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Shanghai, China, 2NHC Key Laboratory of Glycoconjugates Research, Fudan University,
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Protein glycosylation is a widespread posttranslational modification that can

impact the function of proteins. Dysregulated protein glycosylation has been

linked to several diseases, including chronic respiratory diseases (CRDs). CRDs

pose a significant public health threat globally, affecting the airways and other

lung structures. Emerging researches suggest that glycosylation plays a

significant role in regulating inflammation associated with CRDs. This review

offers an overview of the abnormal glycoenzyme activity and corresponding

glycosylation changes involved in various CRDs, including chronic obstructive

pulmonary disease, asthma, cystic fibrosis, idiopathic pulmonary fibrosis,

pulmonary arterial hypertension, non-cystic fibrosis bronchiectasis, and lung

cancer. Additionally, this review summarizes recent advances in glycomics and

glycoproteomics-based protein glycosylation analysis of CRDs. The potential of

glycoenzymes and glycoproteins for clinical use in the diagnosis and treatment

of CRDs is also discussed.

KEYWORDS
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1 Introduction

Protein glycosylation is a crucial posttranslational modification that affects more than

50% of known proteins. Glycosyltransferases (GTs) and glycoside hydrolases (GHs) are the

two main types of glycoenzymes. The Carbohydrate-Active enZYmes Database (CAZy)

(http://www.cazy.org) records 116 families of GTs (GT1-GT116) and 173 families of GHs

(GH1-GH173), including 235 putative human GTs and 87 putative human GHs. GTs

transfer sugar molecules from nucleotide sugar or lipid-linked sugar donors to hydroxyl
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groups of acceptors to form specific glycan structures and glycosidic

linkages (1–3). For instance, sialyltransferases (STs), fucosy

ltransferases (FUTs), galactosyltransferases (GalTs) and MGAT3

(4, 5) are responsible for the formation of glycans that involve sialic

acid (sialylation), fucose (fucosylation), galactose (galactosylation),

and bisecting GlcNAc (6, 7), respectively. GHs constitute a

superfamily of enzymes that hydrolyze glycosidic linkages during

oligosaccharide maturation (3, 8), exhibiting broad and stringent

substrate specificities (9). Common GHs include b-glucosidase,
glucosidase II, N-acetyl-b-d-glucosaminidase, a-glucosidase, b-gal
actosidase, b-glucuronidase, a-mannosidase, b-mannosidase, a-fuc
osidase, and sialidase. O-linked b-N-acetylglucosamine gly

cosylation (O-GlcNAcylation), a distinctive form of protein glycos

ylation, involves the dynamic addition of N-acetylglucosamine from

UDP-GlcNAc onto specific serine or threonine residues. O-GlcNAc

ylation cycling is mediated by O-GlcNAc transferase (OGT) and O-

GlcNAcase (OGA) (10, 11).

Chronic respiratory diseases (CRDs), affecting the airways and

other structures of the lungs, are a major threat to global public

health. Common CRDs include chronic obstructive pulmonary

disease (COPD), asthma, cystic fibrosis (CF), idiopathic

pulmonary fibrosis (IPF), pulmonary arterial hypertension

(PAH), non-CF bronchiectasis and lung cancer (12, 13). COPD

obstructs the airways, making breathing difficult, while asthma is a

chronic inflammatory condition caused by environmental and

genetic factors, leading to airways narrowing and excess mucus

production during attacks (14). CF is a multisystemic autosomal

recessive disease caused by a mutation in the CF transmembrane

conductance regulator (CFTR) gene, severely damaging the

respiratory and digestive systems (15). Interstitial lung diseases

(ILDs), such as IPF (16), are a heterogeneous family of lung

disorders characterized by alveolar injury, inflammation, and

fibrosis, while PAH is a rapidly progressive disease characterized

by elevated pulmonary artery pressure. Non-CF bronchiectasis is a

progressive lung disease resulting in permanently dilated airways.

Lung cancers can develop from chronic irritation and inflammation

(17). Persistent inflammation is a common feature of most CRDs,

involving epithelial and immune cells and cytokines in the

respiratory tract (18). Proinflammatory cytokines can regulate

the glycosylation of cell surface-associated glycoproteins present

in immune and epithelial cells (4). Therefore, inflammation-

induced glycosylation changes may play a crucial role in the

development of CRDs.

Glycoproteins play essential roles in a variety of physiological

functions, such as protein folding, cell-cell interaction, cell

adhesion, and ligand binding (19). Abnormal protein

glycosylation has been observed in the pathological process of

CRDs. In this review, we will focus on the role of glycosylation in

CRDs by examining the involvement of glycoenzymes and aberrant

glycosylation in the pathogenesis of different CRDs from three

perspectives: (1) the altered expression of GTs and GHs, along with

associated aberrant fucosylation, sialylation, and O-GlcNAcylation

in CRDs; (2) advancements in glycomics and glycoproteomics that

facilitate the exploration of CRDs; and (3) the potential clinical

applications of glycoproteins and glycoenzymes as biomarkers and

targets in CRDs.
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2 Aberrant glycosylation in CRDs

Several experiments have shown that abnormal protein

glycosylation is present in almost all CRDs, including COPD (20),

asthma (21, 22), CF (23, 24), PAH (25), IPF (26), and lung cancer

(27–29). For example, in COPD, an N-glycomics study found an

abnormal N-glycosylation pattern in plasma proteins, with a decrease

in low branching forms and increase in more complex forms (20).

Aberrant fucosylation and sialylation of mucins were observed in

asthmatic patients (30, 31). CF airway epithelial cells were

characterized by increased fucosylation and decreased sialylation

(23). In PAH, augmented expression and activity of OGT, the

enzyme for O-GlcNAcylation, were observed, suggesting the role of

abnormal O-GlcNAcylation in PAH development (32). Abnormal

protein glycosylation is also observed in almost all cancers (33, 34),

including lung cancer (27, 28). In IPF, the core fucosylation of TGF-

b1, mediated by a-1,6-fucosyltransferase (FUT8), plays a crucial role
in the transformation of pericytes into myofibroblasts (35). Changes

in the protein glycosylation profile in body fluids, especially serum

and sputum, may serve as biomarkers for early diagnosis of CRDs.

For example, increased fucosylation levels of serum surfactant protein

D (SP-D) were identified as a potential biomarker of COPD (36).

Multiple integrated N-glycoproteomics analyses have been

performed to screen new effective biomarkers for the early

diagnosis of lung cancer and for monitoring lung cancer

progression (37–40). Fucosylated alpha-1-acid glycoprotein (AGP),

ceruloplasmin (CP), and paraoxonase 1 (PON1) in the serummay be

potential biomarkers for lung cancer (41).

Protein glycosylation changes are prevalent in CRDs, making

them a promising candidate for early diagnosis and therapeutic

targets. Changes in protein glycosylation are often caused by

aberrant expression and mutation of glycoenzymes, which affect

glycosylation activity. Therefore, the analysis of glycoproteins and

their related glycoenzymes has become a widely used approach for

screening potential biomarkers and disease-associated regulators in

various diseases, including CRDs.

3 Glycoenzyme-based protein
glycosylation changes in CRDs

CRDs are associated with persistent inflammation in the

respiratory tract, where glycoproteins are believed to play a

critical role in regulating inflammation-related functions such as

cell adhesion, immunogenicity, and cell-to-cell and cell-to-substrate

interactions. Proinflammatory cytokines, such as interleukin-1 (IL-

1), IL-6, and tumor necrosis factor alpha (TNF-a), are important

regulators of inflammation and can influence the expression of GTs,

particularly STs and FUTs (42–45). This, in turn, affects

downstream protein glycosylation changes, which contribute to

the development of CRDs and other chronic inflammation

diseases (46).

Various GTs are involved in the biosynthesis of different

glycosylation types, and changes in GT expression can alter

protein glycosylation patterns. Growing evidence suggests that

alteration of GT expression is present in many pathophysiological
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conditions (19, 47). Dysregulation of GT expression has been

observed in multiple cancers (19, 48), such as pancreatic cancer

(49), colorectal cancer (50), and breast cancer (51), and it is

associated with tumorigenesis, metastasis, and chemoresistance

(50). Moreover, a higher frequency of GT variants has been

detected in cancers with higher global mutation burdens, as

revealed by an integrative pan-cancer analysis (52). Additionally,

several GHs are overexpressed in various types of cancer (53), and

they play a crucial role in prodrug therapy by activating prodrugs

that target cancer and diabetes (53–55). Therefore, GTs and GHs

are important factors in physiological and pathological conditions,

and their dysregulated expression can lead to various diseases.

Abnormal GTs and GHs could serve as potential biomarkers and

therapeutic targets.

In CRDs, abnormal fucosylation, sialylation, and O-

GlcNAcylation can be attributed to changes in the expression of

glycoenzymes, which are responsible for the enzymatic reactions

involved in protein glycosylation. The dysregulation of these

glycoenzymes is a major factor for underling the aberrant

glycosylation patterns observed in these diseases. Table 1 and

Figure 1 provide a summary of the glycoenzyme-mediated

glycosylation changes and associated dysfunction in CRDs.

Specifically, we will review the impact of the variations in the

expression of FUTs, STs, OGTs and GHs on protein glycosylation

in these diseases.
3.1 Aberrant FUT-mediated fucosylation
in CRDs

Fucosylation is a process mediated by 11 N-linked and 2 O-

linked fucosylation enzymes, collectively known as FUTs, which

include FUT1-11 and protein O-fucosyltransferase 1 and 2

(POFUT1 and POFUT2). This process can be categorized as core

fucosylation (a-1,6-fucosylation) or terminal fucosylation (a-1,2-
fucosylation and a-1,3/4-fucosylation), depending on the location

of fucose in N-glycan. FUT1 and FUT2 are responsible for a-1,2-
linkage, while FUT3-7 and FUT9-11 catalyze a-1,3- and a-1,4-
fucosylation, and FUT8 participates in core fucosylation. POFUT1

and POFUT2 transfer fucose from GDP-b-L-fucose to serine or

threonine residues (41). It is increasingly evident that abnormal

fucosylation occurs in cancer and inflammation (91, 92). Aberrant

fucosylation of proteins can contribute to tumor proliferation,

invasion, metastasis, and immune evasion (93, 94).
3.1.1 COPD
COPD, which encompasses emphysema and chronic bronchitis, is

a progressive disease often linked to smoking and a heightened risk for

lung cancer, particularly squamous cell carcinoma (95). Studies on

COPD animal models and patients have shown that reduced levels of

FUT8 and the corresponding reduction in core fucosylation may

contribute to the pathogenesis of the disease. Fut8 knockout (Fut8-/-)

mice exhibited emphysema-like changes in the lung, and Fut8

knockdown (Fut8+/-) mice exposed to cigarette smoke were found to

be more susceptible to developing emphysema than wild-type mice
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(96). Knockout of FUT8 also resulted in alveolar destruction and loss of

the core-fucosylated secreted protein acidic and rich in cysteine

(SPARC), which impairs collagen binding (56). Decreased FUT8

activity has been correlated with poor lung function and

exacerbation of COPD in patients (36, 96). FUT8 Thr267Lys

mutation is also a risk factor for emphysema (97).

Studies have shown that treating airway smooth muscle cells in a

lipopolysaccharide-induced COPD rat model with extracellular matrix

components upregulates expression of cytokine factors like TGF-b1
and IL-6, but downregulates matrix metalloproteinase 9 (MMP-9) (98).

In contrast, Fut8-/- mice overexpressed MMPs like MMP-12 and

MMP-13 and showed a dysfunctional TGF-b1 due to lack of core

fucosylation, leading to downregulation of the extracellular matrix (99).

As TGF-b1 plays a significant role in lung remodeling (100), the

abnormal expression of FUT8 and decline in core fucosylation may

affect the cell-to-matrix communication via SPARC in COPD (56).

Thus, FUT8 is a potential target for developing COPD therapies as it

plays an important role in the COPD development and progression

through its effects on the core fucosylation of various proteins,

including TGF-b1 and SPARC.

3.1.2 Asthma
Asthma is characterized by the hypersecretion of mucus that is

primarily composed of glycoproteins. Studies in mice have shown

that knockout of the FUT2 gene can reduce eosinophilic

inflammation and airway hyperresponsiveness caused by house

dust mites, a common trigger for asthma (22). Dysregulation of

FUT2 and epithelial fucosylation have been associated with various

chronic inflammatory diseases (92). The main component of

mucus, MUC5AC, is typically fucosylated, and FUT2 exacerbates

asthma through a-1,2-fucosylation of MUC5AC (59). FUT2

genotypes are also linked to asthma risk (101). FUT2 has three

secretor genotypes: nonsecretors (homozygous for the loss-of-

function of FUT2), heterozygous secretors, and homozygous

secretors. Homozygous secretors of FUT2 may have more severe

asthma exacerbations and poor lung function (72). Thus, FUT2 and

a-1,2-fucosylation may play a crucial role in asthma. Glycosylated

immunoglobulin (Ig) affects various allergic diseases, highlighting

the importance of Ig glycosylation patterns in mediating allergies,

including asthma. Moreover, the glycosylation of IgE, rather than

IgG and IgA, has a dominant role in allergy (102).

3.1.3 CF
CF is caused by defective CFTR, affecting chloride channels in

mucus and sweat-producing cells. Phenotype analysis of the N-

glycosylation of sputum proteins revealed that a-2,6-sialylation and

a-1,6-core fucosylation are common structural features present in

patients with CF (63). Abnormal glycosylation of mucins, especially

MUC5B and MUC5AC, is reported in CF and other pulmonary

conditions (61). However, aberrant O-glycosylation and N-

glycosylation of mucins may result from bacterial infection and

inflammation rather than CF pathogenesis, as both N-sialylation

and N-fucosylation of mucins increase (63). In the small intestine of

CF mouse models, increased levels of insoluble and soluble

fucosylated mucins are observed (103), which may be due to
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TABLE 1 Altered glycoenzymes and the corresponding changes in CRDs.

CRDs Glyco-
enzymes

Modified key
glycoproteins Role of protein glycosylation in CRDs

COPD

FUT8 SPARC Decreased core fucosylation of SPARC inhibits collagen binding (56).

ST6GAL1 IL-6
Reduced ST6GAL1 and a-2-6 sialylation augment IL-6 expression/secretion in human bronchial epithelial
cells (57). Plasma ST6GAL1 levels are associated with inflammation and exacerbation of COPD (57, 58).

Asthma

FUT2 MUC5AC
Increased fucosylation of MUC5AC exacerbates airway inflammation and increases mucus viscoelasticity
in asthma (59).

ST6GAL1 MUC4b Sialylation of MUC4b inhibits epithelial cell proliferation (30).

ST3GAL3 MUC5B Sialylation of MUC5B induces apoptosis in eosinophils (59)

NEU1 CD44 CD44 glycosylation affects its recognition of hyaluronan (60).

CF

FUTs Mucins Mutated CFTR may influence the compartmentalization of FUTs (61, 62).

STs
Mucins and membrane
proteins

The sialylation of MUC5B and MUC5AC increases in CF patients’ sputum (61, 63). CFTR DF508
mutation decreases membrane sialylation (64).

IPF

FUT3 and
FUT5

/ An increase in circulating FUT3 and FUT8 is associated with a reduced risk of IPF (65).

FUT8
IGF1/PI3K/AKT
pathway, TGF-bR, and
WNT receptor

Upregulated expression of FUT8 activates IGF1/PI3K/AKT signaling in AEC senescence and IPF (66).
Core fucosylation of TGF-bR and WNT receptor activates EMT (67).

OGT HCF-1 OGT-facilitated PASMC proliferation through activation of HCF-1 (32)

NEU1
Collagen types I and III,
TGF-b1

Up-regulated NEU1 induces lymphocytic infiltration and increases TGF-b1 and collagen accumulation
(68).

NEU3 SAP and IL-6 and IL-1b
The inhibition activity of SAP on fibrocyte differentiation and IL-10 accumulation reduces in IPF patients
with high levels of NEU3 (69). NEU3 upregulates extracellular accumulation of IL-6 and IL-1b (70).

PAH OGT
HCF-1, SP1, VEGF, and
eNOS

OGT facilitates PASMC proliferation through HCF-1 (32). OGT modulates VEGF expression and
vascularization in IPAH by regulation of SP1 (32). Increased O-GlcNAcylation of eNOS at site 615
reduces eNOS activity in IPAH (71).

non-CF
bronchiectasis

FUT2 / FUT2 genotype influences exacerbation and infection in non-CF bronchiectasis (72).

NSCLC

FUT1 /
Decreased FUT1 is correlated with low EGFR-TKI responsiveness, poor prognosis and tumor metastasis
of NSCLC (73).

FUT2
TGF-b/Smad signaling,
p53 and JNK signaling,

FUT2 facilitates autophagy and suppresses apoptosis via p53 and JNK signaling (74). FUT2 promotes
EMT by TGF-b/Smad signaling (75).

FUT4 TGF-b1 and EGFR
FUT4 promotes TGF-b1 secretion and induces EMT (76). Down-regulated FUT4 inhibits EGFR
activation, MAPK and NF-kB signal pathways (77).

FUT8 EGFR
FUT8 regulates the cancer-promoting capacity of cancer-associated fibroblasts by modifying EGFR core
fucosylation (78).

ST3GAL6 EGFR Downregulated ST3GAL6 regulates EGFR signaling (79).

ST6GAL1
Jagged1, DLL-1, Notch1,
Hes1, Hey1, MMPs and
VEGF

Downregulation of ST6GAL1 decreases Jagged1, DLL-1, Notch1, Hes1, Hey1, MMPs and VEGF, and
suppresses cancer cell proliferation, migration and invasion (80).

ST6GALNAc1 MUC5AC
Mutant p53R175H upregulates ST6GalNAc1 expression and the sialyation of MUC5AC, leading to lung
cancer metastasis (81).

ST3GAL4 Membrane proteins
Elevated ST3GAL4 and sialylation of membrane proteins contribute to the activation of E-cadherin/
b-catenin, AKT, and ERK/NF-kB mediated signal transduction pathways (82).

NEU1 /
NEU1 is correlated with the severity of drug resistance in DLKP, a lung cancer model with a series of
drug-resistant variants (83). NEU1 is correlated to p53R273H mutation (84).

NEU3 EGFR NEU3 overexpression stimulates the ERK pathway through EGFR (85).

FUCA2 /
High level of FUCA2 expression may contribute to increased infiltration of tumor-associated
macrophages and associate with an immunosuppressive microenvironment in pan-cancer (86).

(Continued)
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TABLE 1 Continued

CRDs Glyco-
enzymes

Modified key
glycoproteins Role of protein glycosylation in CRDs

OGT SAM68 and p53/c-Myc
High levels of OGT and O-GlcNAcylated SAM68 predict poor prognosis in LUAD (87). Elevated O-
GlcNAcylation of p53/c-Myc induces cisplatin resistance (88).

SCLC OGT / Upregulated OGT expression is associated with poor prognosis (89).

Lung cancer
Glucosidase
IIb

P53
Inhibition of glucosidase IIb decreases activation of the EGFR/RTK and PI3K/AKT signaling pathways in
a p53 dependent manner (90).
F
rontiers in Immu
nology
CRD, chronic respiratory disease; COPD, chronic obstructive pulmonary disease; CF, cystic fibrosis; IPF, idiopathic pulmonary fibrosis; PAH, pulmonary arterial hypertension; NSCLC, nonsmall
cell lung cancer; LUAD, lung adenocarcinomas; SCLC, small cell lung cancer; ST, sialyltransferase; FUT, fucosyltransferase; O-GlcNAcylation, O-linked b-N-acetylglucosamine glycosylation;
OGT, O-GlcNAc transferase; OGA, O-GlcNAcase; ST6GAL, beta-galactoside alpha-2,6-sialyltransferase; ST3GAL, beta-galactoside alpha-2,3-sialyltransferase; ST6GALNAc, N-
acetylgalactosaminide alpha-2, 6-sialyltransferase; NEU, neuraminidase; FUCA2, alpha-L-fucosidase 2; IL, interleukin; HCF-1, host cell factor-1; ECM, extracellular matrix; EMT, epithelial-
mesenchymal transition; IGF1, insulin-like growth factor 1; TGF, transforming growth factor; NF-kB, nuclear factor-kB; JNK, c-Jun N-terminal protein kinase; SPARC, secreted protein acidic
and rich in cysteine; CFTR, CF transmembrane conductance regulator; MMP, matrix metalloproteinase; VEGF, vascular endothelial growth factor; eNOS, endothelial nitric oxide synthase;
EGFR-TKI, epidermal growth factor receptor tyrosine kinase inhibitor; PASMC, pulmonary artery smooth muscle cell; MAPK, mitogen-activated protein kinase; ERK, extracellular-signal-
regulated kinase; RTK, receptor tyrosine kinase; PI3K/AKT, phosphotylinosital 3 kinase/protein kinase B; AEC, alveolar epithelial cell; SAM68, SRC-associated in mitosis, 68 kDa; SAP, serum
amyloid P; SP1, specificity protein 1./, the modified key glycoproteins were not specified in the associated studies.
FIGURE 1

Overview of the glycoenzyme-related protein glycosylation and the functional changes in CRDs. COPD, chronic obstructive pulmonary disease; CF,
cystic fibrosis; IPF, idiopathic pulmonary fibrosis; PAH, pulmonary arterial hypertension; EMT, epithelial–mesenchymal transition; ST, sialyltransferase;
FUT, fucosyltransferase; O-GlcNAcylation, O-linked b-N-acetylglucosamine glycosylation; OGT, O-GlcNAc transferase; ST6GAL, beta-galactoside
alpha-2,6-sialyltransferase; ST3GAL, beta-galactoside alpha-2,3-sialyltransferase; NEU, neuraminidase; TGF, transforming growth factor; EGFR,
epidermal growth factor receptor; JNK, c-Jun N-terminal protein kinase; IL, interleukin; STST3, signal transducer and activator of transcription 3;
SAM68, SRC-associated in mitosis, 68 kDa; HCF-1, host cell factor-1; NO, nitric oxide; SP1, specificity protein 1; DC, dendritic cells; HA, hyaluronic
acid; SAP, serum amyloid P; IGF1/PI3K/AKT, insulin-like growth factor 1/phosphotylinosital 3 kinase/protein kinase B; AEC, alveolar epithelial cell;
SPARC, secreted protein acidic and rich in cysteine; EGF, epidermal growth factor.
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upregulated FUT2 expression. The glycosylation patterns of CF

airway epithelial cells alter with increases in a-1,3/4-fucosylation
and decreases in a-1,2-fucosylation and sialylation (62). In CF, a

different fucosylation phenotype was reported in mucus and airway

epithelial cells, with increased a-1,2-fucosylation in mucus (103)

and increased a-1,3/4-fucosylation in airway epithelial cells (23),

indicating that different FUTs participate in the fucosylation of

mucus and airway epithelial cells in asthma.

3.1.4 IPF
The exact etiology of IPF is still unknown, and the five-year

survival rate is approximately 45% (104). Progress in improving

overall survival in IPF has been limited since 2010 (104). Integrin a-
3 (ITA3) mutation A349S has been discovered in ILD, leading to a

gain-of-glycosylation (105). This mutation causes lung disorders by

disturbing the biosynthesis of ITA3, a highly expressed integrin in

lung epithelium that plays a key role in IPF and the epithelial-

mesenchymal transition (EMT). The glycosylation of vacuolar H

+-adenosine triphosphatase (V-ATPase) may promote collagen

degradation and contribute to the progression of IPF (26). FUT8

upregulation is observed in a bleomycin-induced pulmonary

fibrosis rat model, while glycyrrhizic acid can alleviate IPF by

inhibiting FUT8-mediated core fucosylation of TGF-bR and

WNT (67). Patients with IPF show upregulated expression of

FUT8 and core fucosylation, which regulate the insulin-like

growth factor 1(IGF1) signaling pathway in IPF (66). The

upregulated expression of IGF1 is associated with the

pathogenesis of IPF (106), and inhibition of core fucosylation

alleviates IGF1-induced IPF (106). Therefore, FUT8 and core

fucosylation may play a crucial role in the development and

deterioration of IPF by regulating multiple signaling pathways,

including those for IGF1, TGF-bR, and WNT. Interestingly, lower

IPF expression is associated with increased levels of circulating

FUT3 and FUT5 (65). Further research is needed to investigate the

role of other FUTs in IPF besides FUT8.

3.1.5 Lung cancer
Lung cancer is the leading cause of cancer-related mortality

worldwide (107). It can be categorized into non-small cell lung

cancer (NSCLC) or small cell lung cancer (SCLC), with NSCLC

accounting for approximately 85% of cases and SCLC accounting

for 15% (108). Lung adenocarcinoma (LUAD) and lung squamous

cell carcinoma (LUSC) are the most common subtypes of NSCLC.

A variety of changes in glycosylation have been observed in lung

cancer, such as aberrant glycosylation of mucins and increased

sialylation of proteins (29), which are potential biomarkers for

tumor development and progression (28).

Abnormal protein fucosylation has also been found in lung

cancer (41, 109), with FUT8 and POFUT1 proteins being

upregulated in blood and tumor tissue of patients with lung

cancer (110). These proteins have shown potential as biomarkers

for early detection of lung cancer. In addition, the activity of a-1,3-
FUTs increases in NSCLC tumor tissues, with upregulated mRNA

expressions of FUT3, FUT6, and FUT7 and downregulated mRNA

expression of FUT4 (111). Gene expression analysis has revealed
Frontiers in Immunology 06
that the mRNA expression of FUT2, FUT3, FUT6, and FUT8 are

increased in NSCLC, whereas that of FUT1 is decreased (112).

FUT1 expression has been correlated with treatment outcomes in

LUAD patients receiving epidermal growth factor receptor tyrosine

kinase inhibitor (EGFR-TKI) (73). FUT2 is overexpressed in LUAD

and may facilitate autophagy and suppress apoptosis via the p53

and JNK pathways (74), as well as induce EMT through TGF-b/
Smad signaling in LUAD (75). FUT4 expression shows a negative

correlation with the overall survival in operable LUAD (113, 114),

and may induce lung colonization and distant metastases of lung

cancer cells (114). Autophagic tumor-associated macrophages have

been found to promote TGF-b1 secretion and EMT in LUAD

through the FUT4/p-ezrin pathway (76). Downregulated expression

of FUT4 inhibits EGFR activation and MAPK and NF-kB signal

pathways, resulting in reduced migration, invasion and EMT (77).

FUT4 may also be related to multidrug resistance in lung cancer

(115) and may participate in chemoresistance to cisplatin by

suppressing FOXO1-induced apoptosis in lung cancer (116).

Additionally, FUT4 expression is positively correlated with PD-1

expression, and may be involved in PD-1-mediated-

immunosuppression (113). FUT4 and FUT7 may also participate

in lung-to-brain metastasis of NSCLC cells (117). Reduced levels of

FUT7 CpG DNA methylation have been found in lung cancer,

especially in LUSC (118), and FUT7 promotes lung cancer

proliferation by activation of the EGFR/AKT/mTOR signal

pathway (119). FUT8, whose expression is upregulated in most

cancers, regulates the core fucosylation of PD-1 (120, 121), PD-L2

(122), TGF-b (123), TNFR (124), EGFR (78, 125, 126), B7H3 (127),

a3b1 integrin (128), and E-cadherin (129) as well as that of mucins

(130). Upregulated expression of FUT8 in cancer-associated

fibroblasts promotes the construction of an invasive tumor

microenvironment in NSCLC through the core fucosylation of

EGFR (78). FUT8-mediated core fucosylation of E-cadherin may

also be involved in the EMT in lung cancer cells (131). Abnormal

FUT8-mediated core fucosylation plays an important role in tumor

proliferation, invasion and metastasis, and FUT8 may be a potential

biomarker and therapeutic target in lung cancer and many

other cancers.
3.1.6 Other CRDs
Studies have reported an increase in glycosylation, particularly

in O-GlcNAcylation, in the pulmonary vasculature of idiopathic

PAH patients (46, 132). Additionally, there is evidence of a

correlation between decreased O-GlcNAc levels and impaired

angiogenesis and vascularization in idiopathic PAH (33). The

glycosylation of IgG is also elevated in PAH patients (33),

suggesting a potential role for glycosylation, especially O-

GlcNAcylation, in the pathobiology of PAH.

Non-CF bronchiectasis, a progressive lung disease characterized

by permanently dilated airways, may be driven by a complex cycle

of infection and bronchial inflammation (133–135). Therefore,

breaking this cycle is a promising therapeutic strategy (136).

Research has shown that FUT2 polymorphism is closely

associated with the prognosis of non-CF bronchiectasis (72).

Patients with non-CF bronchiectasis with homozygous secretors
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of FUT2 had a poorer prognosis compared with those of

nonsecretors and heterozygous secretors and exhibited lower lung

function, more exacerbation, and a higher frequency of

Pseudomonas aeruginosa-dominated infection (72). Therefore,

FUT2 and a-1,2-fucosylation may serve as potential therapeutic

targets for non-CF bronchiectasis.
3.2 Aberrant ST-mediated sialylation
in CRDs

Cell surface glycoproteins and glycolipids are commonly capped

with sialic acids, which are covalently attached through sialylation by

four known families of human STs: ST6GAL (ST6GAL1 and 2),

ST6GALNAc (ST6GALNAc1-6), ST3GAL (ST3GAL1-6), and

ST8SIA (ST8SIA1-6) (109, 132, 137, 138). ST6GAL1 and ST6GAL2

transfer sialic acid to a b-D-galactopyranosyl (Gal) residue (a-2,6-
linked sialylation), while ST6GALNAc1-6 transfer sialic acid to a b-D-
N-acetylgalactosaminyl (GalNAc) residue (a-2,6-linked sialylation).

ST8SIA1-6, one the other hand, creates a linear a-2,8-polysialic acid
on various glycoproteins. Different STs show tissue specificity,

suggesting distinct sialylation traits in various tissues. Aberrant

sialylation, commonly observed in cancer and nervous system

diseases (139–141), is also found in the body fluids and tissue of

patients with CRDs, especially with lung cancer (109, 142). To gain

insight into the role of sialylation in CRDs, we reviewed the abnormal

expression of STs and sialylation in CRDs below.

3.2.1 COPD
Research has shown that the sialylation of IgG and other

glycoproteins increases in the blood of patients with COPD (143).

The glycosylation changes in IgG could potentially serve as a

promising biomarker to distinguish between COPD and lung

cancer. Furthermore, the level of circulatory ST6GAL1 negatively

correlates with the severity of acute airway inflammation, and the

administration of recombinant ST6GAL1 to a murine model

mimicking acute exacerbations of COPD can alleviate the

inflammation symptoms (58). In patients with COPD, low levels

of ST6GAL1 and a-2-6 sialylation are associated with poor

prognosis, and this may relate to the regulatory effect of IL-6

expression/secretion by ST6GAL1 (57). Therefore, as a potential

therapeutic approach, the administration of recombinant

ST6GAL1could prevent the exacerbation of COPD.

3.2.2 Asthma
Asthma is categorized as either type 2 (T2) or non-T2 based on

the presence of T helper type 2 cells (Th2) and type 2 cytokines

(144). The levels of ST6GAL1 and sialylated MUC4b have been

shown to be increased in airway specimens from patients with T2

asthma (30), which may cause epithelial dysfunction. In contrast,

the level of ST3GAL3-catalyzed sialylation of MUC5B is

downregulated in most patients with asthma, and a reduced

MUC5B level may be related to the severity of the disease (59).

The sialylation pattern of mucins in asthma appears to play an

important role in asthma pathogenesis. The sialylation of memory
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T helper and regulatory T cells alters in asthmatic children and is

associated with asthma progression (145). Mice with a hepatocyte-

specific knockout of ST6GAL1 (H-cKO) exhibit significantly

increased morbidity due to T cell-dependent HDM-induced

asthma. ST3GAL3 knockout (St3gal3−/−) and knockdown

(St3gal3+/−) mice suffer more severe allergic eosinophilic airway

inflammation. Therefore, sialylation could serve as a biomarker for

the diagnosis and prognosis of asthma. The galactosylation and

sialylation at Asn 297 of IgG decreased in the serum of adult allergic

offspring from allergic mothers (21), and this reduction of IgG

sialylation is associated with proinflammation (146). In summary,

protein sialylation is altered in the airways, mucus, T cells, and sera

of patients with asthma, and the related STs and sialylated proteins

could potentially serve as biomarkers or therapeutic targets.

3.2.3 CF
CF is a hereditary disorder cause by mutations of CFTR, mainly

prevalent in white population from Europe, North America, and

Australia (147). Approximately 90% of patients with CF have a

phenylalanine deletion at codon 508 (DF508), which was associated

with decreased a-2,3 sialylation on cell membranes (64). Knockout

of CFTR (CFTR−/−) in piglets result in an increase in sialylated

mucins in the airways (148). The aberrant sialylation of proteins,

especially mucins, is associated with CF. Reduced sulfation and

fucosylation and increased sialylation of MUC5B and MUC5AC are

also reported in the sputum of patients with CF (61, 63). Bacterial

infection can affect mucin O-glycosylation, and protein N-

glycosylation in sputum, and the N-sialylation and N-fucosylation

of sputum proteins were increased in these patients (63). The

proinflammatory cytokine TNF induces the expression of

ST3GAL4 in lung epithelial cells (149, 150), and the

inflammatory cytokines IL-6 and IL-8 upregulate the expressions

of ST6GAL2 and ST3GAL6 in CF epithelial cells (151), indicating

that STs may play a crucial role in inflammation conditions,

including CF.

3.2.4 Lung cancer
Aberrant sialylation is a common feature in various cancers,

including colorectal cancer (152), ovarian cancer (153), prostate

cancer (153), and lung cancer (142). Sialylation is known to be

involved in the regulation of tumor metastasis, cell survival,

immune evasion, and multidrug resistance (140). A study on lung

tumor N-glycoproteomics showed that 108 out of 303 quantified

sialylated N-glycopeptides were differentially expressed, and

differential Ig a-2,6-sialylation was also observed in lung tumor

tissues (142). Moreover, hypersialylation and hyperfucosylation of

saliva glycoproteins may be a hallmark of lung cancer in patients

(109). The expressions of ST3GAL1, ST6GALNAc3, and ST8SIA6

are significantly reduced in lung cancer tissues and cells, whereas

that of ST6GAL1 is significantly upregulated (80). ST6GAL1 may be

involved in cell invasion and tumorigenesis of NSCLC via Notch1/

Hes1/MMP signaling (80). ST3GAL4 may regulate the

proliferation, invasion, and migration of NSCLC cells through a-
2,3 sialylation of HSP60 (82). ST3GAL6 expression is

downregulated in LUAD, which results in poor prognosis (79).
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Trp53R172H mutation increases the expression of ST6GALNAc1,

which may promote tumor metastasis through sialylation of

MUC5AC in LUAD (81). Thus, various aberrant ST expression

profiles contribute to the abnormal sialylation patterns in lung

cancer, which may partially contribute to its development

and metastasis.
3.3 Aberrant OGT and OGA-mediated
O-glycosylation in CRDs

According to the Human Protein Atlas database (https://

www.proteinatlas.org/), the expression of OGT is most prominent

in the respiratory system compared to other organs, while OGA

expression is average. The OGT/OGA pairs may actively work in

the regulation of the respiratory system. O-GlcNAcylation

participates in various fundamental cellular processes, including

transcription, epigenetics, cell signaling dynamics, protein

translation, stability, and turnover (10, 154). Dysfunction in O-

GlcNAcylation is involved in several diseases, including

neurodegenerative diseases (155, 156), diabetes (157, 158), and

cancers (159, 160). Therefore, targeting O-GlcNAcylation could be

critical in developing new treatments for these diseases (161),

especially cancers (162).

3.3.1 PAH
Glycosylation, especially O-GlcNAcylation, increases in the

pulmonary vasculature of patients with idiopathic PAH (IPAH)

(32, 163), while decreased O-GlcNAc levels correlate with impaired

angiogenesis and vascularization in IPAH (25), suggesting that O-

GlcNAcylation may contribute to the pathobiology of PAH. OGT is

overexpressed in the pulmonary vasculature of patients with IPAH,

and its levels are negatively associated with the severity and

prognosis of IPAH (32). In IPAH, the OGT/OGA pairs regulates

cell proliferation by mediating the activation of host cell factor-1

(HCF-1) in IPAH (32) and can regulate the expression of vascular

endothelial growth factor (VEGF) by O-GlcNAcylation of

specificity protein 1 (SP1) (164). Nitric oxide (NO) deficiency is

also implicated in the development PAH (165), as endothelial NO

(eNOS) activity, which produces NO, is reduced by O-

GlcNAcylation at residue 615 in PAH (71). Thus, targeting OGT

may be a promising for the diagnosis and treatment of PAH.

3.3.2 Lung cancer
In lung cancer, O-GlcNAcylation and expression of OGT are

increased, potentially promoting tumorigenesis and cancer

progression (166). O-GlcNAcylation can accelerate the KrasG12D-

induced lung tumorigenesis (167). The nuclear RNA-binding

protein, SAM68, has 11 identified O-GlcNAcylation sites (87).

High levels of OGT and SAM68 result in poor prognosis of

LUAD, and O-GlcNAcylated SAM68 may participate in

modulating lung cancer aggressiveness (87). Overexpression of

IL-8 can enhance protein O-GlcNAcylation, which may play an
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important role in the generation and maintenance of cancer stem

cells in lung cancer (168). Elevated O-GlcNAcylation of p53/c-Myc

induces cisplatin resistance, which could be an important

mechanism of drug resistance (88). Upregulation of OGT is

observed in SCLC and is associated with clinical outcomes of

SCLC (89). OGT and O-GlcNAcylation may play a key role in

the IL-6/STAT3 signaling-induced migration and invasion of lung

cancer (169). altogether, OGT is typically overexpressed in lung

cancer, resulting in hyper-O-GlcNAcylation of tumorigenesis and

metastatic-related proteins. OGT has potential as a biomarker and

drug target for lung cancer.
3.4 Aberrant GHs in CRDs

In addition to GTs, dysregulated expression of GHs can also

contribute to the aberrant glycosylation in various diseases,

especially in cancer (37, 38). GHs have been used in prodrug

activation for cancer and diabetes treatment (38, 39).

Interestingly, a higher incidence of congenital disorders of GHs

has been observed due to the prevalence mutations in several GH

genes in comparison to that in GT genes (40). GHs not only serve as

critical enzymes in glycosylation but also play an essential role in

prodrug design. The human sialidase family, also referred to as

neuraminidases (NEUs), includes NEU1, NEU2, NEU3, and NEU4

(170). Among them, NEU1 is the predominant sialidase expressed

in human airway epithelia and lung microvascular endothelia,

which can inhibit endothelial cell migration (171, 172).

Additionally, NEU1 has been implicated in various airway

epithelia- and microvascular endothelia-related inflammatory

reactions and diseases. NEU3 is also expressed in human airway

epithelia and lung microvascular endothelia (171, 173).

3.4.1 IPF
NEU1 and NEU3 are the predominant sialidases in the lung

microvascular endothelia (171). Increased expression of NEU1 is

observed in the lungs of patients with IPF, and NEU1 may

participate in the IPF pathogenesis by provoking lymphocytic

infiltration and promoting accumulation of glycoprotein TGF-b1,
type I and III collagen (68, 174). In mice, administration of NEU3

has been shown to induce lung fibrosis, with a gender-specific effect

(175). NEU3 can stimulate extracellular accumulation of profibrotic

cytokines IL-6 and IL-1b, and conversely, IL-6 can induce the

expression of NEU3 in human peripheral blood mononuclear cells

(70). Sialylation of serum amyloid P (SAP) is critical for its

biological activity. It can inhibit the differentiation of monocytes

into fibrocytes and promote high extracellular levels of IL-10.

However, in patients with IPF, the sialidase NEU3 is highly

expressed, leading to SAP desialylation in the sera (69). This

desialylation may contribute to the dysregulated immune

response and fibrotic remodeling observed in IPF. Maintaining

SAP sialylation status could be a potential therapeutic strategy for

modulating the pathogenesis of IPF. Therefore, inhibiting NEU1

and NEU3 could be a new therapeutic strategy for IPF.
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3.4.2 Lung cancer
The abnormal expression of certain GHs has been observed in

lung cancer. For instance, b-glucuronidase is preferentially

concentrated within areas of necrosis in lung tumor tissues (176).

Glucosidase IIb subunits are overexpressed in lung tumor tissues

and promote cell growth and migration through receptor tyrosine

kinase (RTK) signaling and the p53 pathway (177, 178). Inhibition

of these subunits can induce autophagy and apoptosis in lung

cancer cells (90). The expression of NEU1 is increased in NSCLC

tumors with p53R273H mutation and is associated with poor

prognosis (84). NEU1 is also correlated with the severity of drug

resistance in DLKP, a lung cancer cell line (83). NEU3 may regulate

the ERK pathway via EGFR and serve as a prognosis biomarker for

EGFR-targeted therapies in NSCLC (85). Furthermore, FUCA2, a

fucosidase, is upregulated in most tumors and predicts poor overall

survival in pan-cancer, including LUAD (86). These observations

suggest that several GHs may serve as potential biomarkers or drug

targets for lung cancer.

3.4.3 Other CRDs
There is a known correlation between diabetes mellitus (DM)

and COPD, and studies have shown that patients with DM taking

a-glucosidase inhibitor drugs have a higher morbidity of COPD

(179, 180). In pediatric allergic asthma, the downregulation of

NEU1 has been observed in the airway epithelial cells (181). In

asthmatic mouse models, the interaction between hyaluronan and

CD44 is crucial for the accumulation of antigen-specific Th2 cells

(60, 182). NEU1 may also contribute to Th2 cell-mediated airway

inflammation by influencing the glycosylation of CD44 (60, 182).

Additional, abnormal activity levels of alpha-fucosidase, alpha-

galactosidase, beta-galactosidase, alpha-glucosidase, beta-

glucosidase, beta-glucuronidase, beta-hexosaminidase, and alpha-

mannosidase have been were detected in the sera of patients with

CF (183).
3.5 Summary

Bacterial infection and cigarette smoking are two major risk

factors for CRDs. Smoke disrupts the heavily O-glycosylated MUC1

barrier that protects the airway, and N-acetyl-galactosaminyl

transferase-6 (GALNT6), an enzyme that mediates the initial step

of O-glycosylation, may be involved in the smoking-induced

aberrant MUC1 glycosylation (184). Frequent respiratory

infection is a symptom of many CRDs, such as COPD, CF, and

non-CF bronchiectasis. Infection may change the glycosylation of

lung epithelium cells, such as upregulation sialylation during

Mycobacterium tuberculosis infection (185). Abnormal MUC1

glycosylation may be the major cause of persistent infection.

Moreover, gender biases characterize most chronic inflammation

diseases of airway (186, 187), including COPD (188, 189), asthma

(190), CF (191), non-CF bronchiectasis (192),and lung cancer

(188). Women usually suffer more severe symptoms and have a
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poorer prognosis for CRDs than men (187). One reason for this

may be estrogen regulation of protein glycosylation by affecting the

expressions of glycoenzymes. Estradiol can increase FUT4, FUT5,

and FUT6 expressions as well as the total amount of fucosylation

(193). Estrogen can affect the expressions of ST3GAL1 (194),

ST6GAL1 (195), and ST6GAL3 (196), indicating a regulation of

sialylation by estrogen. Therefore, estrogen may be a mediator in

the progression of CRD.

In conclusion, alterations in protein glycosylation mediated by

GTs play a crucial role in the pathogenesis of different CRDs.

Various cytokines, such as TNF-a and IL-6, may participate in the

regulation of GT expression leading to proinflammatory responses.

Additionally, downstream regulatory molecules like TGF-b1 and

mucins, which are glycoproteins, contribute significantly to the

development of CRDs. The expression profile of GTs in CRDs is

also affected by factors such as infection, smoking, and gender. Our

review of glycoenzyme-mediated glycosylation changes in CRDs

highlights the potential for identifying biomarkers and drug targets

of various CRDs.
4 Glycomics and glycoproteomics-
based protein glycosylation changes
discovered in CRDs

Traditional methods in molecular biology for screening target

markers (28, 143, 145) and investigating physiological and

pathological phenomena (36, 96, 97) often rely on studying the

function and mechanism of one or a few proteins in tightly

controlled experimental systems. However, such methods have

limitations when it comes to analyzing large-scale samples and

comprehensively capturing the complexity of biological systems. By

contrast, omics strategies can provide a more inclusive molecular

perspective of biological systems by analyzing diverse biological and

clinical samples, which can lead to the identification of more

effective biomarkers and a more comprehensive understanding of

the underlying physiological and pathological mechanisms.

In recent years, glycomics and glycoproteomics strategies have

been increasingly employed to study the protein glycosylation

under various physiological and pathological conditions (197–

199). Glycoproteomic analysis characterizes glycopeptides and

provides information on glycoforms and their occupation sites

(200), while glycomics profi les glycans, enabling the

characterization of glycan structures and isomers (200, 201).

These complementary strategies offer a comprehensive

understanding of total glycosylation patterns. Lectin array and

high-performance liquid chromatography (HPLC) with optical

detection, commonly used for glycosylation analysis in

respiratory-related diseases, have limited capabilities for glycan

structure characterization (200–202). Mass spectrometry (MS)-

based glycomics and glycoproteomics strategies have proven to be

powerful for global glycosylation analysis in complex and large-

scale biological samples (203–205) (206, 207). This section reviews
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recent developments in glycomics and glycoproteomics for the

analysis of protein glycosylation in CRDs.
4.1 The MS-based glycomics
analysis in CRDs

In recent years, there has been a growing interest in protein

glycosylation and the use of MS technology for glycomics analysis in

CRDs. A typical MS-based glycome experimental procedure

involves sample pretreatment, glycan release, glycan purification

and separation, glycan derivatization, MS analysis, and data

interpretation. Efficient release of glycans from glycoproteins is a

critical initial step in glycome analysis, which can be achieved by

enzymes (e.g., peptide N-glycosidase F, peptide N-glycosidase A,

endo-b-acetylglucosaminidase F, and O-glycosidases) or chemical

methods (e.g., hydrazinolysis, b-elimination, and oxidation

strategies) (201). MS-based characterization of released glycans

can be performed in their native state or after chemical

derivatization. Glycan derivatization can be achieved through

derivation of the reducing end, hydroxyl group, and carboxyl

group (201). For example, phenylhydrazine labeling (a reducing

end derivation method) has been used for structural studies of

fucosylated N-glycans by MALDI-MS in positive ion mode (208),

and for efficient detection and discrimination of SA linkages when

following alkyl esterification (209). MS-based systems commonly

used for glycomic characterization include MALDI, electrospray

ionizat ion (ESI) , capi l lary e lec trophores is (CE), gas

chromatography (GC) and liquid chromatography (LC) coupled

to MS (143).

In the field of respiratory-related diseases, such as lung cancer,

COPD, CF, and asthma, glycomics has gained increasing attention

in recent years. Researchers have identified potential biomarkers for

the diagnosis and differentiation of these diseases by studying

fucosylated, sialylated, and galactosylated glycans with different

structures. Borges’ research group (206, 207) found that a-2-6
sialylation, b-1-4 branching, b-1-6 branching, terminal, core and

outer arm fucosylation markers were most effective in

discriminating between lung cancer cases and controls, with the

diagnostic performance being dependent on the cancer stage. Ma

et al. (210) reported an increase in the abundance of fucosylated N-

glycans from 40.9% to 48.3% in LUSC. Lattová et al. (211) reported

a decrease in the amount of double-terminal core fucosylated

glycans of the sialylation complex in LUAD. McQuiston et al.

(212) found a significantly increased IgG1 N-glycan profile in

lung transplant recipients with COPD and primary graft

dysfunction. Glycomic analysis of mucins in CF revealed a

significantly high abundance of sialylated glycans, and the total

abundance of nonsulfated O-glycans correlated with the relative

abundance of pathogens (213), whereas another study reported that

submucosal gland mucins contained shorter and less branched

glycans (214). The glycomics strategies utilized in the CRDs cases

are concisely outline in Figure 2 (blue part).

Glycomics enables the analysis of glycan phenotypes and

provides information on the levels of different glycan subtype and

associated glycoenzymens. In particular, glycan subtyping analysis
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can reveal the activity and expression of glycoenzymes, making it a

valuable strategy for studying glycoenzyme-mediated functions.

Studies on the human lung N-glycome have shown that

biantennary complex-type N-glycans dominate (215), but

dysregulation of the glycosylation-regulating mechanisms in

CRDs can lead to changes in glycan structures, such as increased

fucosylation (including terminal, core, and outer arm fucosylation),

sialylation, and branching. The core fucosylation depends on FUT8

activity, while outer arm fucosylation relies on FUT3, FUT5, FUT6,

and FUT11. ST6GalI glycosyltransferase is responsible for a-2-6
sialylation, and b-1-4 and b-1-6 branching of N-glycans are

regulated by GnT-IVa and GnT-V enzymes, respectively (206,

207). However, because glycans can vary greatly in their length,

branching, and connectivity, software for interpreting MS data from

polysaccharides often requires manual intervention. The lack of

generic annotation software has hindered the extensive

investigation of the glycome in large scale sample sets from

diverse disease, including the field of CRDs.
4.2 The MS-based glycoproteomics
analysis in CRDs

Glycoproteomics is a valuable strategy for identifying potential

biomarkers and understanding physiological and pathological

changes. Unlike glycomics, a typical experimental procedure of

glycoproteomics involves protein digestion, glycopeptide

enrichment, MS analysis and MS data interpretation by software

tools (142, 216, 217). Glycopeptide enrichment is critical for efficient

glycopeptide identification, and different enrichment methods have

been developed, such as lectin enrichment, hydrophilic interaction

chromatography, boronic chemistry, hydrazide chemistry, reductive

amination chemistry, oxime click chemistry, and ultracentrifugation

(218). Although MS-based site-specific glycosylation analysis

methods have developed rapidly in recent years, only a few

glycoproteomics studies on the intact glycopeptide level have been

conducted in the context of CRDs, mainly on lung cancer and

pulmonary fibroblasts. For instance, Waniwan et al. (216)

developed a lectin-magnetic nanoprobe for glycopeptide

enrichment and site-specific glycosylation analysis and identified

over 2,000 glycopeptides in NSCLC cell lines. Yang et al. (142)

conducted an N-glycoproteomic study using selective

alkylamidation and multiple tandem mass tag (TMT)-tagged sialic

acid linkages to specifically quantify glycoproteins in lung cancer

tissues. Yang et al. (219) found that the expressions of 11

glycoproteins were upregulated in both LUAD and LUSC, while

two glycoproteins (ELANE and IGFBP3) and six glycoproteins

(ACAN, LAMC2, THBS1, LTBP1, PSAP, and COL1A2) were

increased in either LUSC or LUAD. The most comprehensive

study on lung fibroblasts was published by Takakura et al. in 2015

(218). They used glycoproteomics method to analyze the membrane

fraction of human fetal lung fibroblasts and identified more than 272

glycoforms on 63 sites of 44 glycoproteins. Figure 2 (red part)

summarizes the glycoproteoimcs strategies applied in the CRDs cases.

Although glycoproteomics is a valuable strategy for studying the

physiology and pathology of diseases and discovering biomarkers, it
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has been rarely used in the field of CRDs, and there has been no large-

scale clinical sample data output yet. Actually, in the field of

glycoproteomics, several relatively mature software portfolios have

been established for identification and quantification, such as

pGlyco3 (220, 221) and pGlycoQuant (220, 221). These tools are

state-of-the-art for site-specific glycome analysis, providing fast and

precise identification and quantification of intact glycopeptides.

Moreover, high-throughput glycopeptide enrichment technologies

for large-scale samples are also available, such as the one developed

by Jiang et al. (222), which allows for high-specificity and high-

throughput glycopeptide parallel enrichment in a 96-well plate. With

the emergence of more effective methods and accurate identification

and quantitative tools in the field of glycoproteomics, it is expected

that research on glycosylation in CRDs will reach new levels.
5 Clinical potential in
therapeutic applications

Protein glycosylation remodeling is a common feature of several

pathological conditions, resulting from the dysregulated expression

of glycoenzymes. Evaluating the expressions of glycoenzymes and

protein glycosylation patterns could be a promising approach to

creating diagnostic and prognostic biomarkers. Furthermore,

targeting the dysregulated glycoenzymes and their associated

changes could serve as a potential therapeutic strategy.
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5.1 Potential diagnostic biomarkers

Protein glycosylation patterns vary across different CRDs due to

the diverse profile of glycoenzymes (223, 224). Saliva and serum

proteins with abnormal glycosylation have been identified as

potential biomarkers for the diagnosis and prognosis of various

CRDs (109, 225). Sputum proteins in progressive CRDs, such as

COPD and CF, have also been observed to have aberrant

glycosylation (63). Table 2 provides an overview of potential

glycoprotein and glycoenzyme biomarkers.

For COPD, serum fucosylation levels of SP-D may serve as a

diagnostic biomarker (36), while serum levels of ST6GAL1 may

predict acute exacerbation of the disease (57). Glycosylated BPIFB1

in sputum may also act as a prognostic biomarker for COPD in

smokers (226). In maternal asthma during pregnancy, the IgG

glycosylation patterns may predict offspring asthma susceptibility

(21). In IPF, circulating FUT3 levels are negatively associated with

the risk of the disease and may serve as a biomarker. NEU3 may be

involved in the IPF pathogenesis and a drug target, and serum

NEU3 and sialylated SAP may act as biomarkers for IPF diagnosis

and prognosis (69). FUT2 genotype in patients with non-CF

bronchiectasis may also predict the disease outcomes (72). In

lung cancer, various FUTs and STs expressed in tumor tissues

have been identified as potential diagnostic and prognostic

biomarkers (Tables 1, 2) (111, 112). Additionally, NEU3 is a

promising biomarker for evaluating EGFR-targeted therapies in
FIGURE 2

Summary of MS-based glycomics and glycoproteomics strategies used for glycosylation analysis in CRDs. The subscript number indicates the
corresponding reference. PNGase F, peptide-N-glycosidase F; SPE, solid phase extraction; MS, mass spectrometry; GC-MS, gas chromatography-
mass spectrometry; MALDI-TOF-MS, matrix-assisted laser desorption/ionization-time of flight mass spectrometry; MALDI FT-ICR MS, matrix-assisted
laser desorption/ionization fourier transform-ion cyclotron resonance mass spectrometry; LC-ESI-MS, liquid chromatography-electronic spray
ionization-mass spectrometry.
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patients with NSCLC (85), and the expression level of GTs in lung

cancer tumors may act as a biomarker for the diagnosis, prognosis,

and treatment assessment (Table 2).

Glycoproteomics and glycomics are highly valuable strategies

for the comprehensive analysis of glycoproteins and glycans in body

fluids. By comparing the glycosylation profile of healthy and

diseased individuals, researchers can identify specific changes in

glycosylation patterns that are associated with particular diseases.

This can be used to develop biomarkers for disease diagnosis, drug

selection, and prognosis prediction, and to subtype patients and

evaluate disease severity based on glycosylation patterns as

illustrated in Figure 3. These techniques are also useful for

monitoring the effects of therapy.
5.2 Therapeutic strategies

Aberrant protein glycosylation may serve as both a cause and a

consequence of CRDs. These changes in glycosylation can influence

the functions of the glycoproteins. Potential therapeutic strategies

for CRDs include targeting glycoenzymes to correct the protein

glycosylation status, blocking abnormal selectin-mediated cell-cell

interactions, and clearing dysfunctional glycans as depicted

in Figure 3.
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One promising approach for treat diseases involves using

specific glycoenzyme inhibitors. Aberrant expression of GTs and

the related changes in glycosylation are reviewed in the second

section of this review. Increased expression of FUTs and STs is

characteristic of most patients with NSCLC, and patient-specific

overexpressed FUTs and STs are promising targets for developing

new therapies. Munkley J. reviewed the inhibitors of STs, including

ST3GAL1, ST3GAL3, ST6GAL1, ST6GalNAc2, and ST8SIA3 (140).

Increased expressions of ST3GAL4 (82), ST6GAL1 (80), and

ST6GalNAc1 (81) were identified in most patients with NSCLC,

and inhibiting these enzymes may suppress NSCLC cell metastasis.

Further research is required to map the expression of all STs in

various lung cancers, and the use of different ST inhibitors in

combination therapy may be a new promising cancer therapy.

Overexpression of most FUTs, including FUT2-8, has been

observed in lung cancers, especially NSCLC (78, 112, 114, 117, 228).

In vitro studies have demonstrated that inhibiting or genetically

depleting FUT2 (228) and FUT4 (114) can be effective therapies for

these cancers. FUT8, a key regulator of the p53 signaling cascade, is

a promising therapeutic target for cancer and inflammatory

diseases, including Alzheimer’s disease (AD) (229). FUT8 and

core fucosylation inhibition are prospective therapeutic strategies

for cancer and inflammation. In addition to inhibitors,

glycomimetics may also offer alternative therapeutic strategies.
TABLE 2 Potential clinical applications of glycoenzymes and glycoprotein as biomarkers in CRDs.

Disease Biomarkers Clinical applications Reference

COPD Serum SP-D fucosylation levels Diagnosis (36)

COPD Serum ST6GAL1 Prognosis (57)

COPD Sputum glycosylated BPIFB1 Prognosis (226)

Asthma Serum IgG glycosylation patterns Offspring asthma prognosis (21)

IPF Serum FUT3 Diagnosis (21)

IPF Serum NEU3 and sialylated SAP Diagnosis and prognosis (69)

non-CF bronchiectasis FUT2 genotype Diagnosis and prognosis (72)

NSCLC

Tumor FUT1 Prognosis (73)

Tumor FUT2 Prognosis (74, 75)

Tumor FUT3 Diagnosis and prognosis (111)

Tumor FUT4 Prognosis (113, 117, 227)

Tumor FUT7 Prognosis (117)

Tumor and Serum FUT8 Diagnosis and prognosis (78, 110)

Tumor and Serum POFUT1 Diagnosis (110)

Tumor ST3GAL1, ST6GALNAc3, ST8SIA6 and ST6GAL1 Prognosis (80)

Tumor ST6GALNAc1 Prognosis (81)

Tumor ST3GAL6 Prognosis (79)

Tumor NEU3 Prognosis of EGFR targeted therapies (85)

SCLC Tumor OGT Prognosis (89)
COPD, chronic obstructive pulmonary disease; SP-D, surfactant protein-D; ST6GAL, beta-galactoside alpha-2,6-sialyltransferase; BPIFB1, bactericidal/permeability-increasing fold-containing
protein B1; IgG, immunoglobulin G; IPF, idiopathic pulmonary fibrosis; FUT, fucosyltransferase; NEU, neuraminidase; SAP, serum amyloid P; CF, cystic fibrosis; NSCLC, nonsmall cell lung
cancer; POFUT1, protein O-fucosyltransferase 1; ST3GAL, beta-galactoside alpha-2,3-sialyltransferase; ST6GALNAc, N-acetylgalactosaminide alpha-2, 6-sialyltransferase; ST6GAL, beta-
galactoside alpha-2,6-sialyltransferase; SCLC, small cell lung cancer; EGFR, epidermal growth factor receptor; OGT, O-GlcNAc transferase.
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Keratan sulfate disaccharide L4 and derivatives show promise as

potential drugs for treating emphysema and COPD (230).

Selectins, which are transmembrane glycoproteins found on

endothelial cells (E-selectin), leukocytes (L-selectin) and platelets

(P-selectin), play a critical role in mediating leucocyte-endothelial

adhesion during inflammatory and immune reactions associated with

tumorigenesis and metastasis (231). Blocking selectin-ligand

interaction interactions is being investigated as an anti-metastasis

therapy. P-selectin (232) and E-selectin (111) may be involved in

NSCLC cell metastasis, and disrupting the selectin-ligand interactions

could potentially serve as a complementary therapy to traditional

anticancer therapy (140). Furthermore, selectin antagonists are

explored as potential drug candidates for other respiratory

inflammatory conditions, such as CF, asthma and COPD (23, 233,

234). Targeting selectins has the potential to be a promising

immunomodulation intervention and combination therapy.

GHs can selectively hydrolyze glycosidic bonds and eliminate

dysfunctional glycans. Glycosylated prodrugs, which have been

widely used to reduce the side-effects of anticancer drugs, can be

activated through targeted deglycosylation mediated by certain GHs.

One such enzyme, b-glucuronidase, has been utilized to cleave the

glycans of prodrugs to activate them (53, 235). Various GHs,

including glucosidase II (90, 236), FUCA2 (86), NEU1 (83), and

NEU3 (85), are overexpressed in lung cancer and have the potential

to be utilized in the development of lung cancer-specific prodrugs.
6 Conclusion and future perspective

CRDs encompass a range of inflammatory conditions affecting

the respiratory tract. During inflammation reactions, various

molecules involved in inflammation, such as p53 and selectins,

undergo dysglycosylation. Targeting these glycoproteins represents

a promising approach to anti-inflammatory and immunomodulation

therapies. Moreover, the regulation of glycoenzymes and protein
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glycosylation by proinflammatory cytokines suggests a complex

signaling pathway underlying the development and progression

of CRDs.

Aberrant protein glycosylation plays a significant role in the

pathogenesis of CRDs. Changes in the expressions of glycoenzymes

in airway epithelial cells and mucus are responsible for variations in

glycosylation patterns. Therefore, proteins with altered

glycosylation patterns and various glycoenzymes present in the

epithelial cells are potential targets for new monotherapies and

combination therapies for CRDs. Abnormal protein glycosylation

and glycoenzymes in body fluids, especially in sputum and serum,

may serve as potential biomarkers for the diagnosis, prognosis, and

treatment assessment of CRDs.

Glycoproteomics and glycomics are essential strategies for

unveiling the protein glyco-codes, including glycosites, glycan

structures, and glycosylation levels. This review focuses the

glycoenzyme-protein glycosylation-CRD axis, highlighting two

main aberrant terminal glycosylation modifications, fucosylation

and sialylation, and their respective enzymes, FUTs and STs, in

CRDs. The clinical potential of these glycoenzymes and glycosylated

proteins has already been demonstrated in the diagnosis and

treatment of CRDs.

The involvement of glycoenzyme-mediated glycosylation

changes in CRD development and exacerbation suggests that

targeting glycoenzymes and glycoproteins using chemical and

biomacromolecular drugs may be a promising approach for CRD

therapy. It is common to observe glycosylation changes such as

increased fucosylation and sialylation. One potential avenue for

treating different CRDs is inhibiting specific FUTs and STs.

Furthermore, the study of GHs under different conditions can

provide new insights into designing prodrugs that can minimize

their side-effects. Despite some efforts to investigate glycoproteomic

and glycomic changes in CRD research, there is still a considerable

amount of work that needs to be done in the field of CRD

development and diagnosis. A comprehensive understanding of
FIGURE 3

The clinical potential of protein glycosylation for the development of biomarkers and therapeutic strategies in CRDs. GH, glycoside hydrolase.
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the pathophysiological protein glycosylation in humans is urgently

required. Therefore, a systematic mapping of such glycosylation

patterns is essential to further advance our knowledge in this area.
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