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Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy

have revolutionized treatment for several cancer types over the past decade.

Despite this success, obstacles including the high price tag, manufacturing

complexity, and treatment-associated toxicities have limited the broad

application of this therapy. Chimeric antigen receptor engineered natural killer

cell (CAR-NK) therapy offers a potential opportunity for a simpler and more

affordable “off-the-shelf” treatment, likely with fewer toxicities. Unlike CAR-T,

CAR-NK therapies are still in early development, with few clinical trials yet

reported. Given the challenges experienced through the development of CAR-

T therapies, this review explores what lessons we can apply to build better CAR-

NK therapies. In particular, we explore the importance of optimizing the

immunochemical properties of the CAR construct, understanding factors

leading to cell product persistence, enhancing trafficking of transferred cells to

the tumor, ensuring the metabolic fitness of the transferred product, and

strategies to avoid tumor escape through antigen loss. We also review

trogocytosis, an important emerging challenge that likely equally applies to

CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already

being addressed in CAR-NK therapies, and what future directions may

be possible.
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Introduction

Although chimeric antigen receptor engineered T-cells (CAR-T) have produced

astounding remission rates in patients with hematological cancers, response rates have

been much lower in patients with solid tumors (1). Furthermore, long-term follow up has

shown that approximately half of the patients achieving an initial complete response with
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CAR-T will ultimately relapse (2, 3). Key barriers leading to

suboptimal CAR therapy responses include limited persistence of

transferred cells, poor metabolic fitness of cellular products, issues

with trafficking of CAR-T cells to sites of disease, and loss of target

antigen on malignant cells (Figure 1) (4). Another emerging

challenge for CAR therapies is trogocytosis, wherein cell

membranes are transferred from target cells to immune cells,

resulting in antigen loss on target cells and fratricidal destruction

of CAR cells (Figure 2) (5). Importantly, as clinical experience with

CAR-NK is very limited compared to CAR-T, how much each of

these factors contribute to CAR-NK clinical efficacy remains

unclear. This offers researchers and clinicians a unique

opportunity to proactively apply lessons learned while developing

CAR-T products to the CAR-NK field. For the remainder of this

mini review, we will provide updates on the well-identified barriers

and then discuss at length the concept of trogocytosis and

the work that has been done to address this increasingly

recognized phenomenon.
Manufacturing and cost

CD19-targeted CAR-T has achieved unprecedented clinical

response in leukemia and lymphoma, and now B-cell maturation

antigen (BCMA)-targeted CAR-T is yielding remarkable results in

patients with multiple myeloma (6, 7). High cost and complex

manufacturing for these personalized CAR-T limit access to these

therapies (8). Recently, studies have reported the use of distributed

and highly automated CAR-T manufacturing as a strategy to

significantly reduce manufacturing costs relative to centralized

processes (9–11). An alternative cost-reduction strategy would be

to develop an “off the shelf” therapeutic, wherein modified cells are

manufactured in large numbers at a central location and used

allogeneically to treat many patients (12).

Currently, CAR-T products approved for commercial use are all

produced using lentiviral or retroviral vector transduction, and are

only used autologously due to the risk of graft versus host disease
Frontiers in Immunology 02
(GvHD). It is important to note though that it may be possible to

safely apply donor derived allogenic CAR-T molecules in post-

haematopoietic cell transplantion (HCT) settings without acute

GvHD (13). Gene editing to remove T cell receptor expression

from CAR-T cells has been employed to eliminate the risk of

GvHD with TCR-edited allogeneic CAR-T products. However, this

increases manufacturing complexity and cost, and the safety profile of

such gene-edited CAR-T cells is not yet fully understood (14–16).

Unlike CAR-T cells, CAR-NK cells do not cause GvHD and can thus

be applied allogeneically without such gene editing (17).

To maximize the benefit of an off-the-shelf therapy, as with

gene-edited CAR-T, it will also be vital to identify manufacturing

approaches that can scale up CAR-NK products to treat as many

patients as possible per product batch (18–20). Like CAR-T cells,

cytokines alone can achieve expansion of NK cells to clinically

relevant doses (21, 22). NK expansion can be greatly increased with

the use of feeder cells, however, feeder cells can be difficult to

completely remove from the culture, therefore leading to safety

concerns (23–26). An alternative feeder-free method being explored

involves the use of dissolveable polymer-based microspheres that

slowly release growth factors and nutrients to facilitate cell

expansion (27).

Vesicular-stomatitis-virus-G protein (VSV-G) lentivirus is the

most commonly used pseudotyping receptor applied in

manufacturing CAR-T cells. Unlike T cells though, NK cells have

low expression of the low density lipoprotein receptor, a major

entry receptor for VSV-G (28). Baboon envelope pseudotyped

lentiviral vector (BaEV-LV) has been shown to greatly improve

transduction efficiency in NK cells (29), and can also be used for the

delivery of CRISPR-genome editing components through viral like

particles (30). We have recently shown that CRISPR-loaded BaEV-

partcles can be used for efficient simultaneous genome editing of

primary NK cells and CAR-transgene delivery, potentially offering a

promising opportunity to clinical scale deployment of gene edited

CAR-NK therapies (31).

The relative risk of insertional mutagenesis represents another

potential issue for CAR-NK therapies manufactured via viral gene
FIGURE 1

Methods to overcome the barriers to the CAR-T and CAR-NK fields: cost, antigen loss, trogocytosis, trafficking, fitness, and persistence.
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transfer. There are at least two cases of T-cell lymphomas arising

from CAR-modified cells, though it is important to note that both of

these occurred in transposon modified cells, a process that can lead to

many insertion events within a single cell (32). In contrast to this,

thousands of patients have now been treated with CAR-T therapies

generated via retro- or lentiviral transduction, with follow-up times as

long as 20-years, and no malignant T-cell lymphomas have yet been

reported (33). There are at least two case reports of insertional

disruption of a specific gene being associated with clonal CAR-T

hyperexpansion (34, 35). Remarkably, in both cases CAR-T

expansion drove a strong therapeutic response without creating a

T-cell malignancy. Whether the impressive safety record of virally

modified CAR-T cells can also be extended to CAR-NK cells remains

to be seen. Publication of pre-clinical and clinical reports with

insertion site mapping in CAR-NK cells will be critical to address

this question in future.
Persistence

Dogma dictates that NK cells are inherently less likely to

demonstrate long term persistence than T cells (36). Indeed, the

short lifespan of transferred cells has been proposed as an

explanation for the limited clinical efficacy of NK cell therapies in

clinical trials (37–39). To date, much of the work in optimizing

CAR constructs for NK cells has focused on improving cytotoxicity

as opposed to evaluating persistence (18, 40, 41), though it is known

that CAR-NK cell persistence can be improved by engineering cells
Frontiers in Immunology 03
with immunostimulatory cytokines such as IL-15 (42–49). A

clinical trial employing IL-15 engineered CD19-targeted CAR-NK

cells in relapsed/refractory hematologic malignancies is currently

underway, and has already reported to be safe and show at least

short term efficacy in a cohort of patients [(50); NCT05092451].

Short-term exposure to IL-12, IL-15, and IL-18 produces

memory-like NK cells with longer persistence (51), which can be

combined with CAR-NK to increase efficacy (52). In CAR-T

products, expression of certain costimulatory domains is known

to enrich for memory phenotype CAR-T cells and is associated with

improved persistence and more durable responses in preclinical

models and clinical trials (53–55). Engineering of CAR-T cells with

immunostimulatory cytokines (secreted or membrane bound) such

as IL-7, IL-12, IL-15, IL-18, IL-21, and IL-23, to create “armoured

CARs”, has also been shown to improve persistence and is being

explored in several clinical trials (56, 57).

Another method to increase CAR cell functionality, safety, and

specificity is the use of inducible promoters, which become active

upon recognition of a tumor associated antigen, metabolite, drug, or

through activation of cell signaling pathways. Ultimately, the goal is

to facilitate a more directed delivery of an additional transgene

without systemic toxicity (58). This has been shown to be effective

in CAR-T cells using a nuclear factor of activated T-cells (NFAT)

promoter (59). This type of sense-and-respond engineering of

CAR-T cells is extremely flexible and could be applied to deliver a

wide variety of TME-modifying payloads to improve CAR-T or

CAR-NK penetration and survival within tumours (60, 61). This

approach has also been tried with CAR-NK cells; the use of a

nuclear factor kappa B (NFkB) inducible promoter to induce IL-12

secretion upon CAR-NK activation led to increased cytotoxicity and

monocyte recruitment (62).

A major clinical determinant of NK cell persistence is the

lymphodepleting pre-conditioning regimen used to prepare

patients before cell infusion. Thusfar, the role of lymphodepletion

with CAR-NK therapy has been extrapolated from CAR-T studies,

where lymphodepletion has been shown to be vital for the efficacy of

CAR-T (63). Typically, a combination of fludarabine/

cyclophosphamide is used prior to receiving CAR-NK therapy to

reduce NK cell rejection by the host, reprogram the

immunosuppressive TME, and decrease tumor burden (18).

Comparing high-dose and low-dose lymphodepletion regimens

prior to adoptive transfer of unmodified NK cell therapies has

demonstrated that high-dose regimens resulted in in vivo NK

expansion and persistence while low-dose regimens did not (64).

The use of CD52-targeting monoclonal antibodies in combination

with CD52-knockout CAR-T cells is increasingly being employed as

a selective lymphodepletion strategy which can be employed

concurrently with cellular infusion (65), whether such an

approach can work with CAR-NK cells has not yet been

investigated. To our knowledge, there have been no clinical trials

comparing lympdepleting regimens in CAR-NK therapies, and this

is an area where further investigation will be needed. The need for

further study will be even more critical when applying CAR-NK in

solid tumours, where the question of the value of lymphodepletion

is quite controversial due to the potential for such immune

suppression to harm endogenous anti-tumor immune responses.
FIGURE 2

Trogocytosis-mediated antigen procurement leads to trogocytosis-
mediated signaling, antigen loss leading to tumor escape, and
fratricide. The tumor cell membrane (purple) and CAR antigen is
transferred to the CAR-lymphocytes (green) via trogocytosis. (1) The
transferred membrane acts as a target for CAR-mediated fratricide
leading to lymphocyte cell death (grey). (2) The transferred
membrane can also signal within the CAR-lymphocyte. (3) Finally,
the transfer of the cell membrane results in antigen loss on the
tumor cells themselves.
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Ultimately, long-term persistence of CAR-NK cells may not be

necessary to achieve long term remissions. While loss of functional

CAR-T cells has been established in some clinical trials as the single

best predictor of relapse, particularly in the setting of some acute

and chronic B-cell leukemias (34, 66), persistence of CAR products

may be less important in other malignancies, such as lymphomas

(53, 67, 68). In diffuse large B cell lymphoma (a non-hodgkin

lymphoma) for example, patients can have durable responses

without prolonged CAR-T persistence (67, 69, 70). In line with

these observations, optimization of CAR design to maximize short-

term or long-term responses appears to be disease specific rather

than a one size fits all approach (54). Given this evolution in

thinking with regard to CAR-T persistence, it is likely that the need

for longer term persistence of CAR-NK cells may similarly be

disease specific (53). Clinical studies applying different CAR-NK

approaches in different disease settinge will be vital to understand

how CAR-NK persistence correlates with outcome. Furthermore,

an off-the-shelf CAR-NK therapy could make it easier to

compensate for lack of persistence through using multiple

infusions to maintain a sufficient number of circulating cells for

ongoing disease control.
Trafficking

Issues with CAR-T or CAR-NK cells in locating and penetrating

into the tumor microenvironment (TME) are thought to be an

important limit for the efficacy of the therapy in solid tumors (58).

One method to improve CAR trafficking is to engineer cells to

express chemokine receptors that can directly enhance their ability

to track tumor sites. This strategy has been evaluated in pre-clinical

studies (71) and is being explored in an early phase clinical trial

where CXCR4 co-expression on an anti- B-cell maturation antigen

(BCMA) CAR-T was added to increase trafficking to the bone

marrow (NCT04727008). Similar to CAR-T cells, NK cells could

also benefit from engineered expression of chemokine receptors, as

NK cells are known to use chemokine signaling in natural settings

(72). NK cells modified to express CXCR2, CXCR4, CCR5, or CCR7

have all been shown to have enhanced tumor control in mice (73–

76). In addition, CAR-NK cells engineered to express CXCR1 or

CXCR4 also experienced enhanced trafficking to the tumor (74, 77).

Strategies to improve CAR-T trafficking also include attempts to

combine with other therapies to make the tumor microenvironment

more amenable to lymphocyte recruitment, or modifying the

delivery method (direct tumoral injection or systemic delivery) of

the CAR therapy (58, 78). The tumor microenvironment can be

modified using tools such as oncolytic viruses (OVs) (79), or

radiotherapy (80) to increase tumor inflammation (stimulating an

immune response) and increase CAR efficacy. While there are

substantial studies on combination therapies for CAR-T,

combination studies in CAR-NK cells with radiotherapy or OVs

are lacking (81). Finally, local injection of CAR-T cells to the

tumour, rather than the peripheral blood, improved responses

(82–84). This method has also been shown to be safe and

efficacious for CAR-NK (85).
Frontiers in Immunology 04
Fitness

For CAR-T therapy to be successful after finding the tumor,

CAR-expressing cells need to also survive and function in the harsh

TME, where considerable barriers prevent the normal function of

immune cells. Barriers include: hypoxia, lack of nutrients, low pH,

and elevated levels of various metabolic waste products (86). CAR-T

cell products with optimized metabolic functions, such as higher

oxidative phosphorylation, have been shown to be more efficacious

in the clinic as they can overcome these limitations in the TME (87,

88). Two strategies to metabolically improve T cell function in the

TME are: i) by direct manipulation of cell metabolism during ex

vivo expansion, or ii) genetically engineering T cells to better cope

with the TME (89). As in the case of CAR-T cells, NK cells can also

be metabolically optimized during expansion either through genetic

alterations or by manipulating expansion conditions (90–93).

Looking at examples of ex vivometabolic engineering of T cells,

CD8+ T cells cultured in glutamine restricted conditions had

enhanced expression of pro-survival transcription factors and

were able to expand better in mice upon reinfusion (94). T cells

expanded with mitogen-activated protein kinase kinase (MEK)

inhibitors led to decreased tumor burden in mice (95). Finally, T

cells were expanded in the presence of phosphoinositide 3-kinase

inhibitor (PI3K) to enrich for memory T cells in an ongoing BCMA

CAR-T clinical trial which is reported to show promising signs of

improved efficacy (96). Even the choice of media can have a major

impact on the function and metabolism of the T cells (97). Work in

NK cells has been carried out to examine the impact of changing

feeder cells used for expansion, and how this can affect metabolic

fitness and cytotoxicity (98, 99).

Changes to the CAR itself are also known to alter metabolism,

as different signaling domains can significantly change glucose or

oxidative metabolism in CAR-T cells (100). Additionally, alteration

of the cell by knock-out or overexpression of metabolic genes can

increase CAR-T cell efficacy. For example, the TME contains low

levels of arginine, so overexpressing enzymes for arginine synthesis

in T cells has been shown to improve their efficacy in mouse models

of leukemia and solid tumors (101). Similarly, overexpression of D-

2-hydroxyglutarate dehydrogenase in CAR-T cells overcomes the

immunosuppressive effects of D-2-hydroxyglutarate in tumors with

isocitrate dehydrogenase mutation (102). Genetically engineering

NK cells to overcome the immune suppressive effects of

metabolites, such as hydrogen peroxide through the expression of

peroxiredoxin-1 has been shown to improve NK cell function (103).

Much opportunity remains to metabolically optimize CAR-NK

therapeutics to thrive in the TME.
Antigen loss

Tumor intrinsic factors also contribute to suboptimal CAR-T

responses. This can include immune suppression in the TME

through the presence of immunosuppressive cells (e.g. due to cells

such as regulatory T cells, myloid derived suppressor cells, tumor

associated macrophages, and stromal cells) (104). It can also include
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resistance due to loss of adhesion molecules on the tumor cells, such

as CD58 or ICAM-1 (105, 106), as well as increased expression of

apoptotic moleucles (107). The tumor intrinsic factor we will focus

on for this section is antigen loss.

Loss of target antigen on tumor cells is an obvious mechanism

by which CAR-T therapies fail (108, 109). This may be exacerbated

in solid tumors where there is a greater degree of inconsistency in

antigen expression (110, 111). Several strategies are under

development to circumvent this limitation. Dual-specificity CAR-

T cells capable of targeting two separate antigens have achieved

strong complete response rates in clinical trials (112–115). Even

then, relapses following the loss of at least one antigen have been

observed (113–115). Longer follow up and larger trials are needed to

determine if these strategies are truly beneficial in reducing relapse

and what effect multi-antigen targeting has on CAR-T persistence.

Sequential administration of different CAR products has also been

explored as a strategy to mitigate tumor antigen loss (116, 117).

Furthermore, in preclinical models, combinations with oncolytic

viruses, multi-antigen targeting using ankyrin repeat motif CARs,

and engineering CAR-T cells to modulate the endogenous immune

system are all strategies that have shown promise in limiting relapse

by overcoming antigen loss (118–120).

Given the broader antigen independent killing capacity of NK

cells, it is possible that CAR-NK cells would have a built-in

mechanism for resisting tumor escape due to the loss of CAR

target antigen (121, 122). That is, NK cells can rely on their innate

killing capabilities rather than on antigen recognition through the

CAR alone. However, it is also well established that tumors have the

capacity to adapt and evade NK cells both in the context of

immunoediting and NK-cell based immunotherapies (123, 124).

The implementation of dual target approaches in CAR-NK cells is

currently being explored in pre-clinical development (46, 125–128).

Clinical experience will show whether loss of multiple antigens is a

concern in the context of CAR-NK therapies. However, with either

CAR-T or CAR-NKs, identifying better strategies to select the

optimal antigen combinations will be critical to creating safe and

effective therapies.
Trogocytosis

The term trogocytosis was used in the 1970s to describe the

process in which the amoeba, Naegleria fowleri, destroys other cells

(129). In 2002, it was adapted to describe the transfer of plasma

membrane fragments and associated surface molecules from one

cell to another (130). Since then, trogocytosis has been well studied

in T and NK cells (131). It has been proposed that trogocytosis

provides a mechanism for tissue adaptation of immune cells but can

also act as a potent mechanism of immune cell deactivation (132).

Trogocytosis has also been documented more recently with CAR-T

and CAR-NK cells, causing fratricidal killing and potentially

limiting therapeutic efficacy. We will review the consequences of

trogocytosis-mediated antigen procurement. Specifically, how this

leads to trogocytosis-mediated signaling, target cell antigen loss,

and fratricide (Figure 2).
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Trogocytosis-mediated signaling
It has been shown that molecules can be transferred between

cells via trogocytosis within minutes of contact, and these molecules

retain their ability to signal (131), remaining on the cell surface for

days (133). Thus, it is important to consider how these acquired

proteins change the function of the receiving cell. On one hand,

trogocytosis can have positive consequences on NK cell function.

For example, NK cells can trogocytose chemokine receptors such as

CCR5, CXCR4, or CCR7 (134–136). The acquisition of CCR7 leads

to increased NK cell homing to the lymph nodes (135). The

acquisition of some molecules, such as TYR03, also increases

effector function and proliferation (137). In contrast, trogocytosis

can also inhibit NK cell cytotoxicity through the acquisition of

immunosuppressive proteins (138–142). In the context of cancer,

we found that NK cells acquire PD-1 from leukemia cells (138). In

ovarian cancer, NK cells acquire CD9 from ovarian cancer tumor

cells, supressing cytotoxicity (139). Despite many studies

investigating trogocytosis-mediated signaling, there are few

studies proposing methods to counteract these effects. One

method to overcome trogocytosis-mediated signaling is to use

blocking antibodies against the target antigen. In the case of CD9,

NK cell cytotoxicity was restored using a CD9 blocking antibody in

vitro (139).

To the best of our knowledge, signaling from receptors

transferred via trogocytosis to CAR-T and CAR-NK cells has not

yet been explored. Given that antigens targeted by the CAR can be

important signaling molecules in tumor cells (such as BCMA in

plasma cells, or mesothelin in solid tumors) (143, 144). Acquisition

of target molecules by T or NK cells through trogocytosis may also

alter cell function in the CAR cells. Future studies could explore the

signaling of trogocytosis-acquired molecules in CAR cells and

determine if this is a necessary consideration in designing

CAR therapies.

Antigen loss
Another consequence of trogocytosis is antigen loss on the

target cells. While this has been shown in CAR-NK (145), it is more

highly studied in the context of CAR-T (146–148). Since antigen

density impacts CAR functionality, downregulation or

internalization of the target antigen can lead to tumor escape.

Therefore, methods to overcome trogocytosis-induced antigen

loss could improve tumor clearance. Trogocytosis may be

overcome by tweaking the affinity of the CAR for the target

antigen, as low affinity constructs are thought to lead to less

trogocytosis while maintaining efficacy (149). Several reports have

shown that lower affinity CARs present increased efficacy by

preventing tumor escape (147, 149–151); it is tempting to

speculate that lower trogocytosis might contribute to this

improved function.

Another option to overcome trogocytosis-mediated antigen loss

is to adjust the signaling domain of the CAR, as trogocytosis has

been shown to affect CARs with CD28 or 4-1BB signaling domain

differentially (147). Finally, one interesting study showed that

overexpression of cholesterol 25-hydroxylase (CH25H), can lower

trogocytosis in CAR-T cells through altered cholesterol metabolism,
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leading to better outcomes in xenograft models (152). For both T

and NK cells, it is not clear at this time whether CAR-expression

increases trogocytic transfer by increasing the strength and length

of CAR-target cell interaction, or if the antigen-specific binding of

the CAR is directly implicated in the process of antigen transfer.

More mechanistic studies of trogocytosis in the context of CAR

signaling will be needed to better understand the underlying

biological processes and how this applies to antigen loss.

Fratricide
In some cases, the ultimate consequence of trogocytosis-mediated

antigen transfer to NK cells is NK-mediated killing of other NK cells, a

process known as fratricide. In non-genetically modified NK cells

trogocytosis of MHC class I-related chain A (MICA) in humans or

retinoic acid early-inducible protein 1 (Rae-1) in mice has been shown

to lead to fratricidal NK-mediated killing of NK cells (153, 154). This is

also a common problem inCAR therapy, when the CAR target antigen

is transferred from the tumor to the CAR-T or CAR-NK cell, leading to

fratricide of CAR cells (145, 146). In the context of endogenous T or

NK antigens like CD7 or CD38 respectively, knockout of the target

antigen in the effector cell can overcome fratricidal killing (155, 156),

but such an approach would not work for antigens which are

transferred to effector cells via trogocytosis. As described above,

design of the CAR to limit trogocytosis in CAR-T cells could not

only improve antigen loss, but it can also prevent fratricide (147, 149,

152). In the case ofNK-CARs, a recent elegant study used an inhibitory

receptor targeting an NK-restricted antigen along with the tumour-

targeted CAR in order to prevent trogocytosis and improve therapeutic

activity (145). Future studies are needed to assess whether specific

changes in the design of the various domains of the CAR construct can

reduce trogocytosis mediated antigen loss and/or fratricide, and

thereby improve the long-term efficacy of both CAR-T and CAR-

NK therapies.
Conclusion

While not yet as well understood as CAR-T, CAR-NK have

shown promise in early studies treating both hematologic

malignancies and solid tumors. However, despite the clear

conceptual advantages to NK cell-based CAR therapies, and a

robust clinical safety record for NK therapies in general, CAR-NK

treatments have not had the strong efficacy and/or long-term

persistence that are needed. The multiple reasons underlying the

struggles for CAR-NK therapy have yet to be fully elucidated but
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certainly include many of the same challenges which limit CAR-T

therapies. Hopefully by applying lessons learned over many years of

experience in the CAR-T field, those working with CAR-NK cells

will be able to capitalize on the unique assets offered by NK cell

biology and create the next generation of revolutionary accessible

and affordable cellular therapies.
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