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Obesity contributes to
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development via
immunosuppressive
microenvironment remodeling

Jian Yang, Jialuo He, Yiting Feng and Ming Xiang*

Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
It is generally recognized that the initiation of obesity-related hepatocellular

carcinoma (HCC) is closely associated with hepatic inflammation. However, the

paradoxical role of inflammation in the initiation and progression of HCC is

highlighted by the fact that the inflammatory HCC is accompanied by significant

immune effector cells infiltration compared to non-inflammatory HCC and HCC

with enhanced immune response exhibits better survival. Importantly, the cancer

progression has been primarily attributed to the immunosuppression, which can

also be induced by obesity. Furthermore, the increased risk of viral infection and

thus viral-HCC in obese individuals supports the view that obesity contributes to

HCC via immunosuppression. Here, we have reviewed the various mechanisms

responsible for obesity-induced tumor immune microenvironment and

immunosuppression in obesity-related HCC. We highlight that the obesity-

induced immunosuppression originates from lipid disorder as well as

metabolic reprogramming and propose potential therapeutic strategy for HCC

based on the current success of immunotherapy.
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1 Introduction

Obesity, usually caused by an imbalance between energy intake and expenditure, was

defined as an epidemic by WHO in 1997 and is widely prevalent both in developed and

developing countries (1). Based on an abnormal metabolic environment, obesity results in

altered immune functions, initially in the form of low-grade chronic systemic

inflammation, and can develop into immune dysfunction (1, 2). Obesity is an

independent risk factor for many types of cancer, and predominantly in liver and

pancreatic cancer (3). Liver cancer is the fifth most commonly occurring cancer in the

world and the third leading cause of mortality, and hepatocellular carcinoma (HCC)
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accounts for 80% of liver cancers (4). In a cohort study including

900,000 US people, male with a BMI ≥35 kg/m2 had 4.5 times the

lethal risk of liver cancer than those with a normal BMI (≤25 kg/m2,

3). In addition, findings of another study, which consisted of 7

million participants indicated that even every 5 kg/m2 increase in

BMI upregulated the risk rate of liver cancer by 24%, underscoring

the potent ia l assoc ia t ion between obes i ty and HCC

development (5).

Generally speaking, obesity contributes to the initiation of HCC

in three ways. 1) Excessive fat deposition in adipose tissue can lead

to upregulat ion of pro-inflammatory adipokines and

downregulation of anti-inflammatory adipokines, thereby

resulting in chronic inflammation. Chronic and mild

inflammation can induce local or systemic insulin resistance (IR),

which in turn induces high levels of insulin and IGF-1, thus

stimulating abnormal hepatocyte proliferation (6, 7). 2) Chronic

inflammation and hepatic lipid infiltration can cause cellular

damage and oxidative stress in hepatocytes through multiple

mechanisms, and chronic oxidative stress promotes DNA damage

and compensatory repair processes, thus facilitating gene mutation

and oncogenesis (8). 3) Obesity is directly related to the occurrence

of non-alcohol fatty liver disease (NAFLD), which will progress into

non-alcohol steatohepatitis (NASH), hepatic fibrosis or even

hepatic cirrhosis if the symptom is not relieved (9). Hence,

chronic liver injury leads to a cycle of cell death-repair-fibrosis, in

which pre-HCC cells undergo malignant transformation and lead to

tumorigenesis (10). These predisposing factors can occur both

individually or simultaneously during obesity.

Inflammatory HCC, usually in the early stage, characterized by

infiltration of CD8+ T cells as well as M1 macrophages, implies

strong antitumor immunity, and HCC with enhanced immune

response exhibits better survival (11). Conversely, non-

inflammatory HCC, characterized by infiltration of Treg cells and

M2 macrophages, is more prone to TP53 mutations and thus

recruitment of immunosuppressive cells (11). Considering that

the liver is rich in immune cell infiltration which usually indicates

an effective antitumor effect, shifting from early inflammation to

lately immunosuppressive environment in obesity-related HCC is

critical for HCC progression (12). Since the function of immune

cells largely depends on their metabolic pattern, which can be easily

disrupted by metabolic dysfunction, revealing the possible impacts

of obesity-induced lipid disorder on immune function is

meaningful (13). Hence, this review focuses on the crucial role of

obesity in HCC initiation, tumor immune microenvironment

(TIME) formation, immunosuppression, and immunotherapy

during HCC progression, and aims to provide potential

immunotherapeutic targets and treatment strategies.
2 Obesity remodels TIME

TIME is essential for both HCC development and

immunosuppression (14). The close proximity of the liver to

visceral adipose tissue facilitates the transportation of the adipose

metabolites to liver via the portal vein and lymphatic vessels, and
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thus the HCC TIME can be easily influenced by adipose tissue (15,

16). As the neovascular system is unable to keep pace with the rapid

adipose expansion and results in reduced adipose tissue blood flow,

adipocytes can rapidly reach the limit of oxygen diffusion, triggering

adipose tissue hypoxia, which is an early determinant of adipose

tissue dysfunction and may lay foundation for local hypoxia in liver

via disturbing hepatic oxygen gradients (17–19). Correspondingly,

high-fat diet increases hypoxia-inducible factor 1a (HIF-1a) and
vascular endothelial growth factor (VEGF) expression, thus leading

to increased lactate production and lactate accumulation in

adipocytes (20). Excessive fat accumulation inhibits lactate

dehydrogenase b (LDHb), thereby blocking the conversion of

lactate to pyruvate and contributing to lactate accumulation in

adipose tissue (21). Adipocyte lactate production is often

accompanied by glucose consumption, which is further promoted

under conditions of obesity-induced increase in HCC glycolysis.

Although obesity usually implies excessive calorie intake,

carbohydrates tend to be taken up by adipocytes and HCC cells

for glycolysis, leading to nutrient limitation in TIME (22–24). As a

result, there is a lack of sufficient nutrients in TIME to support rapid

proliferation of immune cells for antitumor immunity. Glucose

deprivation can also induce T cell exhaustion and immune escape

(25). For instance, low glucose environment facilitates the

conversion of effector T cells to Treg cells through inducing

forkhead box P3 (FOXP3) expression and activation (26). The

function of NK and dendritic cells is markedly impaired by low

glucose, and reduced HIF-1a-mediated secretion of pro-

inflammatory cytokines is responsible for it (27). In addition,

lactate inhibits T cell functions by suppressing T cell proliferation

as well as interferon g (IFN-g) production (28). Moreover, lactate

uptake is not necessary for peripheral Tregs but found to be

required for intratumor Tregs for its role in metabolic support

(29). A recent study has shown that lactate in high glycolytic

environment upregulated programmed cell death protein 1 (PD-

1) levels in Tregs, and anti-PD-1 therapy reactivates Tregs, thus

leading to therapy failure (30). In addition, lactate drives M2

polarization in TIME via the mitochondrial pyruvate

metabolism (31).

Thus, obesity involves in remodeling immunosuppressive

tumor microenvironment by modulating adipose tissue

metabolism. Under these conditions, liver-infiltrating immune

effector cells exhibit a restricted proliferative capacity and tend to

be immunosuppressive due to metabolic adaptations.
3 Obesity interrupts adipokine balance
and facilitates HCC initiation

Adipokines are a group of cytokines secreted by the adipose

tissue, and exhibit pleiotropic effects on the metabolism, signal

transduction and inflammatory pathways. HCC initiation could be

primarily attributed to the adipokine imbalance, which is directly

related to the systemic inflammation, metabolic disorder and

immune dysfunction (Table 1).
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3.1 Anti-inflammatory adipokines

3.1.1 Adiponectin
Adiponectin is primarily produced in the adipose tissue of lean

subjects, and its secretion is usually inversely related to BMI in

obesity (32). Mechanistically, obesity induces IR and thus inhibits

adiponectin secretion through PI3K/FoxO1 pathway (33). In

addition, lipid deposition in adipose tissue induces a hypoxic

microenvironment, which inhibits adiponectin transcription

through HIF-1a pathway (34). Chronic inflammation caused by

obesity leads to increased secretion of tumor necrosis factor-a
(TNF-a), IL-6, IL-18, and other Th1 cytokines that can also

inhibit adiponectin (35). As an anti-inflammatory adipokine,

adiponectin levels are positively related to Th2 cytokines such as

IL-10 (48). Adiponectin suppresses the HCC progression in vivo by

inhibiting cell proliferation and inducing cell apoptosis, and

antagonizes carcinogenic effects of leptin (36). In addition,

adiponectin activates tuberous sclerosis complex 2 (TSC2) protein

through receptor-mediated phosphorylation of 5’- adenosine

monophosphate-activated protein kinase (AMPK), thus

attenuating the phosphorylation of mammalian target of

rapamycin (mTOR), and directly protecting against HCC (37,

49). Adiponectin also eliminates HCC cells by activating caspase-

3 and increasing the phosphorylation of c-Jun N-terminal kinase

(JNK) (50). Moreover, adiponectin regulates ceramide metabolism,

promotes insulin sensitivity, reduces inflammation, supports

hepatocyte survival and inhibits tumor growth (51). Adiponectin
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attenuates leptin-induced signal transducer and activator of

transcription 3 (STAT3) and protein kinase B (Akt) activation by

upregulating suppressor of cytokine signaling 3 (SOCS3), a

physiological negative regulator of leptin signal transduction, thus

inhibiting leptin-induced hepatoma cell proliferation (38).

However, low adiponectin levels restrict inhibitory effect of TNF-

a on tumor cell proliferation by inhibiting the production of TNF-a
in macrophages (49). Above all, adiponectin plays a vital role in

maintaining homeostasis and its downregulation predicts elevated

risk of obesity-related HCC.

3.1.2 Ghrelin
Ghrelin is upregulated in under-nourished states, such as anorexia

nervosa, and is downregulated in conditions linked with positive

energy balance, such as obesity (39). Obesity-induced IR is

associated with decreased ghrelin levels (40). Sufficient serum

ghrelin levels play vital roles in maintaining healthy liver function.

Ghrelin induces immunosuppression via facilitating M2 and Treg

phenotypes (41). Thus, ghrelin decreases the levels of Th1 cytokines

including TNF-a, IFN-g, IL-1b, IL-6 and increases Th2 cytokines

including IL-10, IL-4, transforming growth factor (TGF-b), thereby
inhibiting hepatic inflammation and HCC initiation (41). In mouse

models, ghrelin inhibits HCC progression by reducing TG content

and cytokines such as TNF-a as well as IL-6, and alleviates lipotoxicity

by stimulating autophagy and inhibiting nuclear factor-kB (NF-ĸB)

pathway (40). Notably, circulating ghrelin levels in obese people were

found not to be reduced by a meal (52).
TABLE 1 Mechanisms responsible for obesity-induced adipokines dysfunction and their roles in obesity-related HCC.

Adipokines Functions Tendency in
obesity

Inducers Effects on
HCC

Molecular mechanisms References

Anti-inflammatory

Adiponectin
Increases insulin sensitivity
Relieves inflammation
Eliminates HCC cells

Downregulated

Insulin resistance
Hypoxia
microenvironment
Chronic
inflammation

Inhibits
AMPK/TSC2/mTOR↑, Caspase-3↑,
JNK↑, STAT3↓,
PI3K/Akt↓, SOCS3↑, TNF-a↓.

(20–22, 24–
29)

Ghrelin

Regulates energy steady state
Maintains healthy liver
function
Reduces lipid toxicity

Downregulated
Insulin resistance
Positive energy
balance

Inhibits NF-ĸB↓, TNF-a↓, TG↓. (30–33)

Irisin
Improves glucose homeostasis
Improves insulin resistance
Induces weight loss

Downregulated
Lack of exercise
T2D

Inhibits De novo lipogenesis↓ (31, 34, 35)

Pro-inflammatory

Leptin

Regulates the appetite and
energy balance
Resists weight gain
Promotes hepatic steatosis

Upregulated
Lipotrophy
Chronic
inflammation

Promotes
JAK2/STAT3↑, PI3K/Akt↑, ERK↑,
p53/FOXO3A↑

(24, 28, 36,
37)

Resistin
Antagonizes insulin
Induces hepatic insulin
resistance

Upregulated
Insulin resistance
Central/visceral
obesity

Promotes p38 MAPK/NF-kB↑ (38–41)

Visfatin

Exerts insulin-like
hypoglycemic effect
Promotes adipose expansion
Hepatic inflammation

Upregulated Insulin resistance Promotes
NF-ĸB↑, STAT3↑, PI3K/Akt↑,
ERK↑

(31, 42–47)
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3.1.3 Irisin
Irisin was initially regarded as a hormone secreted by skeletal

muscles in response to the tremor and movement stimuli, and

further studies revealed that irisin was also present in other healthy

tissues (42). It plays a critical role in the metabolism regulation,

improves glucose homeostasis, IR and induces weight loss (40).

Thus, irisin exhibits a positive effect on obesity, hyperlipidemia and

hyperglycemia caused by the metabolism dysfunction. In addition,

irisin acts as an important negative regulator of cancer and inhibits

the proliferation, migration and invasion of cancer cells (43). In

HCC cells, fibronectin type III domain-containing protein 5

(FNDC5), a precursor of irisin, was found to regulate gene

expressions involved in lipogenesis, tumorigenesis as well as

inflammation, and increased irisin levels might restrict HCC

development via inhibiting de novo lipogenesis (42). Importantly,

irisin levels have been shown to decrease in more advanced HCC

(44). Moreover, circulating irisin levels have been observed to

increase in individuals who engage in exercise-inducing activities,

but they gradually decrease in those who are sedentary and lack

exercise, suggesting that exercise could be a promising prevention

for obesity-related HCC (45). However, irisin secretion is

significantly hampered in obesity and Type 2 diabetes mellitus

(T2D), explaining underlying cause for increased risk of obesity-

related HCC (53).
3.2 Pro-inflammatory adipocytokines

3.2.1 Leptin
Leptin is a multifunctional adipokine that regulates appetite and

energy balance (46). Although leptin is supposed to resist the weight

gain, obesity usually leads to increased secretion of leptin (47).

Inflammatory activation increases leptin synthesis and release (54).

In turn, leptin contributes to IR, hepatic steatosis, and fibrosis, thus

playing a vital role in regulating immune responses, glucose

homeostasis, and angiogenesis (55). Studies have reported that

leptin is a key regulator of HCC development and ectopic serum

leptin levels are regarded as a hallmark of metabolic disorders

leading to HCC (36). Leptin promotes the proliferation and inhibits

the apoptosis of hepatoma cells (51). Moreover, it can enhance

mitosis, invasion, and metastatic potential of HCC cells by

activating the JAK2/STAT3, PI3K/Akt, and ERK pathways (36).

Besides, leptin induces autophagy through affecting the p53/

FOXO3A axis, thereby eliminating apoptosis (56). Interestingly,

studies have also shown that leptin-leptin receptor (OBR) is

involved in the angiogenesis of HCC, thus facilitating the

progression of NASH to HCC (57). Moreover, leptin acts on

monocytes/macrophages by inducing the synthesis of eicosanoid,

NO, and several Th1 cytokines (58). In addition, leptin induces

neutrophil chemotaxis and stimulates the release of oxygen free

radicals as part of the immune response and host defense

mechanisms. A recent study reported that inhibition of ATX-

LPA-Lpar2-p38-leptin axis in the mouse HCC model can inhibit

tumor growth (59). Thus, obesity, characterized by hyperleptinemia

and central leptin resistance, directly increases the risk of HCC.
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3.2.2 Resistin
Resistin is a pro-inflammatory adipokine mediating hepatic

insulin resistance, and named for its role in antagonizing insulin

(60). Resistin has been associated with the progression,

angiogenesis, chemical resistance and increased risk of metastasis

in various cancer models (61). Activation of p38 MAPK/NF-kB
signaling pathway is responsible for resistin-mediated declined

HCC cell adhesion and thus metastasis (62). In addition, meta-

analysis results have suggested that high resistin levels are related to

an increased risk of obesity-related cancer (63). Since serum resistin

levels were positively correlated to the central/visceral obesity (but

not BMI) and IR, resistin may be involved in driving obesity-related

HCC, though further investigations are needed (64).

3.2.3 Visfatin
Visfatin is a cytokine mainly secreted by the visceral adipose

tissue and functions both as an extracellular factor and an

intracellular enzyme (65). It exerts insulin-like hypoglycemic

effect through binding to the insulin receptor and promotes

adipose tissue differentiation and proliferation (66). Visfatin is

upregulated by cytokines which promote IR such as TNF-a and

IL-6, and thus elevated in T2D and IR (40, 67). Increased visfatin

levels in turn induce IR and hepatic inflammation via NF-ĸB and

STAT3 pathway (68). Interestingly, visfatin levels were also

associated with the severity of hepatic steatosis and fibrosis, thus

facilitating HCC progression. It has been reported that visfatin

increases miR-21 expression to promote HCC migration (69).

Moreover, visfatin also plays a crucial role in hepatocyte

proliferation (70). Recent studies have also shown that enhanced

invasion in liver cancer cells caused by visfatin could be attributed

to PI3K/Akt and ERK signaling cascades (71). Hence, obesity results

in upregulated serum visfatin levels and thus potentially increases

the risk of HCC (72).
4 Obesity induces dysfunction of
immune effector cells

Immune effector cells engaged in anti-cancer immunity

primarily include CD4/8+ T cells, macrophages, B cells and

nature killer (NK) cells. However, these cells undergo function

loss and numeric decrease owning to the metabolic dysfunction and

lipotoxicity (Table 2).
4.1 CD8+ T cells

CD8+ T cells are the major component against tumor

progression among anti-tumor immunity system. Once activated,

the increased requirement for biomass and energy results in

metabolic shift from oxidative phosphorylation (OXPHOS) to

aerobic glycolysis, and thus robust proliferation (73). Since

obesity is usually accompanied by IR and thus increased levels of

blood glucose, this fills the need for glucose and thus facilitates

glycolysis in CD8+ T cells (74). Moreover, increased leptin levels
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also promote glycolysis in CD8+ T cells via PI3K/Akt/mTOR

pathway, which partly accounts for obesity-induced chronic

inflammation (75). The metabolic shift reduces reliance of CD8+

T cells on oxygen for energy acquisition and thus renders them to

retain their immunological function even after migrating into

environments with poor oxygen, such as hypoxic TIME within

HCC. Importantly, the reliance on glycolysis causes CD8+ T cells

become more sensitive to glucose deprivation, which leads to

decreased production of IFN-g, granzyme B and perforin in CD8+

T cells (109). Moreover, increased leptin levels and availability to

fatty acid (FA) also results in robust STAT3 signaling, which in turn

promotes fatty acid b oxidation (FAO) and inhibits glycolysis due to

glucose deprivation in TIME, leading to disability of CD8+ T cells to

restrict tumor proliferation (110). Hence, obesity remodels TIME

and promotes migration of CD8+ T cells into TIME partly via

metabolic shift, thus leading to suppressed immunity. Many studies

have indicated that obesity induces harmful effects on T cell

compartment, including decreased frequency of T cell progenitors

in the thymus, thymic involution as well as restricted TCR diversity,

and results in increased infiltration of PD-1+ exhausted CD8+ T

cells in adipose tissue and liver (76–78). In mice with HFD, CD8+ T

cells exhibited downregulated expression of Ki-67, inducible co-

stimulator (ICOS) and granzyme B when compared to mice with

chow diet, and altered FA partitioning could be responsible for the

reduced function of CD8+ T cells (111). The function of CD8+ T

cells could be also impaired by deposition of unsaturated fatty acids

(such as cholesterol) via lipid peroxidation (112). Moreover, a

recent study has also reported that caloric restriction delayed
Frontiers in Immunology 05
immune senescence and increased levels of hepatic CD4+ and

CD8+ T cells in obesity-related HCC via shaping gut

microbiome (113).
4.2 CD4+ T cells

Many prior studies have reported that CD4+ T cells inhibit

HCC initiation and restrain tumor progression (79, 114). Obesity

usually increases circulating CD4+ T cell levels via leptin-mediated

upregulation of major histocompatibility complexes-II (MHC-II,

80). However, CD4+ T cells derived from obese mice displayed

inhibited proliferation and cytokine production when stimulated ex

vivo, and same results were obtained in humans (78). This may be

attributed to increased expression of exhaustion markers such as

PD-1, LAG-3 and Tim-3. CD4+ T cells possess greater

mitochondrial mass compared to CD8+ T cells and thus produce

more mitochondria-derived ROS, which meant that CD4+ T cells

could be easily impaired by mitochondrial dysfunction (79, 81).

Hence, increased levels of FA especially linoleic acid, can cause

mitochondrial oxidative stress and mediate selective loss of CD4+ T

cells in the liver, thus inducing liver carcinogenesis (81). Besides,

increased availability to FA also activates peroxisome proliferator-

activated receptor-a (PPAR-a) pathway and leads to carnitine

palmitoyltransferase upregulation, which in turn facilitates influx

of FA into mitochondria and leads to greater apoptosis of CD4+ T

cells via ROS burst (82). Moreover, reduced tumor infiltration of

CD4+ T cells caused by ROS burst might also impair
TABLE 2 Mechanisms responsible for altered functions of immune cells in obesity-related HCC.

Cells
Tendency
in obesity-
related HCC

Mechanisms References

Immune Effector Cells

CD8+

T cells
Suppressed

Metabolic shift from OXPHOS to glycolysis reduces reliance of CD8+ T cells on oxygen but makes them become more
sensitive to glucose deprivation in TIME. Obesity also impairs T cell compartment and induces T cells exhaustion.

(73–78)

CD4+

T cells
Suppressed

Although elevated circulating CD4+ T cells are induced by leptin, CD4+ T cells display increased expression of
exhaustion markers. CD4+ T cells possess greater mitochondrial mass when compared to CD8+ T cells and could be
easily impaired by lipid-induced ROS burst.

(78–82)

B cells Suppressed
B cell activation facilitates NAFLD/NASH progression and thus HCC. During obesity, adipocytes promote MDSCs
development and inhibit B lymphopoiesis. Persistent inflammation hampers response of B cells to antigens and accelerate
age defects in B cells. Increased lipolysis facilitates Bregs survival and thus immunosuppression.

(83–92)

NK
cells

Paradoxical
Lipid deposition and aberrant lipid metabolism lead to senescence of iNKT in the TIME. Metabolic shift based on lipid-
rich environment further hampers functions of NK cells. However, cholesterol accumulation in NK cells may also
stimulates effector functions and thus inhibits HCC progression.

(93–96)

Immunosuppressive Cells

MDSCs Paradoxical
MDSCs undergo metabolic shift from aerobic glycolysis to FAO in lipid-rich environment to increase the utilization of
FA, thus meeting high energy demand and sustaining suppressive function in TIME. Cholesterol accumulation also
enhances functions of MDSCs, but its derivatives block MDSCs survival and abundance.

(97–100)

TAMs Enhanced
In glucose-rich environment such as hyperglycemia, TAMs possess upregulated GLUT1 expression, thus enhancing their
glycolysis and immunosuppressive functions. In low glucose but lipid-rich environment such as obesity-related TME,
TAMs take full advantage of fatty acids to maintain immunosuppressive functions.

(101–106)

Tregs Paradoxical
Although obese populations exhibit diminished frequency of Tregs, intratumoral Tregs can be distinct with peripheral
Tregs. In lipid-rich environment, intratumoral Tregs upregulate their surface FA transporter CD36 and show a tendency
towards FAO, thus meeting biomass demands and exhibiting resistance to lipotoxicity.

(107, 108)
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immunotherapy targeting liver tumors, suggesting that overcoming

FA-induced impairment could be a potential strategy for obesity-

related HCC (115).
4.3 B cells

During obesity, activation of B cells is directly related to

systemic inflammation via antigen presentation and pro-

inflammatory cytokine secretion (116). Increasing evidence

indicates that intrahepatic B cells play key roles in NAFLD

progression (83). In several experimental models and patients,

NASH is characterized by B cell infiltration, suggesting that

obesity may facilitate B cell activation and thus exacerbate

NAFLD or NASH, which is important risk factor for obesity-

related HCC (84, 85). However, obesity also impairs B cell

biology. Mice with HFD exhibit decreased frequency of B cells in

bone marrow (86). Mechanistically, adipocytes secrete soluble

factors and facilitate MDSCs development, thereby inhibiting B

lymphopoiesis (117). Although B cells from obese subjects secrete

more pro-inflammatory cytokines, they also exhibit higher

senescence-associated secretory phenotype (SASP) markers (87,

88). Moreover, the persistent high inflammation in obesity

restrains proper regulation of B cell responses to novel antigens,

such as cancer cell markers (89). Increased inflammation and

persistent immune activation induced by obesity also accelerate

age defects in B cells (88). Importantly, infiltration of B cells

positively correlates with HCC progression in chronic liver injury,

and B cells from mice fed with HFD disrupted antitumor immunity

in NASH-driven HCC (84, 90). The possible reason is that fatty

acids caused by enhanced lipolysis promote survival of regulatory B

cells (Bregs), which could accelerate HCC progression (91, 92).

However, it doesn’t explain the reduction of Bregs in obesity, and

further studies about the roles of B cells in obesity-related HCC are

needed (118).
4.4 NK cells

Circulating NK cells in obese populations display increased

CD69 expression, which indicates chronic activation, ultimately

leading to diminished NK cell cytotoxic activity (119). Liver

infiltrated-NK cells during obesity also tend to possess less

cytotoxic ILC-1 phenotype and may explain increased risk of

HCC in obese populations (120). Dominik Pfister et al. indicated

that thirty percent of mice with choline-deficient high-fat diet

developed HCC with similar genetic alterations of human

NAFLD-HCC, but anti-PD-1 therapy failed to regress tumor

burden in spite of increased infiltration of immune effector cells,

and this effect could be attributed to impaired function of CD8+ and

NK cells (121). Lipidomic profiling revealed the accumulation of

long-chain acylcarnitines (LCACs) and aberrant lipid metabolism

in HCC tissues, which finally led to senescence of invariant natural

killer T cells (iNKT) in TIME (93). Similarly, lipid accumulation in

NK cells cause metabolic shift based on lipid-rich environment in
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obesity, thus hampering NK cell functions (94). Increased uptake of

FA and cholesterol might be also responsible for impairment of NK

cells in HCC and blocking transport of lipids to mitochondria could

effectively restore NK cell cytotoxicity and restrain tumor growth

(95). However, the role of cholesterol could be controversial since a

prior study has also reported that cholesterol accumulation in NK

cells stimulates effector functions and thus inhibits HCC

progression (96).
5 Obesity enhances function of
immunosuppressive cells

In contrast of immune effector cells, immunosuppressive cells

including myeloid-derived suppressive cells (MDSCs), tumor-

associated macrophages (TAMs) and regulatory T cells (Tregs)

are able to adjust to lipid-rich environment as well as TIME, and

thereby can facilitate immunosuppression. FAO plays a vital role in

this process.
5.1 MDSCs

MDSCs are a highly heterogeneous group of immature myeloid

immune cells, which include the naïve macrophages, granulocytes

and dendritic cells (122). Inflammatory-cell cycle-related kinase

(CCRK) c i rcu i t ry under obese c i r cumstance dr ives

immunosuppressive metabolic reprogramming and enhances

po lymorphonuc l ea r MDSCs rec ru i tment a s we l l a s

tumorigenicity, thereby facilitating obesity-related HCC

progression (123). Although lipid deposition leads to metabolic

dysfunction in immune effector cells and thus immunosuppression,

FA availability in TIME enhances the function of MDSC. Enhanced

FAO facilitates infiltration of MDSCs via secreting complement C3,

whereas suppression of FAO results in MDSCs inhibition (124).

Moreover, in lipid-rich environment, MDSCs can reprogram their

metabolism and transfer from aerobic glycolysis to FAO to reduce

their reliance on glucose and thereby increase the utilization of FA,

thus meeting high energy demand and sustaining suppressive

function in TIME, whereas genetic depletion of CD36 can

hamper lipid uptake and inhibit MDSCs (97–99). Obesity

promotes hepatic inositol requiring enzyme 1 a (IRE1a)
activation and X-box binding protein 1 (XBP1)-drived production

of cholesterol, which in turn elicits immunosuppression by

enhancing the functions of MDSCs (100). In addition, obesity

elevates CXCL1 levels in TIME and promotes the infiltration of

MDSCs in tumor sites, thereby inducing cell death of CD8+ T cells

(125). However, increased cholesterol accumulation under

oxidative stress status also stimulates the generation of the

different cholesterol derivatives. These cholesterol derivatives,

especially oxysterols, could activate liver X receptor (LXR)-ApoE

axis and block MDSCs survival and abundance (126). Hence,

caution is needed if MDSCs metabolism is targeted for

therapeutic purposes.
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5.2 TAMs

Generally, TAMs are mixed intratumoral macrophage

populations with different phenotypes and are generally

categorized into M1/M2 macrophages, though more precise

classification is needed (127). Many studies have indicated that

glucose transporter 1 (GLUT1) is upregulated in TAMs and leads to

increased glycolysis (101, 102). It is not surprising that

hyperglycemia in obesity facilitates glycolysis in TAMs and results

in immunosuppression via inducing chemokine and programmed

cell death protein ligand 1 (PD-L1) expression (103). However,

glucose may be also scarce in TIME as highlighted above, suggesting

that glycolysis in TAMs may be restrained. Under this condition,

obesity-induced M2-like TAMs are largely dependent on increased

availability to FA. Lipid droplets originated from FA are essential

organel les in TAMs for FA metabol ism and sustain

immunosuppressive phenotype (104). FAO is critical for

maintaining the function of TAMs since its inhibition can impair

IL-4-induced M2 activation (105). Enhanced FAO can also promote

mitochondrial OXPHOS and ROS production, leading to STAT6

activation and transactivation of genes related to TAM generation

and function (106). However, a recent study based on HCC model

indicated that decreased FAO caused by fatty acid binding protein 5

(FABP5) leads to accumulation of lipids in macrophages and fosters

immune tolerance, suggesting that FABP5 may act as a potential

biomarker of TAMs (128). Importantly, increased lipid deposition

also facilitates ROS production via lipid peroxidation, thus in turn

promoting FAO via ROS-Caspase1-PPAR pathway and leading to

liver carcinogenesis (129). Hence, declined FAO may potentially

serve as a bad marker of M1macrophages since it provides signaling

molecules and sufficient lipids for TAM initiation. A recent study

highlighted the vital role of GSK3b in TAMs, since GSK3b
deficiency in macrophage can restrict HCC progression by

inhibiting M2 phenotype and enhancing the sensitivity of anti-

PD-1 immunotherapy (130). Overall, considering that obesity is

usually accompanied by increased serum insulin levels, which are

known to activate GSK3b, there is still a possibility that obesity can
facilitate M2-like phenotype and thereby promote HCC progression

in certain circumstances.
5.3 Tregs

Tregs are a common obstacle against anti-tumor therapies.

While Tregs are usually enriched in lean visceral adipose tissue,

obese populations exhibit diminished frequency of Tregs (131).

However, intratumoral Tregs can be distinct with peripheral Tregs.

Tregs show a tendency towards FAO and exhibit resistance to

lipotoxicity (107). In the obese, intratumoral Tregs can upregulate

their surface FA transporter CD36 to obtain sufficient biomass and

adapt to the lipid-rich environment (108). Increased FA uptake can

then induce PPAR-dependent lipid metabolism and thus enhance

Tregs viability as well as function. Moreover, a recent study

indicated that neutrophil extracellular traps are abundant in livers

with steatohepatitis and promote Treg differentiation through
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metabolic reprogramming, thereby affecting the balance of Th17/

Treg cells and contributing to liver carcinogenesis (132). FOXP3

reprograms T cell metabolism to enhance OXPHOS and inhibit

glycolysis, thus rendering Tregs advantageous in obesity-induced

TIME (133). Insulin signaling plays a dual role in regulating the

functions of Tregs. For example, although insulin was found to

drive Tregs in a HIF-1a–dependent manner, obesity-induced

hyperinsulinemia can impair the ability of Tregs to secrete IL-10

(134, 135). However, increased levels of IL-6, IL-1b and TGF-b can

impair T cells proliferation and induce their polarization to Tregs.
6 Obesity affects cytokine secretion to
facilitate HCC progression

Cytokines are critical for obesity-related pathology. However,

most of them play dual roles in regulating inflammation and HCC.

We here introduce four distinct cytokines including TNF-a,
interleukins, TGF-b and chemokines. All of them are secreted

abnormally in obesity due to dysfunction of adipose and immune

cells, thus facilitating inflammation in early stage but also

promoting HCC progression via inducing immunosuppression.
6.1 TNF-a

The elevated serum TNF-a levels are generally attributed to

increased secretion by macrophages as well as immune cells (136).

In obesity, excessive lipid deposition in adipocytes leads to

increased cell apoptosis and causes increased accumulation of

macrophages around dying adipocytes, regarded as crown-like

structure, thus secreting TNF-a (137). TNF-a activates JNK

pathway to impair insulin signaling and interacts with NF-kB to

upregulate genes involved in regulating apoptosis, proliferation,

inflammation, angiogenesis. Hence, increased TNF-a secretion is

associated with inflammation and increased risk of HCC (137).

Although increased inflammatory environment may cause damage

to HCC cells, leptin has been shown to counteract toxicity exerted

by TNF-a (138). Importantly, TNF-a can also promote lipolysis in

adipocytes and facilitate release of FA, which plays a key role in

deve lopment of l ip id d i sorder and obes i ty - induced

immunosuppression (139). However, TNF-a levels may be

decreased in TIME due to impaired function of CD8+ T cells

and macrophages.
6.2 Interleukins

Interleukins associated with tumorigenesis belong to an

extremely large family which is still increasing as the number of

papers exploring the roles of new members are being published.

Among them, IL-6 and IL-1b are crucial for obesity-related HCC.

Like TNF-a, IL-6 is related to the progression from steatosis to

HCC, and its increased levels in obesity is related to several ways

(140, 141). IL-6 facilitates cell proliferation and differentiation via
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promoting STAT3 activation, which is crucial for HCC

development (142). Moreover, a recent study has reported that

adipocyte-derived IL-6 sensitized macrophages to IL-4 signaling

and thus facilitated M2 phenotype (143). Besides, IL-6 can also

increase infiltration of Tregs in TIME and thus facilitate HCC

progression, which could be suppressed by cystathionine b-
synthase-mediated STAT3 inhibition (144). IL-1b is also

associated with increased HCC risk and poor prognosis (145).

Increased IL-1b levels are attributed to NF-kB activation and

NOD-like receptor family, pyrin domain containing 3 (NLRP3)

activity, which in turn could be stimulated in obesity by several

factor such as FA, cholesterol, ROS and hyperglycemia (146).

Although known as inflammatory factor, IL-1b can also lead to

immunosuppression and IL-1b deficiency results in tumor

regression (147). Blocking IL-1b enhanced effector immune cells

and inhibited immunosuppressive cells, thus facilitating checkpoint

inhibition therapy.
6.3 TGF-b

Increased TGF-b secretion can originate from high number of

adipose-derived stem cells, which has been associated with adipose

tissue expansion (148, 149). In obesity, TGF-b is an underlying

contributor to IR via inducing cell hypertrophy and reducing the

functions of islet b cells (150, 151). Besides, a recent study has also

highlighted that TGF-b signaling in hepatocyte can inhibit white

adipose tissue browning and thus facilitate obesity and NAFLD

(152). In HCC cells, increased TGF-b levels induce epithelial-

mesenchymal transition and reprogram lipid metabolism, thus

promoting adaption of HCC to lipid-rich environment (153). In

addition, TGF-b signaling works as a key regulator in immune cell

differentiation, proliferation as well as survival and thus contributes

to NAFLD and NAFLD-HCC (154). TGF-b can also induce

immunosuppression through distinct mechanisms. For instance,

in CD8+ T cells, enhanced TGF-b signaling can suppress IFN-g
expression to inhibit its cytotoxicity effects (155). TGF-b can

suppress NK cells and thus inhibit the recruitment of immune

effector cells to tumor. In addition, TGF-b drives M2 phenotype

and Treg phenotype, leading to immunosuppression in HCC (156).

Acid metabolites like lactate in TIME could also enhance TGF-b
and its downstream signaling in Tregs to promote tumorigenesis

(157). Importantly, TGF-b promotes PD-1 expression in antigen-

specific T cells via SMAD3 activation, suggesting that increased

levels of TGF-b in obesity could be a potential biomarker for anti-

PD-1 therapy (158).
6.4 Chemokines

Chemokines can induce leukocyte chemotaxis and thus affect

tumor behavior via immune regulation. CCL2 is mainly secreted by

preadipocytes and adipocytes during obesity (159, 160). Increased

CCL2 levels can lead to macrophage differentiation and

accumulation in adipose tissue, thus promoting inflammation and

inducing IR as well as hepatic steatosis. However, elevated CCL2
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expression has been linked to loss of Kupffer cells and can cause

increase of immature macrophages in liver, thus contributing to

immunosuppressive microenvironment in liver cancer (161).

Similarly, a recent study has also shown that CCL2 activation

could also promote TAMs recruitment in TIME and facilitate

HCC progression (162). CXCL-8 (also known as IL-8), another

chemokine known to increase with the development of hepatic

steatosis, is also involved in immunosuppression via MDSCs and

TAMs recruitment, and contributes to the formation of TIME

(163). Moreover, CCL22 has been reported to be induced by IL-6

and TNF-a, thereby stimulating Treg chemotaxis and accumulation

(164). A recent study also indicated that excess serum lipid levels

downregulate CXCR3 expression which promotes transfer of T cells

into the tumor sites, thereby resulting in decrease of T cell

infiltration in tumors (165).
7 Obesity impacts immunotherapy
for HCC

Systemic therapy such as sorafenib is used as first-line therapy

for HCC. In recent years, several immunotherapy regimens

including immune checkpoint inhibitors (ICIs) and adoptive cell

therapy have shown strong anti-tumor effects for HCC. Despite of

the prevalence of obesity-related HCC, there are few studies that

have focused on the potential impacts of obesity on immunotherapy

of HCC.
7.1 ICIs therapy

Obesity appears to play a positive role in immunotherapy

(mainly including ICIs therapy and adoptive cell therapy) of

various cancers. ICIs therapy (such as anti-PD-1 and anti-CTLA4

antibodies) works by targeting depressed immune effector cells and

enhancing their function, resulting in robust immune activation. In

patients with NSCLC, high BMI was found to be independently

associated with a better prognosis after atezolizumab treatment

(166). A multicenter study also indicated that overweight predicted

a better prognosis in a variety of cancers after ICIs therapy (167).

Anti-PD-L1 & anti-angiogenic immunotherapy (atezolizumab in

combination with bevacizumab) is currently the first-line treatment

for advanced HCC. A subgroup analysis of survival outcomes based

on the trials evaluating the efficacy of ICIs as first-line therapy

showed that viral-HCC could benefit from ICIs (168). However, for

non-viral-HCC patients, ICIs were not observed to be superior to

sorafenib, which suggested that obesity may be not a positive

marker for ICI therapy in HCC. However, all current clinical

trials were not able to distinguish the subgroups of nonviral-

HCC, thus implying that they also included cases of HCC related

to NASH, obesity, alcohol-related, autoimmune hepatitis etc.

Hence, the detailed classification of clinical cases of nonviral-

HCC is necessary. In fact, a recent case with obesity and T2D

showed that the efficacy of the regimen of atezolizumab combined

with bevacizumab remained guaranteed and could overcome

nivolumab tolerance (169). Notably, high BMI was related to the
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better prognosis upon anti-PD-1 therapy (including nivolumab,

pembrolizumab, sintilimab, and toripalimab, 170). Patients in

advanced HCC with BMI <25 had a worse median OS when

treated with anti-PD-1 therapy in comparison to those with BMI

≥25 (171). This may be because, compared to healthy individuals,

obesity predicts higher T-cell PD-1 expression, which may be

associated with upregulated leptin (78). Thus, while obesity-

induced T-cell PD-1 upregulation may predict systemic

immunosuppression, this might imply greater sensitivity to anti-

PD-1 therapy. However, a recent study highlighted that GSK3b
activation in macrophage restricted anti-PD-1 immunotherapy in

HCC (130). Since obesity is usually accompanied by

hyperinsulinemia, obesity could also serve as a poor marker for

anti-PD1 immunotherapy. Of note, obesity appears to increase the

risk of side effects after ICIs therapy. Since ICIs enhance body’s

immune system, they can often lead to autoimmune reactions. A

recent study, which included 13,480 cases showed that obesity

predicted a higher risk of colitis (172). Another study also

revealed that obesity was related to an increased risk of immune-

related adverse effects (irAEs) after nivolumab treatment (173). For

patients treated with pembrolizumab, elevated BMI was associated

with an increased risk of irAEs (174). However, irAEs can also

predict a stronger immune response. In another study, Jacobo

Rogado et al. reported that in patients with advanced cancer

treated with single-agent anti-PD-1 antibody nivolumab or

pembrolizumab immunotherapy, overweight was associated with

greater outcomes, and the observed treatment benefit was

significantly enhanced when irAEs were present in the overweight

population (175). Importantly, due to the limitation of BMI in

descripting the detailed information related to obesity, people

should be more concerned about the impact of body composition

on immunotherapy. For example, people with myosteatosis caused

by excessive lipid accumulation in the muscle are associated with

higher risk of failure after immunotherapy as well as a poor

prognosis in HCC (176). Likewise, myosteatosis can predict

strong toxicity of nivolumab.
7.2 Adoptive cell therapy

Adoptive cell therapy works by modifying immune effector cells

(such as T cells) to express specific immune effector marker (such as

chimeric antigen receptor), resulting in enhanced anti-tumor

immunity in patients. Currently, studies about the effects of

obesity on adoptive cell therapy for HCC are lacking. Wenshu

Tang et al. observed that obesity-induced hypercholesterolemia can

effectively impair NK cell function, whereas Wenhao Qin et al.

indicated that high cholesterol increased NK cell lipid accumulation

thereby enhancing their function (95, 96). Thus, the effect of obesity

on allogeneic NK cell adoptive therapy may be positive or negative.

However, there is a lack of sufficient data to determine the extent of

cholesterol accumulation and the duration of cholesterol

accumulation, which may account for the differential effects of

cholesterol on NK cells. However, a recent study suggested that NK

cell therapy could display potential efficacy in obesity-related cancer

(177). Recently it has been found that GPC3-CAR-T cell therapy
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based on the GPC3 target of HCC cells was effective in clinical HCC

treatment. Manuel Garcia-Jaramillo et al. reported that western diet

increased hepatic GPC3 expression in the male mice (178). In

addition, IR was also associated with increased levels of hepatic

GPC3 expression, suggesting that obesity may predict better

response to GPC3-CAR-T cell therapy (179).
8 Conclusion

Overall, based on the general understanding, obesity-related

HCC is primarily attributed to NAFLD and IR. However, there are

few studies that have focused on the inhibitory effects of obesity-

induced metabolic disorder on antitumor immunity. In this review,

we have presented a comprehensive overview about the distinct

mechanisms through which obesity facilitates HCC progression via

remodeling TIME and inducing immunosuppression (Figure 1).

Obesity-related immunosuppression is mechanistically related

to the disrupted balance between adipocytes, hepatocytes, and

immune cells. Excessive lipid deposition in visceral adipose tissue

is the trigger for obesity-related HCC, and can directly lead to

adipose tissue expansion (180). Thus, the body possess decreased

anti-inflammatory adipokines levels and increased pro-

inflammatory adipokines levels, thereby facilitating local or

systemic inflammation, which is crucial for NAFLD-driven HCC

(37). In this process, anti-inflammatory adipokines exert anti-

tumor effects by inducing apoptosis or inhibiting expression of

pro-tumor cytokines, whereas pro-inflammatory adipokines

promote HCC progression via facilitating autophagy, angiogenesis

and proliferation. Obesity-related inflammation and IR can also

promote the conversion of HCC cells to the glycolytic pathway

through upregulation of the different growth factors (insulin, IGF1)

and ROS (179). Excessive adipose tissue expansion leads to reduced

blood supply and induces a hypoxic environment, which in turn

promotes adipose tissues and HCC cells glycolysis, leading to

increased glucose consumption and lactate production. Thus, the

excessive carbohydrate intake is mainly utilized by adipose tissue

and HCC cells, sparing only a small portion for immune cells. This

hypoxic, low-glucose, high-lactate environment inhibits liver-

infiltrating immune effector cell function and proliferation, thus

promoting the conversion of immune effector cells to immune

suppressor cells. Obesity-induced inflammation not only facilitates

oncogenesis via promoting a cycle of cell death-repair-fibrosis, but

also leads to aging of immune effector cells such as T cells and B

cells. Moreover, obesity also facilitates immune dysfunction via

inducing lipid disorder. Cholesterol deposition in NK cells directly

leads to their functional inhibition, thus producing less IFN-g and
expressing low levels of granzyme B as well as perforin (95).

Increased FA uptake and FAO have been tightly related to

enhanced immunosuppression in MDSC (99). Upregulated

expression of CD36 as well as SREBP can result in augmented

immunosuppressive function of Tregs, whereas lipid metabolism in

TAMs was found to be involved in regulation of its

immunosuppressive function (105, 108). The altered immune cell

phenotype can directly lead to cytokine disruption, which in turn

promotes tumor growth as well as immunosuppression.
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Conventional therapy including surgery resection and systemic

therapy is widely used in HCC treatment. The impact of obesity on

HCC resection remains controversial. Many studies indicated that

obesity has shown no effects on lethality rate after HCC resection,

whereas several studies had shown that severe obesity increased

lethality rate after HCC resection (181, 182). Besides, obesity

appears to promote a range of complications after HCC resection

(183, 184). Multi-kinase inhibitors (especially sorafenib) are widely

used for the treatment of advanced HCC. The effect of obesity on

sorafenib treatment has varied across clinical trials, which may be

attributes to different obesity-related symptoms (185–187). In

addition, body composition may affect the efficacy of sorafenib

treatment. In brief, obesity upregulates overall survival rate after

sorafenib when muscle mass is unaffected, whereas mortality

increased when obesity leads to muscle loss, such as sarcopenia

obesity (187–189). Considering that few studies have highlighted

the effect of obesity on sorafenib efficacy during the past 16 years

(since sorafenib was approved for HCC treatment in 2007), obesity

may not be an important factor to predict responses to sorafenib.

Recently, the emergency of immunotherapy suggests that people

have better understanding of cancer progression. Although

immunotherapy may be not significantly superior to sorafenib, it

undoubtedly offers a new treatment strategy for HCC and provides

an alternative treatment option when sorafenib tolerance occurs.

Based on the fact that obesity can induce the onset of

immunosuppression through affecting multiple pathways, the

impact of obesity on immunotherapy appears to be paradoxical.
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Obesity predicts a better response to ICI regimens, perhaps because

obesity can lead to increased levels of target marker proteins (which

is also responsible for obesity-promoted HCC). Importantly, it

remains unclear whether obesity is an independent factor that

favors immunotherapy because most relative studies are clinical

trials and mechanism studies are needed. Besides, enhanced

responses to immunotherapy in obesity-related HCC may be

attributed to relatively healthy state (when compared to patients

with severe cancer-related disorders, such as cachexia, which is

characterized by low BMI). In this circumstance, obesity may be just

a marker of effective immunotherapy rather than independent

factor. Since the immunosuppressive microenvironment caused

by obesity undoubtedly hinders the function of immune effector

cells, selective improvement of the obesity status according to

application of the different immunotherapies (ICIs or adoptive

cell therapy) might be a guaranteed therapeutic modality.

Above all, obesity can facilitate HCC progression via

remodeling TIME and inducing immunosuppression, all of which

mainly originate from the inflammatory environment but can exert

pro-tumor effects once HCC has occurred. Given the tolerance to

conventional therapy and the continued success of immunotherapy

for HCC, more emphasis should be placed on obesity-induced

immunosuppression. Investigations about obesity-related HCC

progression from an immunosuppressive perspective can provide

the basis for biomarker discovery and facilitate diagnostic

evaluation as well as therapeutic development. However, it is

unclear when the inflammatory environment might shift to
FIGURE 1

Comprehensive review of depressed cellular immunity in obesity-related HCC. Due to the proximity of the liver to visceral adipose tissue, the HCC
TME can be easily influenced by adipose metabolites. In order to adapt to this abnormal metabolic environment, immune cells undergo metabolic
shift and thus phenotypic change. While immune effector cells are depressed due to restricted glycolysis and exhausted marker expressions,
immunosuppressive cells take full advantage of increased availability to lipids and exhibit enhanced functions.
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immunosuppressive state, which may be an important direction for

future insights into the development of obesity-related HCC.
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