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Mitochondria are versatile organelles and essential components of numerous

biological processes such as energy metabolism, signal transduction, and cell

fate determination. In recent years, their critical roles in innate immunity have

come to the forefront, highlighting impacts on pathogenic defense, tissue

homeostasis, and degenerative diseases. This review offers an in-depth and

comprehensive examination of the multifaceted mechanisms underlying the

interactions between mitochondria and innate immune responses. We will delve

into the roles of healthy mitochondria as platforms for signalosome assembly,

the release of mitochondrial components as signaling messengers, and the

regulation of signaling via mitophagy, particularly to cyclic GMP-AMP

synthase-stimulator of interferon genes (cGAS-STING) signaling and

inflammasomes. Furthermore, the review will explore the impacts of

mitochondrial proteins and metabolites on modulating innate immune

responses, the polarization of innate immune cells, and their implications on

infectious and inflammatory diseases.

KEYWORDS

mitochondria, innate immunity, mtDNA, mitophagy, mitochondrial metabolism, MAVS,
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1 Overview of mitochondria in innate immunity

The mitochondrion is a functionally versatile organelle that has evolved from a-
proteobacterium, a prokaryotic organism (1–3). According to the endosymbiont theory, an

archaeon engulfed this bacterium about 2 billion years ago, forming a symbiotic

relationship to meet its nutritional needs (2, 4–6). This bacterial origin of mitochondria

probably explains innate immune responses triggered by recognizing unique mitochondrial

components by various receptors (7). Modern mitochondria consist of five distinct

components, including an outer and inner membrane, an intermembrane space, cristae

formed by the infoldings of the inner membrane, and a matrix (4). One of the critical

differences between mitochondria and other cellular organelles is that mitochondria have

mitochondrial DNA (mtDNA), the circular DNA that encodes 13 proteins necessary for
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oxidative phosphorylation complexes formation, 22 ribosomal

RNAs, and 2 transfer RNAs required for mitochondrial RNA

(mtRNA) translation (8, 9). Mitochondria are also highly

dynamic organelles that change rapidly to meet the demands of

various cellular processes (10, 11) via the balance of mitochondrial

fusion and fission, which is crucial in regulating cellular

metabolism, calcium homeostasis, reactive oxygen species (ROS)

generation, and mitochondrial quality control (12). Mitochondria

are considered the bioenergetic organelles and biosynthetic hubs

that use glycolysis-derived pyruvate, fatty acids, and amino acids to

generate adenosine triphosphate (ATP) via the oxidative

phosphorylation process to maintain cellular homeostasis (4) and

the intermediate producers for anabolic pathways (4, 13). However,

a wide variety of studies have also illustrated mitochondria as

signaling hubs that regulate numerous cellular biological events,

including metabolism, cell fate determination, and immune

responses through forming signaling platforms and releasing

mitochondrial ROS (mtROS), mtDNA, and metabolites

(4) (Figure 1).

The innate immune system, via a plethora of pattern

recognition receptors (PRRs) such as Toll-like receptors (TLRs),

nucleotide-binding oligomerization domain (NOD)-like receptors

(NLRs), C-type lectin receptors (CLRs), retinoic acid-inducible gene

I (RIG-I)-like receptors (RLRs), and DNA sensors, is the first

defense line against numerous microorganism invasions and

sterile damages, such as those caused by necrotic cells-derived

damage-associated molecular patterns (DAMPs) and cytokines

(14–16). PRRs recognize distinct pathogen-associated molecular
Frontiers in Immunology 02
patterns (PAMPs) from pathogenic agents and DAMPs from

damaged cells and tissues (17–19). Innate immune responses

initiated by PRRs lead to significant production and processing of

type I interferons (IFNs), cytokines, and proinflammatory

chemokines, which modulate specific adaptive immune responses

to eliminate pathogenic agents, repair damaged tissues, and

maintain homeostasis (16–18). Mitochondrial functional

components such as mtROS, mtDNA, cardiolipin, and the

mitochondrial outer membrane (MOM) can directly activate or

modulate innate immune responses (7). Meanwhile, dysfunctional

mitochondria are involved in multiple inflammatory diseases (20),

such as rheumatoid arthritis (RA) (21, 22), systemic lupus

erythematosus (SLE) (23, 24), Sjögren’s syndrome (25),

neurodegenerative diseases (26–28), fibrotic diseases (29), and

aging (30, 31). This review will focus on the crucial roles of

mitochondria in various innate immune responses, including

cytosolic nucleic acid sensing pathways (RLR-mitochondrial

antiviral signaling protein (MAVS), and cGAS-STING),

inflammasomes, TLRs signaling pathways, and immune cell

activation (Figure 1).

2 Mitochondria act as platforms for
signaling complex assembly

2.1 RLRs-MAVS signaling

Mitochondria are considered as critical signal platforms to

facilitate the RLRs-MAVS signaling cascade by mediating the
FIGURE 1

An overview of interactions between mitochondria and innate immune responses. Mitochondria are essential metabolic organelles that play an
important role in maintaining cellular energy homeostasis through efficiently coupling the TCA cycle to the ETC. The TCA cycle, initiated by acetyl-
CoA generated from glycolysis-derived pyruvate dehydrogenation or fatty acid oxidation, produces NADH and FADH2, which supply electrons to the
ETC for ATP production (bioenergetics). The intermediates of the TCA cycle also participate in biomacromolecule generation, including glycogen,
lipids, nucleotides, and proteins, through anabolic pathways (biosynthesis). In addition to their metabolic functions, mitochondria also serve as
signaling hubs that regulate various cellular biological events, particularly immune responses, through several mechanisms. Firstly, the mitochondrial
outer membrane acts as a platform for the aggregation of MAVS and the formation of the NLRP3 inflammasome, facilitating the RLRs-MAVS and
NLRP3 inflammasome signaling pathways. Secondly, the cytoplasmic release of mtDNA and mtRNA from dysfunctional mitochondria can be
recognized by PRRs and directly trigger innate immune responses. Finally, mitochondrial metabolites from the TCA cycle and metabolic byproducts,
such as ROS, can precisely modulate the activation of innate immunity.
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prion-like aggregation of MAVS (32) (Figure 2). Apart from nucleic

acids-sensing TLRs located in endosomes (33), viral RNA can be

recognized by RNA sensors in the cytoplasm (34). RIG-I (35) and

melanoma differentiation-associated gene 5 (MDA5) (36), which

belong to the DExD/H box RNA helicase family, are identified to

detect cytosolic viral dsRNA. Upon viral dsRNA association, the

conserved caspase activation and recruitment domains (CARDs) of

these RNA sensors (37) are exposed and bind to the CARD domains

of MAVS (38–41) located in the mitochondrial outer membrane,

which drives the prion-like aggregation and activation of MAVS

(32, 42). This aggregation recruits kinases TANK-binding kinase 1

(TBK1)/inhibitor of nuclear factor kappa-B kinase ϵ (IKKϵ) to

activate the downstream transcriptional factors, interferon

regulatory factor 3/7 (IRF3/7), and nuclear factor-kB (NF-kB).
mRNAs of type I/III IFNs, interferon-stimulated genes (ISGs),

and proinflammatory cytokines (43) are then transcribed and

translated to restrict microbial infection, modulate adaptive

immunity, and initialize tissue regeneration (44, 45). Intriguingly,

the peroxisome (46, 47) and mitochondrial-associated endoplasmic

reticulum membranes (MAM) (48) localization of MAVS and

MAVS signalosomes have also been suggested, which induce or

modulate the expression of ISGs and type III IFNs. Aberrant

activation of RLRs-MAVS signaling is known to cause various

autoimmune and autoinflammatory disorders (49).

Proteins that regulate mitochondrial dynamics (12), including

the dynamin-related family of large GTPases mitofusin 1 (MFN1),

mitofusin 2 (MFN2), optic atrophy 1 (OPA1), and dynamin-related

protein 1 (DRP1), play critical roles in MAVS function. MFN1

facilitates the redistribution of MAVS on mitochondria to positively
Frontiers in Immunology 03
regulate RLR-MAVS signaling (50), while conversely, MFN2

represses MAVS aggregation (51). Additionally, both

mitochondrial membrane potential (DY(m)) and membrane

proteins can function as negative regulators of MAVS (7), such as

NLR family member X1 (NLRX1), globular head domain of

complement component C1q receptor (gC1qR), and Polo-like

kinase 1 (PLK1). Activation of RLRs-MAVS signaling, in return,

appears to contribute to the elongation of the mitochondrial

network via interaction between MAVS and MFN1 (50, 52).

Notably, disrupting the mitochondrial fragmentation function of

DRP1 by TBK1-mediated S412 phosphorylation forms hyper-fused

mitochondrial networks, which are required to effectively assemble

large MAVS aggregates during innate RNA sensing (45). In this

scenario, phosphorylation of DRP1 by TBK1 directly blocks the

high-order oligomerization and mitochondrial division function of

DRP1 (45). The TBK1-DRP1 axis also participates in nutrient-

triggered mitochondrial dynamics and cell fate determination,

suggesting that innate immunity also contributes to governing the

morphology and physiology of mitochondria (45).
2.2 NOD-like receptor pyrin domain-
containing 3 inflammasomes

Inflammasomes are multi-subunit complexes activated under

stress conditions to regulate inflammatory responses and induce

pyroptotic cell death (53, 54). They consist of a receptor (NLR

family and PYHIN protein family members), the adaptor protein

ASC (apoptosis-associated speck-like protein containing a CARD),
FIGURE 2

Mitochondria serve as platforms for signalosome formation. The mitochondrial outer membrane is critical in activating the innate immune system by
serving as the bridging platform for the aggregation of the MAVS protein and the formation of the NLRP3 inflammasome. Upon RNA virus infection,
the protein TBK1 phosphorylates and inactivates the mitochondrial fission protein DRP1, critical for the fusion of mitochondria and the aggregation
of MAVS for activation. Moreover, the mitochondrial outer membrane serves as a platform for the localization of TERRA-ZBP1 complexes formed
under dysfunctional telomeres, leading to the activation of the MAVS pathway. Additionally, mitochondrial proteins such as cardiolipin, MAVS, and
MFN2 have been shown to regulate the assembly of the NLRP3 inflammasome by providing binding sites for NLRP3.
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and the inflammatory cysteine protease pro-caspase 1 (55).

Mitochondria act as scaffolds for NLRP3 inflammasome

assembly. NLRP3 translocates from the endoplasmic reticulum

(ER) to mitochondria and the MAM to form the NLRP3

inflammasome, which leads to the maturation of caspase-1-

dependent proinflammatory cytokines IL-1b and IL-18 (56, 57).

Cardiolipin, MAVS, and MFN2 have also been shown to regulate

NLRP3 inflammasome assembly. For instance, upon mitochondrial

stresses, cardiolipin, the mitochondrial inner membrane-associated

phospholipid, is exposed on the mitochondrial surface to serve as

the independent binding site for NLRP3 and full-length caspase-1

to assemble and activate the inflammasome (58, 59). Alternatively,

MAVS forms a complex with MFN2 (60) to recruit NLRP3 to the

mitochondria for NLRP3 inflammasome assembly during RNA

viral infection (61–63).
2.3 ZBP1-mediated signaling

A recent study indicated the importance of mitochondrial signal

platforms in telomere-mediated tumor suppression and aging. Z-

conformation nucleic acid binding protein 1 (ZBP1) (64), an IFN-

stimulated gene, functions as a cytosolic Z-nucleic acid sensor to

regulate type I IFN signaling, inflammation, cell death, and tissue

homeostasis (65). The study showed that mitochondria provide a

scaffold for ZBP1-telomeric-repeat-containing RNAs (TERRA)

complexes to activate MAVS-dependent interferon response

during a replicative crisis (66).

These findings suggest that mitochondrial architecture, rather

than a single mitochondria-related protein or product, is essential in

maintaining various innate immune responses, which provide a

broader perspective for studying the relationship between

mitochondria, immunity, and diseases.
3 Regulation of innate immune
responses by mitophagy

Maintaining mitochondrial health is crucial for properly

functioning the immune system (67, 68). Two primary pathways

for dealing with damaged mitochondria are proposed, including

mitochondrial quality control mechanisms to immediately process

defective or misfolded/mislocalized mitochondrial proteins and

mitophagy that delivers irreversibly damaged mitochondria to the

lysosome for degradation (31, 69). Mitophagy is mainly controlled

by the ubiquitin (Ub)-dependent [PTEN-induced kinase 1

(PINK1)/Parkin RBR E3 ubiquitin-protein ligase (Parkin)] (70) or

Ub-independent (specific LIR-containing receptor-dependent)

pathways, such as those mediated by BNIP3 (BCL2 interacting

protein 3), BNIP3L (BNIP3-like, also called NIX), FUNDC1

(FUN14 domain containing 1), PHB2 (prohibitin 2), BCL2L13

(BCL2-like protein 13), and FKBP8 (FK506-binding protein

prolyl isomerase 8) (67, 71).
Frontiers in Immunology 04
3.1 Mitophagic regulation of IFN signaling

Mitophagy plays a crucial role in regulating type I IFN signaling

activation. Deficient mitophagy caused by autophagy related 5

(ATG5) ablation increases mtROS production and elevates levels

of MAVS, promoting the activation of the type I IFN pathway (72).

Sequestosome 1 (SQSTM1/p62)-dependent mitophagy (73) and

mitophagy induced by viral proteins (71, 74) also regulate the

type I IFN response. By contrast, NIX-dependent mitophagy acts

as an intrinsic negative regulator of the RLRs-MAVS axis by

preventing spontaneous aggregation of endogenous MAVS in the

absence of viral infection (75). Besides, the disruption of mitophagy

caused by PINK1 and Parkin mutations contributes to the

activation of the cGAS-STING signaling pathway via cytosolic

accumulation of mtDNA (76), which will be elaborated on later.
3.2 Mitophagic regulation
of inflammasomes

It has been found that mitophagy helps to repress NLRP3

inflammasome activation by reducing mtROS production and

mtDNA release via clearing damaged mitochondria (57, 67),

while Parkin plays a crucial role in mtROS-NLRP3-mediated

inflammatory response by regulating mitophagy activation (77).

Defective mitophagy and mtROS accumulation induced by

receptor-interacting protein kinase 2 (RIPK2) deletion lead to

increased morbidity and mortality by accelerating IL-18 secretion

and inflammatory activation during influenza A virus (IAV)

infection (78). NF-kB signaling is also vital in anti-inflammatory

by inducing the expression of SQSTM1/p62 to promote autophagic

clearance of damaged mitochondria in lipopolysaccharide (LPS)-

treated macrophages (79). Besides Ub-dependent mitophagy,

FUNDC1-mediated Ub-independent mitophagy can control the

secretion of inflammasome-related IL-1b (80). Additionally,

mitophagy regulates the activation of AIM2 (absent in melanoma

2) (81) and NLRC4 (NLR-family CARD domain-containing protein

4) (82) inflammasomes, revealing a widespread role of mitophagy in

controlling inflammasome-mediated innate immune responses.
4 Regulation of innate immune
responses by mitochondrial apoptosis

Mitochondria are required to regulate cell apoptosis through

the intrinsic pathway, which facilitates many biological processes,

including the regulation of inflammatory responses (83, 84). During

mitochondrial apoptosis induced by various cellular stresses, the

pro-apoptotic effectors BCL2-associated X protein (BAX) and BCL2

homologous antagonist/killer protein (BAK) are activated by BH3-

only proteins to assemble the mitochondrial outer membrane

permeabilization (MOMP) (84, 85). MOMP allows the release of

mitochondrial soluble proteins to activate apoptotic caspases,

including cytochrome c which binds to apoptotic peptidase
frontiersin.org
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activating factor 1 (APAF1) to form the apoptosome (86), second

mitochondrial-derived activator of caspases (SMAC) and high-

temperature requirement protein A2 (HtrA2/OMI) which induce

the degradation of the caspase inhibitor XIAP (X-linked inhibitor of

apoptosis protein) (84).

Mitochondrial apoptosis impacts the type I IFN pathway and

inflammation viaMOMP in several ways (84). Under conditions of

caspase deficiency, stimuli induce mitochondrial apoptosis to

promote NF-kB signaling through the upregulation of NF-kB-
inducing kinase (NIK) resulting from MOMP formation and

inhibitor of apoptosis proteins (IAPs) degradation (87). This

phenotype has also been observed with SMAC-mimetic

compounds treatment (88, 89), but an exception exists. Due to

the redundancy of other mitochondrial IAP binding proteins,

deletion of SMAC and OMI fails to prevent MOMP-induced

IAPs degradation (90, 91). Therefore, further research is needed

to explain the mechanism of IAPs depletion by MOMP.

Interestingly, MOMP-related IAPs degradation in macrophages

can activate caspase 8 to promote the maturation of IL-1b and

the activation of NLRP3 inflammasome (92, 93). In addition, the

activation of apoptotic caspases-induced potassium efflux also

contributes to NLRP3 inflammasome formation (94).

Furthermore, mitochondrial nucleic acids, such as mtDNA and

mtRNA, released through MOMP, mitochondrial permeability

transition pore (MPTP), or voltage-dependent anion-selective

channels (VDAC), can robustly activate cytosolic nucleic acids

sensing pathways, which will be discussed in the next section.

However, the exact role and nature of the mitochondrial inner

membrane dur ing the se molecu l a r even t s a r e s t i l l

poorly understood.

It is worth noting that in most conditions, mitochondrial

apoptosis is non-inflammatory. Apoptotic caspases have been

found to inhibit inflammation by directly cleaving inflammatory

components such as MAVS, cGAS, and IRF3 (95). Additionally,

they can inhibit protein translation and canonical protein secretory

processes (84, 96) and induce rapid cell death to remove damaged

cells (97). However, other apoptotic caspase-independent

mechanisms also contribute to MOMP-dependent anti-

inflammatory responses. For example, MOMP induces the release

of PNPase-polynucleotide phosphorylase (PNPT1), which degrades

mtRNA to block the RLRs-MAVS pathway (98). Mitophagy is

another effective approach to maintaining non-inflammatory

apoptosis (99). Despite the identification of mitochondrial

apoptosis in regulating innate immunity through MOMP, more

in-depth studies are still needed to understand the specific pathways

and pores or channels associated with the release of mitochondrial-

related DAMPs.
5 Innate immune responses triggered
by mtDNA

mtDNA is located in the mitochondrial matrix, which

associates with the necessary cofactors for mtDNA transcription,

replication, and repair (100–103). In 2004, Collins et al. by injecting
Frontiers in Immunology 05
mtDNA into the joints of mice, demonstrated that oxidized mtDNA

might play a role in inflammation, which resulted in inflammation

and arthritis (104). This discovery led to a new avenue of research

on how mtDNA functions as a critical DAMP under stress

conditions. Various innate immune receptors have been known to

recognize mtDNA for initiating innate immune responses, as

shown in Figure 3.
5.1 Mechanisms of mtDNA release

Although a wide variety of studies have demonstrated the

importance of cytosolic mtDNA in innate immunity,

the mechanisms explaining the translocation of mtDNA from the

mitochondrial matrix to the cytosol are still not well understood. In

2014, two independent studies uncovered that mtDNA is released

during mitochondrial apoptosis (105, 106). Follow-up studies

demonstrated that apoptosis-related MOMPs allow the rupture of

the mitochondrial inner membrane and mtDNA release (107–110).

Additionally, under subtle stress-induced non-apoptotic conditions,

only a fraction of mitochondria undergoing permeabilization

(minority MOMPs) also cause the cytosolic release of mtDNA

and the activation of cGAS-STING signaling, the major pathway

sensing of mtDNA in the cytosol (111, 112). Furthermore, VDAC,

which is used for metabolites and ions transport (113), can

oligomerize to form pores in the MOM under oxidative stress

conditions (114) and interact with mtDNA and form oligomers in

the MOM to permit the release of short mtDNA fragments and

trigger type I IFN response (115), while MPTP, formed in the

mitochondrial inner membrane under various cellular stress

conditions, is considered to regulate the release of small mtDNA

fragments (116, 117). Notably, cytoplasmic accumulation of TAR

DNA binding protein 43 (TDP-43), a disease hallmark of

amyotrophic lateral sclerosis (ALS), can trigger mtDNA release

via the MPTP and VDAC1 oligomers to upregulate the NF-kB and

cGAS-STING signaling (118). Meanwhile, the endonuclease Flap

endonuclease 1 (FEN1) has been found to cleave oxidized mtDNA

into 600-650 bp fragments that can be released from mitochondria

via MPTP and VDAC-dependent channels (119). Although

MOMP-induced mtDNA release in apoptotic cells has been

discussed in detail, the regulations of mtDNA release in living

cells under moderate-level stress and the role of the mitochondrial

inner membrane in mtDNA release are still not well understood.

These mechanisms of mtDNA release are summarized in Figure 3.
5.2 mtDNA triggers cGAS-STING signaling

cGAS is a primary cytosolic DNA receptor that can recognize

both exogenous and endogenous DNA and induce the production

of 2’3’-cyclic GMP-AMP (cGAMP) (120, 121), which activates the

adaptor protein STING (122–125) to elicit type I IFN and

inflammatory responses (126). In addition to its role in response

to viral and bacterial DNAs (127–131), the cGAS-STING pathway

also elicits and controls self-DNA (nuclear DNA and mtDNA)-

induced innate immune responses (132), inflammatory diseases
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(133, 134), antitumor immunity (135–137), neurodegenerative

diseases (138), and diverse cellular functions (139) including

protein synthesis (140) and glucose metabolism (141).

Various signals can disrupt mitochondrial integrity during

pathogen infections. For instance, IAV triggers the release of

mtDNA through the proton-selective ion channel (viroporin)

activity of the M2 protein in a MAVS-dependent manner and

evades the recognition of cGAS by interacting with NS1 proteins

and mtDNA (142). Infections of herpes simplex virus 1/2 (HSV-1/

HSV-2) have been found to cause stress and elimination of mtDNA,

which regulates antiviral responses and ISG expression (143–146).

Interestingly, infections with RNA viruses, such as Dengue virus,

can activate the cGAS-STING (147–149) and TLR9 pathways (150)

by causing mitochondrial stress and oxidized mtDNA release.

Certain strains of Mycobacterium tuberculosis can also trigger

cGAS-STING activation (128, 130, 151) by inducing mtDNA

release (152). During pathogen infections, IL-1b secretion can

upregulate antimicrobial immune responses by releasing mtDNA

to activate the cGAS-STING signaling pathway (153), providing

new insights into the mechanisms by which numerous cytokine-

related pathways boost inflammatory responses. These results

suggest that maintaining mtDNA homeostasis may be a beneficial

regulator of innate antiviral immunity.

In addition to pathogen infection, the disruption of

mitochondrial DNA integrity, replication, and repair can activate

the cGAS-STING pathway (133). For instance, mitochondrial

transcription factor A (TFAM) deficiency can cause cGAS-STING
Frontiers in Immunology 06
activation by damaging the nucleoid structure and accumulating

cytosolic mtDNA (8, 145, 154), while depletion of sorting and

assembly machinery component 50 (Sam50) (155) and

endonuclease G (115) similarly induces mtDNA-related cGAS-

STING activation in hepatocytes and other cells. Additionally,

chemotherapeutic drugs (156), pyrimidine nucleotide carrier

SLC25A33 overexpression, as well as the inhibition of de novo

pyrimidine synthesis (157), can trigger mtDNA leaking and cGAS-

STING activation. As a result, the importance of cGAS-STING in

sensing mtDNA and inflammatory-related diseases has made it a

highly targeted drug (158).
5.3 mtDNA serves as an
inflammasome activator

Nakahira et al. were the first to report that the MPTP-induced

cytosolic accumulation of mtDNA and mtROS strengthens NLRP3

inflammasome activation in autophagic protein-deficient

macrophages (159). mtDNA oxidized by mtROS is preferred for

NLRP3 recognition (79, 160–162). Activating inflammasomes and

caspases also regulate mtDNA release by causing mitochondrial

damage. Notably, the role of NLRP3 may not promote mtDNA

release but rather stabilize it in the cytoplasm (162), while other

studies indicate that NLRP3 activation amplifies the mitochondrial

damage and mtDNA release (163, 164). Caspase-1 activated by

inflammasomes destroys mitochondria by triggering multiple
B

C

A

FIGURE 3

Mechanisms of mitochondrial DNA release and mtDNA-associated innate immune responses. (A) The disruption or stress of mitochondria, caused
by infections like bacterial or viral, can lead to the release of damaged or fragmented mtDNA into the cytoplasm, activating the cGAS-STING and
NLRP3 inflammasome responses. (B) In non-apoptotic cells, the activation of NLRP3 results in oxidative stress on mitochondria, causing the
modification and cleavage of mtDNA by the endonuclease FEN1. The MPTP and VDAC oligomers in the mitochondrial outer membrane facilitate the
release of fragmented mtDNA. (C) In apoptotic cells, the formation of BAX and BAK oligomers leads to MOMP, causing the release of mtDNA and
mt-dsRNA and activating innate immune responses.
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pathways to promote the production of mtROS, the dissipation of

DY(m), and the permeabilization of mitochondrial membranes

(163). Moreover, NLRP3 promotes caspase-2 activation and BID

cleavage during infection-related ER stress to facilitate

mitochondrial permeabilization (164). Further studies are

therefore needed to clarify those conflicting data and better

understand the relationship between mtDNA and NLRP3.
5.4 mtDNA and TLR9

TLR9 is a member of the TLRs family and is the first TLR

discovered to sense bacterial DNA with hypomethylated CpG

motifs, and this recognition activates the MAPK and NF-kB
signaling pathways, leading to an inflammatory response (134,

165). Interestingly, TLR9 has also been found to recognize

mtDNA released into the bloodstream during systemic

inflammatory response syndrome (SIRS) and activate a p38-

mediated inflammatory response (166, 167). mtDNA released

from dying cells can form a complex with the antimicrobial

peptide LL-37 to evade the degradation by DNase II and activate

TLR9 response (168). In addition, the mtDNA-TFAM complex

released from necrotic cells augments proinflammatory response by

promoting the activation of receptor for advanced glycation end

products (RAGE) and TLR9 (169, 170). Mitochondrial dynamics

can also play a role in TLR9-induced inflammation by affecting

mtDNA stability (171, 172). The absence of OPA1 in mice results in

muscle atrophy and premature death due to the accumulation of

damaged mitochondria and disruption of mitophagy, leading to

mtDNA-related TLR9-mediated inflammation (173). Circulating

mtDNA has been confirmed as an endogenous TLR9 agonist in

various studies and has been implicated in several inflammatory-

related diseases (9), including rheumatoid arthritis (22),

atherosclerosis (168, 174), hypertension (175), acute liver injury

(176) and non-alcoholic steatohepatitis (177).
5.5 mtDNA and neutrophil
extracellular traps

mtDNA can also play a role in the extracellular space by

engaging the cGAS-STING pathway and/or the TLR9 pathway on

neighboring immune cells (24, 178, 179), such as in the scenario of

neutrophil extracellular traps (NETs) during microbial infection

and sterile inflammatory diseases (9, 180). NETs are vast

extracellular decondensed-chromatin networks containing a

plethora of microbial-killing proteins and DNAs (180, 181). In

healthy neutrophils with oxidative damage, entire TFAM-mtDNA

complexes are expelled into the extracellular space, and mtDNA can

be transported into lysosomes to avoid recognition by TLR9 and

maintain the immunological silence of plasmacytoid dendritic cells

(pDCs) (179). Conversely, oxidized mtDNA is released in systemic

lupus erythematosus (SLE) patients and activates inflammatory

responses (179). The formation of oxidized mtDNA-containing

NETs can be stimulated by ribonucleotide immune complexes

(RNP-ICs) (178) and continuous IFN-a signaling (183), which
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further strengthens the cGAS-STING pathway. Additionally,

lymphocytes and eosinophils can engage the type I IFN response

in peripheral blood mononuclear cells by secreting mtDNA-

containing webs (184, 185). These findings highlight the

importance of mtDNA in both intracellular and extracellular

pathways in regulating immune responses.
6 mtRNA in triggering
RLR-MAVS signaling

The mitochondrial genome contains both heavy (H) and light

(L) strands for the transcription of functional RNAs and several

non-coding RNAs (186, 187). Under normal conditions, non-

coding RNAs are degraded by the RNA degradosome to prevent

the formation of mitochondrial double-stranded RNA (mt-dsRNA)

(188, 189). However, during MOMP, mt-dsRNA can be released

into the cytoplasm (110, 190), and recognized by MDA5, leading to

the activation of the type I IFN response (110, 190). Interestingly,

dysfunction of the mtRNA degradosome component, PNPase, can

lead to the activation of the type I IFN response by causing the

accumulation of mt-dsRNA (190, 191). Additionally, the protein

kinase R (PKR) can also detect mt-dsRNA under stress conditions

(192) (Figure 3).
7 Regulation of innate immunity by
mitochondrial metabolism

The metabolites generated from glycolysis, the electron

transport chain (ETC), and the tricarboxylic acid (TCA) cycle

play a crucial role in regulating innate immunity, including the

type I IFN response, the NLRP3 inflammasome, and immune

cell activation.
7.1 mtROS in innate immune responses

mtROS, the “so-called” byproducts of the mitochondrial

respiration chain, is generated at complexes I and III of the ETC

in response to hypoxia, substrate availability alteration, and

abnormal mitochondrial conditions (193). mtROS has been

demonstrated to play a crucial role in innate immunity

(194) (Figure 4).

7.1.1 mtROS and innate antiviral response
Mitophagy has been shown to regulate mtROS production

during viral infection, promoting the RLRs-MAVS signaling (72).

In this scenario, cytochrome c oxidase 5 b (COX5B), a subunit of

the cytochrome c oxidase complex, serves as a negative feedback

effector of the RLRs-MAVS pathway by repressing mtROS

generation upon Sendai virus (SeV) infection (195). On the other

hand, the IAV protein M2 positively regulates MAVS aggregation

by controlling mtROS production (196). Additionally, the zinc

finger protein tetrachlorodibenzo-p-dioxin (TCDD)-inducible
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poly (ADP-ribose) polymerase (TiPARP) serves as a PRR for the

RNA of the Sindbis virus and can be redistributed by mtROS from

the nucleus to the cytoplasm, protecting against viral infection in

mice (197). These intriguing findings propose the intricate interplay

between mtROS and innate immune signaling pathways in response

to viral infections.

7.1.2 mtROS and NLRP3 inflammasomes
The activation of the NLRP3 inflammasome can be triggered by

numerous PAMPs and DAMPs that depend on mtROS generation.

For instance, inhibiting the function of mitochondrial respiratory

complexes I and III by small molecules can induce mtROS

generation and NLRP3 activation (56, 57, 198). During oxidative

stress, increased mtROS and Ca2+ are detected, which promote the

formation of MPTP, and increased mitochondrial Ca2+ further

facilitates the production of mtROS in this situation (199, 200).

mtDNA released into the cytoplasm can be oxidized by mtROS,

leading to NLRP3 inflammasome activation (162). It is noted that

mtROS only activates the NLRP3 inflammasome but not other

inflammasome subsets (56). Aldolase A (ALDOA) also plays a role

in maintaining NLRP3 inflammasome activation by restricting

activation of the AMP-activated protein kinase (AMPK) and

mitophagy (201).

7.1.3 mtROS and neutrophil activation
mtROS also significantly contributes to neutrophil activation,

such as neutrophil degranulation, NET formation (178), Ca2+
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ionophores induced NETosis (202), and cytokines production

(203). In vitro studies have shown that inhibiting the production

of mtROS by the antioxidant SkQ1 can accelerate the apoptosis of

the chemotactic peptide fMLP-activated neutrophils (204).

However, in synoviocytes, reducing the mitochondrial membrane

potential and increasing ROS production through methotrexate

(MTX) treatment can induce mitochondrial apoptosis (205).
7.1.4 mtROS in antibacterial
and anti-parasite activities

Evidence suggests that mtROS functions as a crucial agent in

antibacterial defense (194). For example, accumulation of mtROS

has been observed in TLR1, 2, and 4-activated macrophages to

enhance the bactericidal activity of these cells by activating the

downstream NF-kB response (206), which is achieved through

TRAF6-mediated ubiquitination and enrichment of ECSIT

(evolutionarily conserved signaling intermediate in Toll

pathways), a protein involved in mitochondrial respiratory chain

assembly (207). Additionally, mtROS is necessary to trigger p38

signaling upon TLR4 activation (194). In addition to TLRs

responses, the IFN-g signaling pathway also boosts the

production of mtROS through the nuclear receptor estrogen-

re lated receptor a (ERRa) to clear cel lu lar Lis ter ia

monocytogenes (208). Patients with tumor necrosis factor

receptor-associated periodic syndrome are more sensitive to LPS

stimulation due to increased mtROS and inflammatory

cytokines (209).
FIGURE 4

Mitochondrial ROS and innate immunity. mtROS is produced at complexes I and III of the ETC in response to hypoxia, changes in substrate
availability, and abnormal mitochondrial or cellular conditions. mtROS plays a role in coordinating innate immune responses, including antiviral
signaling through the RLRs-MAVS, antimicrobial responses through the NLRP3 inflammasome and TLR pathways, and necroptosis through GSDMD.
The cellular metabolism regulator AMPK helps to maintain a balance of mtROS and promote antimicrobial responses by inhibiting their generation,
while HIF1-a enhances their production. AMPK also regulates the activation of the NLRP3 inflammasome by suppressing mtROS and promoting
autophagy, which ERRa regulates through post-translational and transcriptional mechanisms. Additionally, the key regulator of mitophagy, Parkin,
controls mtROS production and the activation of the NLRP3 inflammasome. Finally, increased cytosolic mtROS have been found to drive the
mitochondrial localization of GSDMD, leading to the formation of a mitochondrial GSDMD pore and the acceleration of necroptosis.
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The metabolic balance regulators AMPK and mechanistic target

of rapamycin (mTOR) contribute to antimicrobial responses by

regulating mtROS production. For example, during some

pathogenic bacterial infections, AMPK inhibits mtROS

production, while hypoxia-inducible factor 1a (HIF-1a)
upregulates its generation to maintain proper levels and promote

antimicrobial responses (210, 211). HIF-1a also combines with

mTOR to control antimicrobial signaling through glycolysis, with

mTOR promoting mtROS accumulation in monocytes (212, 213).

However, in Trypanosoma cruzi-infected macrophages, mTOR

inhib i t ion increases mtROS product ion and NLRP3

inflammasome activation to clear cytoplasmic parasites (214).

Interestingly, in Mycobacterium tuberculosis-infected Lrrk2G2019S

mice, increased cytosolic mtROS can directly associate with

gasdermin D (GSDMD), a member of the plasma membrane

pore-forming family involved in pyroptosis , to form

mitochondrial GSDMD pore, promoting mtROS release and

necroptosis, leading to hyperactivation of inflammation and

severe immunopathology (215). These studies illuminate the

crucial role of mtROS in precisely regulating the autophagy-

inflammasome axis to control innate immune activation.
7.2 Glucose metabolism
and MAVS signaling

Glucose metabolism has been shown to suppress RLR-induced

interferon production through lactate, which directly binds to

MAVS and disrupts its mitochondrial localization (216). MAVS

directly binds to hexokinase-2 (HK-2) in its resting state to

maintain its kinase activity and proper glycolysis process (216).

However, research has also shown that the cytosolic phospholipase

A2 (cPLA2) disrupts the interaction between MAVS and HK-2 in

astrocytes, leading to increased NF-kB-related inflammation (217)

(Figure 5). Notably, a recent study revealed a critical role of AMPK

in potentiating both RLRs-MAVS and cGAS-STING signaling and

antiviral responses via direct AMPK-mediated phosphorylation of

TBK1 at S511 residue (141). These mutual interactions between

glucose metabolism and innate immunity indicate an intricate and

delicate network of immune responses related to mitochondria.
7.3 Mitochondrial metabolism
and NLRP3 inflammasomes

Interplay of N-acetylglucosamine (GlcNAc) with hexokinase

can lead to inflammatory responses in the host by disrupting

hexokinase localization and activating NLRP3 inflammasomes

(218) (Figure 5). Similarly, inhibiting glycolysis after the priming

step through chemical treatment can activate the NLRP3

inflammasome (219). Free fatty acids (FAs) from diet or FA

synthesis can activate the NLRP3 inflammasome (220–222).

Therefore, activation of AMPK during fasting or caloric

restriction suppresses FA-induced NLRP3 inflammasome
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activation by promoting autophagy and limiting ROS production

(220, 223), in contrast to its role in potentiating nucleic acid

signaling (141). Besides, in a state of low blood glucose, fatty acid

oxidation provides energy and leads to the production of ketone

bodies like b-hydroxybutyrate (BHB), which inhibit the activation

of the NLRP3 inflammasome by inhibiting K+ efflux (224). By

activating citrate synthase and inhibiting FA uptake, BHB reduces

the level of mitochondrial acetylation, which represses NLRP3

inflammasome formation, mitochondrial dysfunction, and heart

fibrosis (225). Butyrate, a short-chain fatty acid (SCFA), by contrast,

inhibits NLRP3 activation by reducing pro-IL-1b levels (226).
7.4 Mitochondrial metabolism and
macrophage polarization

Macrophages can be differentiated into two main distinct lineages

on the type of activation signals they have received: M1macrophages,

characterized by a proinflammatory phenotype, and M2

macrophages, characterized by an anti-inflammatory and pro-

fibrotic phenotype (227, 228). Studies have shown that oxygen

consumption and reliance on mitochondrial metabolism differ

between M1 and M2 macrophages (228–230). For example, M1

macrophages show reduced while M2 macrophages exhibit increased

mitochondrial metabolism. Notably, the inhibition of the ECT

through reverse electron transport (RET) increases the production

of mtROS, stabilizes HIF-1a, and enhances the inflammatory

response, favoring M1 macrophage polarization (228). Moreover,

inhibiting fatty acid oxidation promotes M1 macrophage activation

and suppresses M2 macrophage phenotypes (228).

Metabolites from the TCA cycle also play a vital role in

controlling macrophage polarization by regulating macrophage

chromatin modifications, DNA methylation, and protein post-

translational modifications (231) (Figure 5). Acetyl-CoA, the

starting point of the TCA cycle (231–235), provides acetyl groups

for acetylation and influences the production of proinflammatory

molecules such as nitric oxide (NO), ROS, and prostaglandin E2

(PGE2) in response to stimuli such as LPS (236). Acetyl-CoA in IL-

4-related M2 macrophages, however, increases histone acetylation

and M2 macrophage-related gene expression (237). The immune-

responsive gene 1 protein (IRG1) produces itaconate (238, 239),

which has been found to accumulate in response toMycobacterium

tuberculosis infection (182) and LPS stimulation (240) and exert

anti-inflammatory effects (241). On the other hand, a-ketoglutarate
(a-KG) promotes M2 polarization in LPS-stimulated M1

macrophages through epigenetic reprogramming and suppression

of the NF-kB signaling pathway (242). Succinate similarly

contributes to macrophage activation by stabilizing HIF-1a and

increasing the transcription of IL-1b (243, 244), while fumarate

accumulates in LPS-activated macrophages (243, 245) and

modulates pro-inflammation by inhibiting lysine-specific histone

demethylase 5 (KDM5) enzyme (246). These repeated observations

indicate an essential role of mitochondrial metabolites in the

polarization and activation of macrophages.
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8 Concluding remarks and perspective

Mitochondria are essential cellular organelles that play a critical

role in maintaining the energy balance of cells by linking the TCA

cycle to the ETC. This efficient energy transfer from the TCA cycle

to the ETC allows cells to generate ATP, an energy source for

various cellular processes. In addition to their metabolic functions,

mitochondria serve as signaling hubs that regulate various cellular

biological events, particularly innate immune responses. This

complex relationship between mitochondria and innate immunity

involves several processes maintaining mitochondrial homeostasis.

Firstly, mitochondria act as scaffolds for signaling molecules,

facilitating the activation of innate immune responses by forming

signal complexes. For instance, the aggregation of the antiviral

signaling molecule MAVS on the mitochondrial outer membrane

acts as a platform for forming the antiviral response. Similarly, the

assembly of the NLRP3 inflammasome on the mitochondrial outer

membrane serves as a platform for activating the inflammatory

response. These scaffold functions of mitochondria play a crucial

role in regulating innate immune responses. Secondly,

mitochondrial metabolism also plays a key role in regulating

innate immune responses. For example, the production of ROS
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and metabolites from the TCA cycle, including citrate, itaconate,

and succinate, regulate the secretion of inflammatory cytokines,

antimicrobial responses, and immune cell activation. The precise

mechanisms underlying the regulation of these metabolic products

in modulating innate immune responses are complex and still

require further investigation. Finally, intracellular detritus from

damaged mitochondria, such as mtDNA and mtRNA, serve as

DAMPs that can directly activate antiviral and inflammatory

responses. This mechanism of innate immune activation directly

links mitochondrial dysfunction and innate immune responses and

highlights the importance of mitochondrial homeostasis in

regulating innate immunity.

Mitochondrial dysfunction lies at the heart of a wide array of

human diseases, encompassing neurodegenerative conditions,

chronic inflammation, autoimmune disorders, and metabolic

diseases. Various interactions have been identified between innate

immunity and various aspects of mitochondria, including their

membranes, dynamics, components, and metabolites. Despite this,

our comprehension of the role of mitochondria-related immune

responses in the onset and progression of diseases remains

incomplete. The specific nature of the signaling inputs and

mechanisms governing mtDNA release, a major contributor to
A

B

FIGURE 5

Regulation of innate immune responses and macrophage activation by mitochondrial metabolism. (A) Glucose metabolism regulates the RLRs-MAVS
signaling and the NLRP3 inflammasome through the hexokinase 2 (HK-2) and lactate generation. In a resting state, MAVS interacts with HK-2 to
maintain its kinase activity and proper glycolysis process, while lactate production interrupts the mitochondrial localization of MAVS to suppress the
RLRs-MAVS signaling. cPLA2 disrupts the interaction of MAVS and HK-2, thereby boosting NF-kB-related inflammation. GlcNAc, derived from the
peptidoglycan of the bacterial cell wall, can interact with HK-2 to promote its redistribution into the cytoplasm and facilitate the activation of the
NLRP3 inflammasome. (B) Metabolites from the TCA cycle control macrophage polarization by regulating chromatin modifications, DNA
methylation, and post-translational modifications of proteins. Elevated cytosolic acetyl-CoA increases histone acetylation to promote the expression
of inflammatory molecules and determine macrophage polarization. Itaconate, derived from cis-aconitate, engages anti-inflammatory activity in
LPS-stimulated macrophages by inhibiting mtROS production, reducing succinate dehydrogenase (SDH) activity, blocking the inhibitor of NF-kB, the
NF-kB-binding protein (IkBz), and stabilizing nuclear factor erythroid 2-related factor 2 (Nrf2). a-KG engages anti-inflammation via Jmjd3-
dependent metabolic and epigenetic reprogramming and inhibits the proline hydroxylation of IKKb to repress pro-inflammation. Succinate facilitates
proinflammatory activity by enhancing ROS production through stabilizing HIF-1a and being oxidized by SDH. Fumarate increases proinflammatory
activity by inhibiting the KDM5 histone demethylase activity, thereby promoting the gene transcription of TNFa and IL-6 cytokines.
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inflammatory responses, is not yet fully understood. Moreover,

mitochondrial dysfunction is implicated in age-related diseases,

particularly those involving the uncontrolled release of

mitochondrial components such as mtDNA, ATP, succinate, and

mtROS during aging. What causes the close association between

mitochondrial integrity and aging, or conversely, is the loss of

mitochondrial integrity a key driver of the aging process? In

addition, various pathogen infections can trigger minor MOMP

through non-lethal stimuli. Is this phenomenon a beneficial

immune warning system or a detrimental factor in developing

mitochondria-associated diseases? We anticipate that integrating

cutting-edge techniques like high-throughput screening, omics

analyses, and tissue imaging, together with the application of

diverse genome-editing technologies, will significantly advance

our understanding of the complex interplay between

mitochondria, inflammation, and disease.

In conclusion, the relationship between mitochondria and

innate immunity is a complex and multifaceted phenomenon

involving various processes that maintain mitochondrial

homeostasis, including mitochondrial metabolism, mitochondrial

dynamics, and quality control. Further investigation is needed to

fully understand the precise mechanisms of these interactions and

their potential implications for developing novel therapeutic

strategies against infectious and inflammatory diseases. Aberrant

innate immune responses associated with dysfunctional

mitochondria are related to various pathologies, including

infectious, autoimmune, neurodegenerative, and cancerous

diseases, and require further study to unravel the underlying

mechanisms and develop new therapeutic targets for improving

human health.
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