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Critical role of TLR activation in
viral replication, persistence, and
pathogenicity of Theiler’s virus

Byung S. Kim*

Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine,
Chicago, IL, United States
Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral

infections in the central nervous system and induces chronic inflammatory

demyelinating disease in susceptible mice. TMEV infects dendritic cells,

macrophages, B cells, and glial cells. The state of TLR activation in the host

plays a critical role in initial viral replication and persistence. The further activation

of TLRs enhances viral replication and persistence, leading to the pathogenicity

of TMEV-induced demyelinating disease. Various cytokines are produced via

TLRs, and MDA-5 signals linked with NF-kB activation following TMEV infection.

In turn, these signals further amplify TMEV replication and the persistence of

virus-infected cells. The signals further elevate cytokine production, promoting

the development of Th17 responses and preventing cellular apoptosis, which

enables viral persistence. Excessive levels of cytokines, particularly IL-6 and IL-1b,
facilitate the generation of pathogenic Th17 immune responses to viral antigens

and autoantigens, leading to TMEV-induced demyelinating disease. These

cytokines, together with TLR2 may prematurely generate functionally deficient

CD25-FoxP3+ CD4+ T cells, which are subsequently converted to Th17 cells.

Furthermore, IL-6 and IL-17 synergistically inhibit the apoptosis of virus-infected

cells and the cytolytic function of CD8+ T lymphocytes, prolonging the survival

of virus-infected cells. The inhibition of apoptosis leads to the persistent

activation of NF-kB and TLRs, which continuously provides an environment of

excessive cytokines and consequently promotes autoimmune responses.

Persistent or repeated infections of other viruses such as COVID-19 may result

in similar continuous TLR activation and cytokine production, leading to

autoimmune diseases.
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1 Theiler’s virus

Theiler’s murine encephalomyelitis virus (TMEV) belongs to the

family of picornavirus, possessing a single positive RNA genome (1, 2).

The picornavirus family includes a wide range of human pathogens,

including rhinoviruses, cardioviruses, enteroviruses, and aphthoviruses,

and TMEV belongings to the cardioviral group (3, 4). Two major

subgroups of TMEV have been identified. One subgroup including

GDVII and FA viruses, causes rapid and fatal encephalitis. Another

subgroup including the BeAn8386 and DA strains, is known as

Theiler’s original (TO) viruses. The inoculation of TO viruses

intracerebrally into susceptible mice results in a biphasic neurological

disease (2, 5–9). The early, acute phase displays flaccid limb paralysis

and the degeneration of neurons (poliomyelitis). The late phase

exhibits chronic, inflammatory demyelination (2). In contrast to the

DA strain, the BeAn strain of the TO virus group is known to induce a

clinically undetectable early-phase disease, although it results in a

severe late-phase demyelinating disease (8, 9).

Viruses such as TMEV have been associated with CNS diseases

including multiple sclerosis (10–14). Multiple sclerosis (MS) is a long-

lasting autoimmune-mediated disease, resulting in demyelination in the

white matter of the central nervous system (15). To understand the

underlying pathogenic mechanisms of MS, several virus-induced

models have been investigated (5, 7, 16, 17). Among virus-induced

models, TMEV-induced demyelinating disease in mice has been

extensively investigated because of the similarities in its

histopathologic characteristics (2, 5, 18, 19). In addition, Saffold virus

is an emerging human Theiler’s virus group, infecting more than 90%

of human populations, which implicates potential importance in public

health (20–22). MS may therefore involve chronic viral infections

associated with the development of pathogenic immune responses

reactive to viral and/or self-antigens. To explain virus-induced

demyelinating disease in mice, several hypotheses have been

proposed. First, “bystander” damage to CNS tissues occurs because of

the host immune response against viral determinants (23, 24). Second,

autoimmune responses tomyelin proteins from damages to the CNS by

anti-viral immune responses cause the disease development (19, 25, 26).

Third, CNS damage incurred by persistent antiviral and autoimmune

responses are induced by chronic over-stimulation via TLRs and other

pathogen pattern recognition receptors (19, 27). Defining the

underlying pathogenic mechanisms associated with TLR engagement

with well-defined disease system like TMEV-induced demyelination

has paramount importance in understanding the role of TLRs on viral

persistence, cytokine production, and development of pathogenic

immune responses, including autoimmune responses.

Infection with TMEV causes demyelinating disease only in certain

mouse strains. C57BL/6 (B6) mice represent a resistant strain and SJL/J

(SJL) mice represent a susceptible strain (28, 29). The viral loads in the

spinal cords of resistant C57BL/6 mice are significantly lower than

those of susceptible SJL mice throughout the viral infection period (30).

Various cell types are permissive to TMEV infection, and these include

oligodendrocytes, microglia, and astrocytes in the CNS and the

dendritic cells, macrophages, and B cells in the CNS and periphery

(31–35). The major cell populations that support viral persistence

during chronic TMEV infection are microglia and/or macrophages in

the CNS (36–39). Viral replication in microglia from susceptible SJL
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mice is significantly higher than that inmicroglia from resistant C57BL/

6 mice and the viral load is similarly greater in microglia from SJL mice

infected with TMEV compared with microglia from C57BL/6 mice

(39). Because TMEV persistence in the CNS is a critically important

prerequisite in the pathogenesis of demyelination (30, 40, 41), viral

persistence may lead to continuous inflammatory cytokine production

and the consequent pathogenic immune responses in the development

of TMEV-induced demyelinating disease (Figure 1).
2 TLR expression and activation status
may determine the susceptibility to
viral infection

Toll-like receptors (TLRs) include a family of members, which

recognize microbial products. This family of receptors is known to

closely associate with the induction of initial innate immune

responses following bacterial and viral infections (42, 43).

mRNAs for TLR1–9 are expressed in microglia and stimulation of

TLRs on the cells upregulates the expression of MHC class II and

costimulatory molecules, which enable the microglia to present

antigens to CD4+ T cells (38). Activated and/or differentiated cells

are far more supportive of TMEV infection/replication (44–46).

Consequently, the cytokine production levels in APCs, including

microglia, in susceptible SJL mice are higher than those in resistant

B6 mice (30, 39). For example, higher levels of TNFa, IL-6 and IL-

1b are produced in microglia and macrophages from susceptible SJL

mice after TMEV infection, compared with cells from resistant B6,

B6.S, or B10.S mice (47–49). Similarly, viral loads in glia and
FIGURE 1

(1) 1-3 d post-infection: initial viral infection; (2) 4-8 d post-
infection: early viral infection; (3) 9-30 d post-infection; (4) 31-80 d
post-infection: chronic viral persistence. Resistant mice such as B6
and B6.S mice show rapid clearance of virus within 2-3 weeks,
whereas susceptible SJL mice fail to clear viral persistence.
Consequently, persistent TLR activation throughout infection leads
to elevated levels of cytokines such as type I IFNs, IL-6, and IL-
1beta, which favors stimulation of pathogenic Th17 response over
protective Th1 response. Such pathogenic immune responses lead
to the development of demyelinating disease in TMEV-infected SJL
mice.
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antigen-presenting cells (APCs) from susceptible SJL mice with

TMEV-induced demyelinating disease are significantly greater than

that in cells from resistant B6.S, B6, and F1(B6XSJL) mice (34, 39).

However, the levels of costimulatory molecule expression on APCs

from susceptible mice and their ability to stimulate T cells during

chronic TMEV infection are significantly poorer, which steers the

pathogenic T cell responses (34, 39). Elevated TLR2, 3, 4, and 7

signaling in APCs enhances viral infection and replication (39, 50).

Thus, persistent viral infection accompanied by continuous

excessive cytokine production leads to viral persistence and the

development of pathogenic immune responses. The association of

TLR signals with pathogenesis is further supported by the fact that

the administration of bacterial lipopolysaccharide (LPS), a ligand

for TLR4, or poly I:C, a ligand for TLR3, increases viral loads and

elevates the level of inflammatory response (50, 51). Thus, the

differences in the type and intensity of TLR signals on antigen-

presenting cells may affect the levels of viral infection, replication,

and production of IL-1b and IL-6, which are critical factors in the

development of demyelinating disease (Figure 2A).
3 NF-kB activation via TLRs is
necessary for TMEV replication and
cytokine production

TMEV has a single RNA genome which is recognized by TLR7,

and a dsRNA intermediate which is recognized by TLR3 (42, 43).

Consequently, TMEV infection leads to activation of NF-kB, AP-1,
and IRFs via the TLR signals, resulting in the production of various
Frontiers in Immunology 03
cytokines, including IL-1b and IL-6 (39, 52–54). The melanoma

differentiation-associated gene 5 also recognizes viral messages and

participates in the activation of NF-kB (55). The infection of

primary glial cells results in the activation of a wide range of

chemokine genes, including CXCL1, CXCL2, CXCL10, CCL2,

CCL3, CCL4, CCL5, CCL7 and CCL12 (56–58). The production

of chemokines and cytokines following various viral infections is

dependent on the activation of NF-kB via pattern recognition

receptors (32, 52, 59–62). These chemokines further activate

CXCR3, CCR7 and CCR5 genes, which further promote the

cellular recruitment and infiltration to the CNS (63, 64). In

addition, IL-1b, IL-6, IFNa/b, and TNFa produced following

TMEV infection further stimulate cells and upregulate the

production of CCL2, CCL5, CXCL10 (65–67). These cytokines

further promote the development of pathogenic Th17 cells and

consequent demyelination (27, 34, 39, 68). Increases in the

production of fibrin deposition, adhesion molecules (ICAM and

VCAM), and endothelin-1 associated with blood–brain-barrier

permeability, contributing to the pathogenesis of demyelinating

disease have also been observed after TMEV infection (35, 69–72).

The treatment of resistant C57BL/6 mice with LPS, a ligand of

TLR4, or IL-1b increases the viral load in the CNS and leads to the

pathogenesis of demyelinating disease (51, 73). Similarly,

administration of poly I:C, a ligand of TLR3 leads to the rapid

progression of demyelinating disease in mice infected with TMEV

(50). The activation of NF-kB via TLRs is associated with TMEV

replication and the production of various inflammatory cytokines

and chemokine (52, 66, 67). Furthermore, TNF-a, IL-6, and IL-1b
produced after TMEV infection further activate NF-kB, promoting
A B

FIGURE 2

(A) TMEV infection releases a single-stranded RNA genome and double-stranded RNA replication intermediate in the endosome. The single-
stranded RNA is recognized by TLR7 and the dsRNA intermediate is recognized by TLR3. The TLR signaling activates NF-kB, AP-1, and IRFs, which
results in the production of various cytokines such as IL-6, IL-1beta, and type I IFNs. In addition, MDA5 also recognizes dsRNA replication
intermediate, leading to NF-kB activation. These activations lead to the additional expression of TLR2/4 and other TLRs which further participates in
activating NF-kB. The amplified NF-kB signaling further promotes TMEV replication because TMEV replication is dependent on the presence of
activated NF-kB. (B) TLR signaling activates NF-kB, which results in the production of anti-apoptotic MCL-1, Bcl-2, Bcl-xL, and IL-6, inhibiting
apoptosis induced by cytotoxic T cells and IFNs. IL-6 and IL-1beta further promote the generation of pathogenic Th17 cells. IL-17 produced by Th17
cells together with IL-6 synergistically inhibit the apoptosis of virus-infected cells by activating NF-kB and STAT3, leading to production of additional
anti-apoptotic molecules in the mitochondria. The prolonged various TLR signals leading to NF-kB activation participate in the prolonged
production of anti-apoptotic molecules and continuous TMEV replication.
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increased TMEV replication. NF-kB activation further leads to

stimulation of additional TLRs, amplifying pathogenic signals in

the deployment of demyelinating disease (45, 52, 66, 74, 75). This is

consistent with the fact that TMEV infection and replication are

greater in the cells of susceptible mice and that excessive TLR signal

and cytokine production, including IL-1b, IL-6, and TGFb, further
promotes the pathogenesis of demyelinating disease (47, 52, 66).

TMEV infection also activates NLRP3 via TLR signaling (74).

Activation of NLRP3 inflammasome results in the production of IL-

1b and PEG2, promoting the pathogenesis (75, 76). TMEV-infected

susceptible SJL mice produce much greater levels of IL-1b and other

inflammatory cytokines compared with resistant mice. The

presence of high levels of IL-1b and other inflammatory cytokines

such as IL-6 promotes pathogenic Th17 responses (47, 68, 73). In

addition, IL-17 from Th17 responses further promotes IL-6

production (77, 78), together inhibiting cellular apoptosis (68,

79). The excessive activation of PGE2 signaling also contributes to

pathogenesis (74, 80) by preventing the T cell killing of target cells

(81). TMEV infection also results in the increased expression of PD-

1 and PDL-1 via IL-6 signaling, inhibiting cytotoxic T cell function

(81, 82). Moreover, the IL-1b signal induces IL-6 production and

further promotes Th17 cell expansion (73, 83). Thus, elevated

perpetual TLR signaling and consequent persistent cytokine

overproduction lead to viral persistence by blocking apoptosis

and consequently facilitate pathogenic immune responses in

susceptible mice infected with TMEV.
4 Excessive cytokine production via
TLR activation leads to pathogenic
immune responses

TMEV-specific Th1 cells producing IFN-g can lyse virus-

infected cells in a Fas-dependent manner (84). The presence of

capsid specific Th1 responses delays the development of

demyelinating disease (85–87). In addition, mice deficient in IFN-

g or its receptor genes cannot efficiently clear TMEV infection,

resulting in rapid development of demyelinating disease (88, 89).

Similarly, deficiency in the IFN-g receptor significantly accelerates

the onset of disease in mice (90, 91). Thus, the level of Th1

responses may play a protective role in the development of

TMEV-induced demyelinating disease.

Th17 cells, a subpopulation of Th cells which produce IL-17, are

associated with the development of various autoimmune diseases

(92–95). Th17 cells are developed in the presence of IL-6, and Th17

cell levels are significantly greater in susceptible mice infected with

TMEV. The role of Th17 responses in the pathogenesis of TMEV-

induced demyelinating disease has been verified by administrating

anti-IL-17 antibodies (68) or using Th17-biased RORgt Tg mice

(96). DCs infected with live TMEV producing various innate

immune responses, but not epitope peptide-loaded DCs, are able

to induce the development of Th17 responses (68). These results

indicate that the virus-infected environment, including the presence

of various cytokines, is required to induce pathogenic Th17 cells in

the development of TMEV-induced demyelinating diseases.
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High levels of FoxP3+CD4+ T cells, which constitute a subset of Th

cells, appear first in the CNS of virus-infected mice (97, 98). The TLR2-

mediated signal induced following TMEV infection may be involved in

the early generation of CD25-FoxP3+CD4+ T cells (54, 99, 100). CD25lo

FoxP3+CD4+ T cells are found in levels asmuch as two-fold higher in the

CNS of virus-infected SJL mice compared with B6 mice (101).

CD25loFoxP3+CD4+ T cells do not display a regulatory function (102),

and the presence of a high level of CD25loFoxP3+CD4+ T cells may

promote the development of TMEV-induced demyelinating disease (97).

CD25loFoxP3+CD4+ T cells appear to undergo trans-differentiation into

Th17 cells following the loss of FoxP3 expression (103, 104). Thus, these

CD25loFoxP3+CD4+ T cells appearing early in the CNS of TMEV-

infected mice may be converted into pathogenic Th17 cells in the

presence of excessive cytokines (68, 101). Similarly elevated levels of

CD25-FoxP3+CD4+ T cells have been detected in patients with chronic

hepatitis B virus infection (105) and systemic lupus (106).

Cytotoxic CD8+ T cells producing IFN-g and perforin play an

important role in protection of mice from developing TMEV-

induced demyelinating disease (107–109). Cytotoxic CD8+ T cells

recognizing viral determinants appear to participate in causing

damages of virus-infected, myelin-producing oligodendrocytes

and other cell types in the CNS (110–114). The presence of CD8+

T cells is necessary to manifest clinical symptoms, but the protective

role of these cells in the development of TMEV-induced

demyelinating disease has also been demonstrated (111–114).

Thus, certain CD8+ T cell populations, depending on their

specificity and or cytokine profile are likely to play different roles

in the pathogenesis of TMEV-induced demyelination.

TMEV productively infects approximately 50% of primary CD20+

B cells and 25% of CD19+CD20+ cells in susceptible SJL mice (27).

TMEV-infected B cells express elevated levels of CD69 as well as MHC

class II and costimulatory molecules and exhibit elevated levels of

antibody production and enhanced antigen-presenting function to T

cells. B cell activation after TMEV infection resembles B cells treated

with TLR ligands for TLR2, TLR3, TLR4, TLR7, and TLR9 (27). These

results strongly suggest that B cell activation following TMEV infection

is associated with TLR signals, consistent with previous findings that

various TLR-mediated signals activate B cells (115, 116). TMEV

infection also triggers B cells of susceptible mice to produce the

excessive production of IFN-a/b, IL-6, IL-1b, and PGE2 (27, 117).

These innate immune responses further elevate the activation of B cells

to produce antibodies to viral and self-antigens and vigorously promote

pathogenic Th17 cell responses (27, 117–119).

B cells producing antibodies to TMEV capsid antigens are detected

in the demyelinating lesions and spinal fluids of TMEV-infected mice

(120–122). Plasma cells producing anti-TMEV antibodies are also

detected in the meninges of CNS parenchyma (123). Antibodies to

TMEV determinants play a protective role during the early stage of

viral infection (124–126). In the absence of CD8+ T cells, antibody

response is critically important in protecting mice from Theiler’s virus-

induced encephalitis (125). In addition, the pathogenesis of TMEV-

induced demyelinating disease is accelerated in mice treated with the

monoclonal anti-CD20 antibody (127). However, the contribution of

anti-TMEV antibodies to the protection of mice from demyelinating

disease is relatively minor compared with the protection by CD4+ Th1

and CD8+ T cells (125, 128).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1167972
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim 10.3389/fimmu.2023.1167972
5 Role of NF-kB activated by TLRs in
viral persistence

APCs from susceptible SJL mice are highly susceptible to TMEV

infection and the viral infection leads to the activation of NF-kB via

TLRs (27, 34, 52). The activation of NF-kB leads to the production

of high levels of TNF-a, IL-1b, and IL-6, which are associated with

activation of B cells and directional T cell responses (129–131).

Type I IFNs produced in consequences of TLR activation contribute

to the activation of NF-kB and cellular apoptosis (34, 52, 132, 133).

In contrast, high levels of type I or II IFNs provide only transient

protection against TMEV infection and thus high levels of these

cytokines in susceptible SJL mice may not participate in controlling

viral loads in TMEV-infected mice (34, 132, 134). The resistance of

TMEV infection against type I IFNs is consistent with previous

observations in other viruses (134–136).

Activation of NF-kB is necessary for TMEV replication (45)

and consequently the state of host cell activation determines the

level of viral replication (137). Following TMEV infection, TLR2, 3,

4, and 7 are associated with the production of various cytokines in

different glial cells and professional antigen-presenting cells (27, 39,

52, 54, 138). TLR7 recognizes the single-stranded TMEV RNA

genome and TLR3 interacts with the double-stranded RNA

replication intermediate in the endosome (48, 52, 139). TMEV

infection results in the engagement of various TLRs and other

related signals to activate NF-kB, AP-1, and IRFs (54, 55, 140, 141).

In turn, these signals result in the production of various cytokines,

including TNFa, IL-1b and IL-6. NF-kB activation leads to the

elevated expression and activation of TLRs including TLR2/4,

which further activate NF-kB at a higher level (54). Such

amplified NF-kB signaling further promotes the expression of

anti-apoptotic Bcl-2 and Bcl-xL molecules, supporting vigorous

TMEV replication (34, 142, 143). Such prevention of apoptosis

following TMEV infection may result in further persistent viral

replication and excessive cytokine production (Figure 2B).
6 Production of anti-apoptotic
cytokines by virus-infected cells

IL-6 is a major cytokine produced following TMEV and other

viral infections and displays an anti-apoptotic function (50, 144,

145). IL-6 inhibits the cytolytic function of CD8+ T cells and drives

Th17 responses. IL-17 produced by Th17 cells also inhibits cytolytic

function of virus-reactive CD8+ T cells, further promoting TMEV

persistence (68). Furthermore, IL-6 and IL-17 together

synergistically inhibit cytotoxic function of virus-specific CD8+ T

cells (79). IL-17 is also known to enhance tumor growth in animals,

supporting the inhibitory function of IL-17 on cytotoxic CD8+ T

cells (146, 147). Cytotoxic CD8+ T cells and some CD4+ T cells

induce the cytolysis of virus-infected cells through the granule

exocytosis and or the activation of Fas–FasL pathway (86, 148–

151). IL-17 upregulates the expression of Bcl-2 and Bcl-xl molecules

via the NF-kB pathway and subsequently these prosurvival

molecules protect the target cells from the apoptosis induced by
Frontiers in Immunology 05
cytotoxic CD4+ and CD8+ T cells (68). Nevertheless, the synergistic

inhibition of apoptosis of virus-infected cells by IL-17 and IL-6 may

serve as a powerful means for viral persistence. The inhibition of

apoptosis extends the life of virus-infected cells, resulting in

prolonged viral replication and persistence (Figure 2B). Thus, the

interaction between virus and host cells via IL-17 and IL-6 and/or

other cytokines results in persistent viral infection and prolonged

harmful immune responses including various autoimmune

responses, which ultimately lead to the development of TMEV-

induced demyelinating disease (152). Similarly, persistent and or

repeated infections of COVID-19 appear to stimulate TLRs, leading

to cytokine storms and autoimmune responses in pathogenesis

(153–156).
7 Viral persistence, continuous TLR
signals, and cytokine storms lead to
autoimmunity

Chronic infection with TMEV results in antibody responses to

self-antigens including myelin basic protein (MBP) in the CNS of

infected mice (25, 27, 157). Similarly, CD4+ T cell responses to

viral antigens and myelin-associated autoantigens, including MBP

and proteolipid protein, have been detected during persistent

infection with TMEV (19). In addition, a CD8+ cytotoxic T cell

population, recognizing both viral and self-antigens, has been

identified in TMEV-infected SJL mice (158). Thus, various

immune responses, including antibody, CD4+ T cell, and CD8+

T cell responses to viral and CNS autoantigens, are induced in

mice with chronic TMEV infection. Sequestered autoantigens to

the CNS may be released following TMEV-induced tissue damage,

and these autoantigens subsequently induce autoimmune

responses under constant elevated TLR stimulation and cytokine

production (19, 27). The initial insults to the CNS by T cells

reactive to viral antigens appear to be necessary to the

pathogenesis of demyelinating disease (84, 113, 159). Such

immune-mediated initial tissue damage in addition to virus-

induced cellular apoptosis may be necessary to result in the

development of TMEV-induced demyelinating disease.

Following intraperitoneal infection of systemic lupus erythematosus-

prone NZBWF1 and BXSB male mice with TMEV or Coxsackie virus,

the production of autoantibodies to several nuclear autoantigens has

been rapidly accelerated (27). Since these mice have either duplicated or

altered TLR genes (115, 160–162), the elevated expression of TLRs and

their continuous stimulation is likely responsible for autoimmunity.

These results strongly suggest that chronic TMEV infection

continuously stimulates preexisting autoimmune cells via virus-induced

TLR-mediated polyclonal activation. This notion is supported by the fact

that the treatment of cells with the ligands of different TLRs activates B

cells and T cells similarly to TMEV infection (27). Because virus-reactive

T cell responses are required for the development of TMEV-induced

demyelinating disease, immune-mediated tissue damage to the CNSmay

be necessary (68, 107, 111, 159). Therefore, these anti-viral and

autoimmune responses appear to participate in protecting and/or

damaging the related tissues (19, 68, 159, 163–165). However, the
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presence of high levels of proinflammatory cytokines during chronic viral

infection may lead to the development of harmful autoimmune

responses (166–168). Taken together, persistent TMEV infection leads

to continuous stimulation of various TLRs and consequently results in

TLR-mediated polyclonal activation of B and T cells. Although the roles

of autoimmune responses in the pathogenesis of TMEV-induced

demyelinating disease are not certain, they are likely to contribute to

the overall pathogenic outcome by participating in further tissue damage

and/or cytokine production.
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