's t test was used to

assess the statistical differences between the groups. The data

were consistent with normal distribution, and P<0.05 was

considered statistically significant.
Results

Single-cell RNA expression profiling
in HSCC

To explore the cellular diversity and microenvironment

composition of HSCC, we performed scRNA-seq and T cell

receptor (TCR) analysis of primary HSCC, adjacent normal, and

lymphoid tissues from five HSCC patients (Figure 1A). After quality
Frontiers in Immunology 05
control assessment, we obtained transcriptomes of 132,869 single

cells using the Singleron™ Single-Cell mRNA Whole

Transcriptome Analysis System, of which 52,145 cells were

derived from primary tumor tissue, 39,757 cells were derived

from lymph tissue cells, and 40,967 cells were derived from

adjacent normal tissue. Tumor metastasis occurred in three

lymphoid tissues while it did not occur in two lymphoid tissues.

Seven distinct cell populations were identified from whole single-

cell analysis based on t-distributed stochastic neighbor embedding

(t-SNE) analysis and canonical marker expression, including

lymphocytes, MPs, fibroblast cells, ECs, epithelial cells, pDCs and

mast cells (Figure 1B). These cell populations were unevenly

distributed in different kinds of tissues (Figures 1C; S1A). The

proportion of lymphocytes was highest in lymphoid tissues,

followed by HSCC tissue, and lowest in normal hypopharyngeal

tissue. The proportion of MPs was highest in HSCC tissues. A dot

plot of the top 5 differential genes in each cell subset were shown

(Figure 1D). These results reveal the different cell types distribution

in normal hypopharyngeal tissues, HSCC tissue and tumor

metastasis tissues.
A

B

D

C

FIGURE 1

Distinct cell types in HSCC tissues, adjacent normal tissues and lymphatic tissues identified through integrating single-cell transcriptomic data.
(A) Overview of the study design, sample collection, single cell preparation, sequencing, and bioinformatic analysis. (B) Uniform manifold
approximation and projection (UMAP) plot showing the clustering of different cell subsets in HSCC tissues, adjacent normal tissues, and lymphatic
tissues. (C) Sample cell composition histogram of HSCC tissues, adjacent normal tissues, and lymphatic tissues. (D) Bubble chart of top 5 differential
genes in each cell subset.
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Subpopulations and transcriptome
landscape of lymphocytes and MPs
in HSCC and lymphoid tissues

We then discovered the role of immune cells in HSCC, which

mainly lymphocytes and MPs. Four distinct populations were

identified from lymphocytes, including B cells, plasma cells, T

cells and proliferation lymphocytes (Figure 2A). These cell

populations distributed differently in different tissues (Figures 2B,

S1B). The stacked vin plot showed marker genes in each cell subset

(Figure 2C). UMAP plot showed six subtypes colored in HSCC

tissues, adjacent normal tissues and lymphatic tissues (Figure 2D).

The heatmap of the top10 differential genes in each cell subset was

shown (Figure 2E). Five distinct populations were identified from

MPs, including macrophages, monocytes, mature dendritic cells
Frontiers in Immunology 06
(DCs), cDC1 and cDC2 (Figure 2F). These cell populations

distributed differently in different tissues (Figures 2G, S1C).

Stacked vin plot showed marker genes in each cell subset

(Figure 2H). UMAP plot showed five subtypes colored in HSCC

tissues, adjacent normal tissues and lymphatic tissues (Figure 2I).

The heatmap of top10 differential genes in each cell subset was

shown (Figure 2J).
Subpopulations and transcriptome
landscape of B cells and T cells in
HSCC and lymphoid tissues

Seven distinct populations were identified from B cells,

including naive B cells, GC B cells, proliferating B cells,
A B

D

E

F G

I

H J

C

FIGURE 2

Subpopulations and transcriptome landscape of lymphocytes and MPs in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (A) Uniform
manifold approximation and projection (UMAP) plot showing the sub classification of lymphocytes. (B) Bar charts showing the proportion of each
lymphocytes subtype in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (C) Stacked vin plot of marker genes in each cell subset.
(D) UMAP plot of four subtypes colored in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (E) Heatmap showing the top 10 marker
genes of each subpopulation. (F) Uniform manifold approximation and projection (UMAP) plot showing the sub classification of MPs. (G) Bar charts
showing the proportion of each MPs subtype in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (H) Stacked vin plot of marker genes in
each cell subset. (I) UMAP plot of five subtypes colored in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (J) Heatmap showing the
top 10 marker genes of each subpopulation.
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proliferating B cells IGHG1 plasma cells, IGHA1 plasma cells,

and Bmem cells (Figures 3A). These cell populations distributed

differently in different tissues (Figures 3B, S1D). IGHA1 and

IGHG1 specific plasma cells were significantly overexpressed in

HSCC tissues compared with normal hypopharygeal tissues.

Stacked vin plot showed marker genes in each cell subset

(Figure 3C). UMAP plot showed seven subtypes colored in

HSCC tissues, adjacent normal tissues and lymphatic tissues

(Figure 3D). The heatmap of the top10 differential genes in each

cell subset was shown (Figure 3E). Seven distinct populations

were identified from T cells, including NK, Th2, Tfh, CD8Teff,

Proliferating T cells, Naive T, and Treg cells (Figures 3F). These

cell populations distributed differently in different tissues

(Figures 3G, S1E). Treg cells were significantly overexpressed

in HSCC tissues and lymphatic tissues compared with normal

hypopharygeal tissues. Naive T cells were significantly

overexpressed in lymphatic tissues compared with normal
Frontiers in Immunology 07
hypopharygeal tissues and HSCC tissues. Stacked vin plot

showed marker genes in each cell subset (Figure 3H). UMAP

plot showed seven subtypes colored in HSCC tissues, adjacent

normal tissues and lymphatic tissues (Figure 3I). The heatmap of

the top10 differential genes in each cell subset was shown

(Figure 3J). The volcano plots and the heatmaps showed

different genes of IGHG1 plasma cells between HSCC tissues,

adjacent normal tissues, and lymphatic tissues. IGLV1-40, SPP1,

CXCL8, IGLV3-10, and COL1A1 were the most up-regulated

genes in HSCC tissues compared with adjacent normal

hypopharynx tissues (Figures 4A, B). IGKV2D-29, IGHA2,

IGHV3-48, IGHV4-34, and IGKV3-11 were the most up-

regulated genes in lymphatic tissues compared with adjacent

normal hypopharynx tissues (Figures 4C, D). IGKV2D-29,

IGHV4-34, IGHV3-48, IGKV3-11, and CD52 were the most

up-regulated genes in lymphatic tissues compared with HSCC

tissues (Figures 4E, F).
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FIGURE 3

Subpopulations and transcriptome landscape of B cells and T cells in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (A) Uniform
manifold approximation and projection (UMAP) plot showing the sub classification of B cells. (B) Bar charts showing the proportion of each B cells
subtype in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (C) Stacked vin plot of marker genes in each cell subset. (D) UMAP plot of
seven subtypes colored in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (E) Heatmap showing the top 10 marker genes of each
subpopulation. (F) Uniform manifold approximation and projection (UMAP) plot showing the sub classification of T cells. (G) Bar charts showing the
proportion of each T cells subtype in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (H) Stacked vin plot of marker genes in each cell
subset. (I) UMAP plot of seven subtypes colored in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (J) Heatmap showing the top 10
marker genes of each subpopulation.
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Subpopulations, pseudotime trajectory
and transcriptome landscape of
macrophages and monocytes in
HSCC and lymphoid tissues

Six distinct populations were identified from macrophages cells

(Figure 5A). These cell populations distributed differently in different

tissues (Figures 5B, S1F). Macrophage1 was significantly

overexpressed in HSCC tissues and lymphatic tissues compared

with normal hypopharygeal tissues, with marker genes including

CXCL5, SPP1, INHBA, MMP1, FN1, MMP12, TNFAIP6, CHI3L1

and CCL20. UMAP plot showed six subtypes colored in HSCC tissues,

adjacent normal tissues and lymphatic tissues (Figure 5C).

Macrophage1 can also be called SPP1+ macrophages according to

its marker genes. Heatmap of the top10 differential genes in each cell

subset was shown (Figure 5D). Pseudo-time of macrophages

expression profiles was reconstituted (Figure 5E). Molecular

functions, cytological components, biological and KEGG pathways

of macrophages1 were shown (Figures 5E, F). We also detected the

activation of multiple key regulators and TFs in six macrophages

populations (Figure 5G). The heatmaps and the volcano plots showed

different genes of macrophage1 cells between HSCC tissues, adjacent

normal tissues, and lymphatic tissues. CXCL5, MMP12, IGHG4,
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IGHG1, and CCL18 were the most up-regulated genes in HSCC

tissues compared with adjacent normal hypopharynx tissues

(Figures 6A, B). SPP1, APOC1, FN1, IGHG3, and MMP12 were the

most up-regulated genes in lymphatic tissues compared with adjacent

normal hypopharynx tissues (Figures 6C, D). FN1, CD36, APOC1,

CD52, and SPP1 were the most up-regulated genes in lymphatic

tissues compared with HSCC tissues (Figures 6E, F). Four distinct

monocytes populations were identified from monocytes cells (Figure

S2A). These cell populations distributed differently in different tissues

(Figures S1G, S2B). UMAP plot showed four subtypes colored in

HSCC tissues, adjacent normal tissues and lymphatic tissues (Figure

S2C). Dotplot of the top5 differential genes and heatmap of the top10

differential genes in each cell subset were shown (Figures S2D, E).
Subpopulations and transcriptome
landscape of proliferating lymphocytes
and T cell exhaustion in HSCC
and lymphoid tissues

Four distinct populations were identified from proliferating

lymphocytes, including proliferating NK, proliferating B cells,

proliferating plasma cells and proliferating T cells (Figure 7A).
A
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FIGURE 4

Volcano plots and heatmaps showing different genes of IGHG1 plasma cells in HSCC tissues, adjacent normal tissues, and lymphatic tissues.
(A) Volcano plot showing different genes of IGHG1 plasma cells between HSCC tissues and adjacent normal tissues. (B) Heatmap showing different
genes of IGHG1 plasma cells between HSCC tissues and adjacent normal tissues. (C) Volcano plot showing different genes of IGHG1 plasma cells
between lymphatic tissues and normal hypopharynx tissues. (D) Heatmap showing different genes of IGHG1 plasma cells between lymphatic tissues
and normal hypopharynx tissues. (E) Volcano plot showing different genes of IGHG1 plasma cells between lymphatic tissues and HSCC tissues. (F)
Heatmap showing different genes of IGHG1 plasma cells between lymphatic tissues and HSCC tissues.
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These cell populations distributed differently in different tissues

(Figures 7B; S1H). Proliferating T cells and proliferating NK cells

were significantly overexpressed in HSCC tissues and lymphatic

tissues compared with normal hypopharygeal tissues. Proliferating

B cells were significantly overexpressed in lymphatic tissues

compared with HSCC tissues and normal hypopharygeal tissues.

Bubble chart showing 5 typical genes expressed in each subtype

(Figure 7C). UMAP plot showed four subtypes colored in HSCC

tissues, adjacent normal tissues and lymphatic tissues (Figure 7D).

The heatmap of the top10 differential genes in each cell subset was

shown (Figure 7E). Exhausted CD8+ effector T (Teff) cells levels

and exhausted NK T cells levels in HSCC tissues, adjacent normal

tissues and lymphatic tissues were measured (Figures 7F, G).

Exhaustion of CD8+ Teff cells occurred in HSCC tissues.
Comprehensive analysis of the TCR
repertoire in HSCC and lymphoid tissues

We then studied the TCR repertoires in HSCC, adjacent

normal and lymphatic tissues. The clonotype ratio showed

clonal diversity of T-cell repertoires in HSCC tissues, adjacent
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normal tissues, and lymphatic tissues (Figure 8A). Clonal

diversity in HSCC tissues, adjacent normal tissues, and

lymphatic tissues was analyzed by using Shannon score, Inv.

Simpson score, Chao score and ACE score (Figures S3A–D). The

diversity of TCR clonal was lower in HSCC and lymphoid tissues

than in normal hypopharynx tissues. VDJ TCR features and

TOP10 colontypes were shown (Figures 8B, C). Most of TOP10

colontypes related to proliferating T cells and CD8 Teff cells.

Clonotypes distribution of grouped clonotypes were analyzed

(Figure 8D). Treg cells showed significant higher clonal

expansion in HSCC tissues compared with lymphoid metastasis

and normal hypopharynx tissues. VJ pairs heatmap showed

different VJ rearrangement in HSCC tissues, adjacent normal

tissues and lymphatic tissues (Figures 8E–G).
IHC staining of IgA and IgG1 in HSCC
tissues and adjacent normal tissues

At last, since IGHA2 was also upregulated in plasma cells of

HSCC tissues, we verified IgA protein expression levels which
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FIGURE 5

Subpopulations, pseudotime trajectory and transcriptome landscape of macrophages in HSCC tissues, adjacent normal tissues, and lymphatic
tissues. (A) Uniform manifold approximation and projection (UMAP) plot showing the sub classification of macrophages. (B) Bar charts showing the
proportion of each macrophages subtype in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (C) UMAP plot of six subtypes colored in
HSCC tissues, adjacent normal tissues, and lymphatic tissues. (D) Heatmap showing the top 10 marker genes of each subpopulation.
(E) Pseudotemporal trajectory of six macrophages cell types in all tissues. (F) Upregulated GO pathway in macrophages1. (G) Heatmap for clustering
the top genes that affected cell fate decisions.
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encoded by IGHA1 and IGHA2 in HSCC tissues and adjacent

normal tissues by using IHC staining. IgA positive stain in HSCC

tissues was significantly higher than that in adjacent normal tissues

(Figures 9A, B). We also verified IgG1 protein expression levels

which encoded by IGHG1 in HSCC tissues and adjacent normal

tissues by using IHC staining. IgG1 positive stain in HSCC tissues

was significantly higher than that in adjacent normal tissues

(Figures 9C, D). These results showed IgA and IgG1 may be

potential diagnostic markers of HSCC.
Discussion

HSCC is a malignant disease with a poor prognosis. Over the

past few decades, TIME targeting strategies have provided new

therapeutic options for cancer therapy. However, these strategies

have not yet been applied clinically in HSCC because the cellular

characteristics and immune microenvironment of HSCC are largely

unknown. In this study, we performed single-cell transcriptomic

profiling of HSCC tissues, adjacent normal tissues, and lymphoid

tissues to reveal TIME in HSCC and lymphatic metastasis for the
Frontiers in Immunology 10
first time. These results may improve our current understanding of

HSCC development and progression, and provide new therapeutic

targets for HSCC.

TIME is an important component of TME, including T

lymphocytes, B lymphocytes, NK cells, macrophages and other

cell subsets; these immune cells not only play a role in killing

tumor cells, for example, CD8+ T cells, natural killer cells, and M1

macrophages; but also promote tumor development, for example,

Th2 cells, Treg cells, and M2 macrophages (48). Therefore, the

tumor microenvironment has become a potential anticancer target,

and its research has become a hot spot in tumor biology (49).

Single-cell sequencing technology is a powerful tool for analyzing

the heterogeneity of cellular components in the TME, and scRNA-

seq analysis can detect more diverse TME immune cells in tumor

tissues, thus serving as a highly feasible platform for analyzing the

tumor microenvironment (50).

In this study, we studied the immune microenvironment in

HSCC and lymphatic tissues. Seven distinct cell populations were

identified from the whole single-cell analysis, including

lymphocytes, MPs, fibroblasts cells, ECs, epithelial cells, pDCs,

and mast cells. We focused on lymphocytes and MPs in HSCC

tissues, adjacent normal tissues, and lymphatic tissues. Four distinct
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FIGURE 6

Volcano plots and heatmaps showing different genes of macrophage1 in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (A) Volcano
plot showing different genes of macrophage1 between HSCC tissues and adjacent normal tissues. (B) Heatmap showing different genes of
macrophage1 between HSCC tissues and adjacent normal tissues. (C) Volcano plot showing different genes of macrophage1 between lymphatic
tissues and normal hypopharynx tissues. (D) Heatmap showing different genes of macrophage1 between lymphatic tissues and normal hypopharynx
tissues. (E) Volcano plot showing different genes of macrophage1 between lymphatic tissues and HSCC tissues. (F) Heatmap showing different genes
of macrophage1 between lymphatic tissues and HSCC tissues.
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populations were identified from lymphocytes, including B cells,

plasma cells, T cells and proliferation lymphocytes. Subdivide of B

cells and T cells and their distribution in three kinds of tissues as

well as marker genes were analyzed. Four distinct populations from

MPs were identified, including macrophages, monocytes, cDC2,

MatureDCs, and cDC1. Subdivide of macrophages cells and

monocytes cells and their distribution in three kinds of tissues as

well as marker genes were analyzed. We also performed TCR

repertoire analysis, which including clonal diversity, clonotype

distribution and V-J pairing in HSCC tissues, adjacent normal

tissues, and lymphatic tissues.

We firstly verified that IGHA1 and IGHA2 up-regulated at

mRNA level, and IgA up-regulated at protein level in HSCC by

using single-cell sequencing and IHC staining. The basic structure

of immunoglobulin is a monomer composed of four symmetrical

polypeptide chains, including two identical heavy chains with larger

molecular weight and two identical light chains with smaller
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molecular weight, and there are two light chains between the light

and heavy chains. Immunoglobulin A is divided into two subclasses,

IGHA1 and IGHA2, which are composed of the heavy chain a1 or
a2 and the light chain respectively, and its heavy chain constant

region is located on chromosome 14q32.33. IGHA1 was up-

regulated and reported as an unfavorable biomarker in renal cell

carcinoma (51) and prostate cancer (52), while reported as a

favorable biomarker in breast cancer (53). We firstly verified that

IGHG1 up-regulated at mRNA level and IgG1 up-regulated at

protein level in HSCC by using single-cell sequencing and IHC

staining. IGHG1 is immunoglobulin gamma-1 heavy chain

constant region, belongs to immunoglobulin G (IgG), which

accounts for approximately 80% of total immunoglobulins (54).

Although only B cells and plasma cells are known to produce IgG,

there are increasing reports suggesting that IgG can be produced by

several malignant cells, such as tumor cells from the esophagus,

breast, liver, or prostate (55). IGHG1 promotes tumor development
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FIGURE 7

Subpopulations and transcriptome landscape of proliferating lymphocytes and cell exhausted levels in HSCC tissues, adjacent normal tissues, and
lymphatic tissues. (A) Uniform manifold approximation and projection (UMAP) plot showing the sub classification of proliferating lymphocytes.
(B) Bar charts showing the proportion of each proliferating lymphocytes subtype in HSCC tissues, adjacent normal tissues, and lymphatic tissues.
(C) Bubble chart showing 5 typical genes expressed in each subtype. (D) UMAP plot of four subtypes colored in HSCC tissues, adjacent normal
tissues, and lymphatic tissues. (E) Heatmap showing the top 10 marker genes of each subpopulation. (F) Exhausted effector CD8 T cells levels in
HSCC tissues, adjacent normal tissues, and lymphatic tissues. (G) Exhausted NK T cells levels in HSCC tissues, adjacent normal tissues, and
lymphatic tissues.
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in gastric cancer, breast cancer and prostate cancer via AKT and

MEK pathway (55–57). Overall, IGHA1 and IGHG1 may be

potential diagnostic markers and serum markers of HSCC.

TAMs play an important role in immunosuppressive

macrophages. TAMs occupy a large proportion of tumor

mesenchymal cells, most of which are migrated and differentiated

from peripheral blood mononuclear cells and developed under the

influence of tumor cells and their microenvironment. TAMs can

secrete a variety of growth factors, cytokines, immunosuppressive

mediators and proteolytic enzymes to promote tumor progression and

metastasis (58). We found Macrophage1 was significantly

overexpressed in HSCC tissues and lymphatic tissues compared

with normal hypopharygeal tissues. Macrogphage1 may be potential

tumor-associated macrophages (TAMs) in HSCC. Macrophage1 can
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also be called SPP1+ macrophages according to its marker genes.

According to the previous literatures, the overexpression of SPP1 in

macrophages is thought to correlate with the phenotype of M2-type

macrophages (23). The number of M2-type macrophages was

negatively correlated with progression-free survival, distant

metastasis-free survival and overall survival of HNSCC patients

(59). M2-type macrophages may play an important role in assisting

HNSCC tumors to evade immune surveillance, and promoting tumor

invasion and metastasis in HNSCC (60).

We measured exhausted CD8+ Teff cells levels and exhausted

NK T cells levels in HSCC tissues, adjacent normal tissues and

lymphatic tissues. We found exhaustion of CD8+ Teff occurred in

HSCC tissues. CD8+ T cells exhaustion is an important factor that

affecting tumor progression, its heterogeneity is closely related to
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FIGURE 8

Clonal diversity and V-J pairing in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (A) Grouped clonotype ratio circle diagram in HSCC
tissues, adjacent normal tissues, and lymphatic tissues. (B) VDJ TCR features in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (C)
TOP10 clonotype mapping UMAP map in HSCC tissues, adjacent normal tissues, and lymphatic tissues. (D) Clonetypes distribution in HSCC tissues,
adjacent normal tissues, and lymphatic tissues. (E) VJ pairs heatmap in adjacent normal tissues. (F) VJ pairs heatmap in HSCC tissues. (G) VJ pairs
heatmap in lymphatic tissues.
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the strength of immunotherapy response and survival prognosis of

tumor patients (61).

In conclusion, we investigated TIME in HSCC and lymphatic

metastasis by performing single-cell RNA sequencing in

hypopharyngeal carcinoma, paracancerous tissues and lymphatic

tissues of five HSCC patients. Different cell populations and

subpopulations and their marker genes, and differentially

expressed genes were identified. These results may not only

elucidate the mechanism of occurrence and development of

HSCC, but also provide potential therapeutic targets for HSCC.
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FIGURE 9

IHC stain of IgA and IgG1 in HSCC tissues and adjacent normal tissues. (A) IHC stain of IgA in 5 pair HSCC tissues and adjacent normal tissues.
(Scale bars = 100mm). (B) Analysis of IgA positive stain in HSCC tissues (n=18) and adjacent normal tissues (n=5). (*, p<0.05) (C) IHC stain of IgG1 in 5
pair HSCC tissues and adjacent normal tissues. (Scale bars = 100mm) (D) Analysis of IgG1 positive stain in HSCC tissues (n=18) and adjacent normal
tissues (n=5). (*, p<0.05).
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