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Integrative analysis revealed
that distinct cuprotosis
patterns reshaped tumor
microenvironment and
responses to immunotherapy
of colorectal cancer

Ximo Xu †, Chengsheng Ding †, Hao Zhong †, Wei Qin †,
Duohuo Shu, Mengqin Yu, Naijipu Abuduaini , Sen Zhang*,
Xiao Yang* and Bo Feng*

Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China
Background: Cuprotosis is a novel form of programmed cell death that involves

direct targeting of key enzymes in the tricarboxylic acid (TCA) cycle by excess

copper and may result in mitochondrial metabolic dysfunction. However,

whether cuprotosis may mediate the tumor microenvironment (TME) and

immune regulation in colorectal cancer (CRC) remains unclear.

Methods: Ten cuprotosis-related genes were selected and unsupervised

consensus clustering was performed to identify the cuprotosis patterns and

the correlated TME characteristics. Using principal component analysis, a COPsig

score was established to quantify cuprotosis patterns in individual patients. The

top 9most important cuprotosis signature genes were analyzed using single-cell

transcriptome data.

Results: Three distinct cuprotosis patterns were identified. The TME cell

infiltration characteristics of three patterns were associated with immune-

excluded, immune-desert, and immune-inflamed phenotype, respectively.

Based on individual cuprotosis patterns, patients were assigned into high and

low COPsig score groups. Patients with a higher COPsig score were

characterized by longer overall survival time, lower immune cell as well as

stromal infiltration, and greater tumor mutational burden. Moreover, further

analysis demonstrated that CRC patients with a higher COPsig score were

more likely to respond to immune checkpoint inhibitors and 5-fluorouracil

chemotherapy. Single-cell transcriptome analysis indicated that cuprotosis

signature genes recruited tumor-associated macrophages to TME through the

regulation of TCA and the metabolism of glutamine and fatty acid, thus

influencing the prognosis of CRC patients.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1165101/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1165101/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1165101/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1165101/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1165101/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1165101/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1165101&domain=pdf&date_stamp=2023-03-16
mailto:fb11427@rjh.com.cn
mailto:yxrjmis@alumni.sjtu.edu.cn
mailto:zhangsen6886@163.com
https://doi.org/10.3389/fimmu.2023.1165101
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1165101
https://www.frontiersin.org/journals/immunology


Xu et al. 10.3389/fimmu.2023.1165101

Frontiers in Immunology
Conclusion: This study indicated that distinct cuprotosis patterns laid a solid

foundation to the explanation of heterogeneity and complexity of individual

TME, thus guiding more effective immunotherapy as well as adjuvant

chemotherapy strategies.
KEYWORDS

cuprotosis, colorectal cancer, tumor microenvironment, immune checkpoint
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Introduction

Colorectal cancer (CRC) is one of the most prevalent

malignancies and remains the leading cause of cancer death

worldwide, with more than 30% of patients suffering from

recurrence, metastasis, and death within a 5-year treatment (1, 2).

Currently, immunotherapy, which makes use of immune

checkpoint inhibitors (ICIs), including anti-PD-1/CTLA-4, is

popular worldwide, with good results in treating non-small cell

lung cancer (3, 4). Moreover, studies have demonstrated that this

effective treatment has the potential to achieve a durable response in

CRC as wel l (5 , 6) . Recently , the concept of tumor

microenvironment (TME) has been proposed and widely

appreciated as a result of the increasing knowledge of diversity

and complexity of tumor components. TME is the environment

where the tumor is located and various immune cells, stromal cells,

extracellular matrix (ECM) molecules, and cytokines coexist (7–9).

As a result of their interaction with the TME components, tumor

cells show a variety of changes in biological behavior, such as the

stimulation of proliferation and angiogenesis, apoptosis inhibition,

and hypoxia avoidance. Emerging evidence indicates that TME

appears to play a critical role in tumor progression, immune escape,

and response to immunotherapy (10–12). The prediction of ICI

response based on the characteristics of TME cell infiltration is a

promising way to improve the current ICIs’ effect and develop new

immunotherapeutic approaches (13–16). Therefore, a

comprehensive analysis of different TME patterns may help

identify distinct tumor immune phenotypes and further guide

and predict the selection of ICIs (16, 17).

Copper is an essential metal ion that is required for many

cellular functions, including energy production and antioxidant

defense. However, when copper levels become excessive, it can lead

to the production of reactive oxygen species (ROS) through Fenton

chemistry, which can cause oxidative damage to cellular

components. This oxidative stress can activate a number of cell

death pathways, including apoptosis, necrosis, and autophagy,

ultimately leading to cell death (18). Copper-induced cell death,

also named cuprotosis, refers to the direct targeting of copper to the

key lapidated enzyme of the tricarboxylic acid (TCA) cycle and thus

is responsible for the dysfunction of mitochondrial metabolism

(19). A great deal of progress has been made in immunometabolism
02
in recent years, and there is substantial evidence that both the

dysfunction of mitochondrial metabolism and ROS are associated

with immune response (20–23). Therefore, a comprehensive

understanding of whether cuprotosis is associated with TME and

the response of ICIs in CRC will help deepen our understanding of

it and provide new strategies for immunotherapy.

In this study, the genomic and clinical information of 1,226

CRC samples was synthesized to investigate the copper death

patterns, and the correlation between the cuprotosis patterns and

their related TME infiltration characteristics. Three distinct

cuprotosis patterns were identified by the unsupervised consensus

clustering, and we found that the TME cell infiltration

characteristics of the three patterns were associated with immune-

excluded, immune-desert, and immune-inflamed phenotype,

respectively. Then, we established a scoring scheme to quantify

the cuprotosis patterns in individual CRC patients and to predict

the response to ICIs and adjuvant chemotherapy.

Materials and methods

Source and preprocess of publicly
attainable colorectal expression datasets

The publicly attainable NCBI Gene Expression Omnibus (GEO)

datasets (https://www.ncbi.nlm.nih.gov/geo/) and the Cancer

Genome Atlas (TCGA) (https://cancergenome.nih.gov/) were

used to retrospectively collect the gene expression and clinical

characteristics of CRC samples. No further evaluation was

conducted for samples who had no survival information. A total

of 4 eligible CRC cohorts (GSE103479, GSE39582, TCGA-COAD,

and TCGA-READ) were enrolled in this study for further analysis.

As for the datasets in TCGA, RNA sequencing data of gene

expression (FPKM value) were downloaded from the Genomic

Data Commons (GDC) using TCGAbiolinks, an R package that

was specifically developed to allow integration of GDC data (24).

The FPKM values were then converted to transcripts per kilobase

million (TPM) values. The “Combat” algorithm of the R package

sva was used to correct the batch effect among the different datasets

(25). The genomic mutation data [somatic mutation and copy

number variation (CNV)] of TCGA-COAD and TCGA-READ

were curated from GDC.
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Unsupervised consensus clustering for 10
cuprotosis regulation genes

Ten cuprotosis-related genes (CRGs) were extracted from the

meta-cohort. Unsupervised clustering analysis was applied to identify

different cuprotosis patterns and classify patients for further study

based on their expression of 10 CRGs. In a consistent clustering

algorithm, cluster number and the stability of each cluster are

determined (26). The above steps were implemented following the

ConsensuClusterPlus package, and 1,000 times repetitions were

conducted to ensure the stability of classification (27).
Functional annotation and gene set
variation analysis

Gene set variation analysis (GSVA) enrichment analysis was

performed by using the “GSVA” R package, in order to investigate

the heterology of the different cuprotosis patterns. As a non-

parametric and unsupervised approach to explore the variations

in pathway and biological process activity, GSVA is generally

employed in estimating the samples of an expression dataset (28).

GSVA was performed using gene sets “c2.cp.kegg.v7.5.1.symbols”

downloaded from MSigDB, as implemented in the GSVA package

(version 1.42.0).
Analysis of TME immune cell infiltration
and the immune response predictor

ssGSEA (single sample gene set enrichment analysis) (29), EPIC

(30), xCELL (31), andMCPcounter (32) algorithms were performed

to quantify the relative abundance of TME immune cell infiltration

as well as assess the immune function in the CRC patients. The

ESTIMATE (33) algorithm was performed to estimate the immune

and stromal cells in CRC. The ESTIMATE algorithm helps us

predict the infiltration level of immune cells and stromal cells by

calculating the immune and stromal scores. The tumor immune

dysfunction and exclusion (TIDE) algorithm, including two major

mechanisms of tumor immune escape, T-cell dysfunction and T-

cell exclusion, was utilized to evaluate the TME and predict

response to treatment with ICIs (34). Higher TIDE scores

indicate a lower response rate to ICI treatment as tumor cells

tend to induce immune escape.
Identification of differentially expressed
genes between distinct cuprotosis patterns

By examining the expression of 10 CRGs, we categorized

samples into three different cuprotosis patterns, in order to

identify CRGs. With the “limma” R package, we applied the

empirical Bayesian algorithm to ascertain differentially expressed

genes (DEGs) between distinct cuprotosis patterns (35). To

determine the DEGs, an adjusted p-value < 0.05 was employed.
Frontiers in Immunology 03
Generation of COPsig sore

A COPsig score system was established to quantify the

cuprotosis level of individual CRC patients. First, COP gene

signatures A and B corresponded to DEGs that appeared to be

positively and negatively correlated with the clusters of COP genes,

respectively. Then, the dimensionality of COP gene signature A and

B was reduced by performing the Boruta algorithm (36), and

principal component 1 was adopted as the feature score by

applying the PCA. As a last step, we determined the COPsig

score group for each CRC patient using an approach similar to

the gene expression grading index (37):

COPsig · score  ¼oPC1A ·oPC1B
Cancer cell line data and
chemotherapeutic response prediction

On the basis of the Genomics of Drug Sensitivity in Cancer

(GDSC, https://www.cancerrxgene.org/), the largest publicly available

pharmacogenomic database, we predicted the response to

chemotherapy for each CRC sample. Two commonly used

chemotherapy drugs, 5-fluorouracil (5-FU) and paclitaxel, were

selected. Using the R package “pRRrophic”, the estimation of half-

maximal inhibitory concentration (IC50) for each sample was

determined by ridge regression, and Prediction accuracy is measured

by 10-fold cross-validation based on the GDSC training dataset.

The Broad Institute-Cancer Cell Line Encyclopedia (CCLE,

https://portals.broadinstitute.org/ccle/data) project compiled

expression profile and mutation data of human cancer cell lines

(CCLs) (38). From the Cancer Therapeutics Response Portal

(CTRP) (39) and PRISM Repurposing dataset (19Q4, https://

depmap.org/portal/download/Drugsensitivity), drug sensitivity

data for CCLs were obtained. Based on CTRP data, 481

compounds were tested across 835 CCLs, while 1,448 compounds

over 482 CCLs were contained in the PRISM dataset. In both

datasets, a value for area under the curve (AUC) indicates the level

of sensitivity to the treatment, with lower AUC values representing

greater sensitivity. According to the suggestion of Yang et al. (40),

compounds with NAs in more than 20% of samples and cell lines

from hematopoietic and lymphoid tissues were excluded. Next,

AUC values were imputed through K nearest neighbor (k-NN)

imputation. Finally, for further analysis of CTRP and PRISM, CCLE

molecular data were used.
Genomic and clinical data collection for
the ICI cohort

Four immunotherapeutic cohorts with gene expression and

clinical data were enrolled in our study. Metastatic melanoma

received either pembrolizumab or nivolumab (41), non-small cell

lung cancer patients were administered either nivolumab or

pembrolizumab (42), patients with urothelial cancer received
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anti-PD1/PD-L1 therapy (43), and urothelium cancers were treated

with atezolizumab, an anti-PD-L1 antibody (IMvigor210 cohort)

(17). The gene expression profiles were collated and transformed

into TPM format for further analysis.
Single-cell RNA sequencing analysis

GSE132257, which contained single-cell RNA sequencing

(scRNA-seq) data of five CRC samples, was downloaded from the

GEO database. We first filtered and standardized the scRNA-seq data

using the “Seurat” R package. After standardization, the 1,500 genes

with the largest variance were reserved for subsequent analysis. PCA

was then conducted to reduce dimensionality of data. t-SNE was

applied to sort cells into different clusters. The cell annotation of each

cluster was conducted by the “SingleR” R package with reference to

CellMarker (44). In order to calculate the activity of senescence-

related model genes in cells, we utilized the “AUCell” R package to

calculate the AUC of each cell with reference to model genes and then

mapped the AUC to the corresponding cells. Cells that express more

genes from the senescence-related model will exhibit higher AUC

values than cells expressing fewer genes. The “NicheNet” R package

was utilized to infer the interactions between epithelial cells (tumor

cells) and surrounding cells (45). Genes that are expressed in larger

than 10% cells of clusters were considered for ligand–receptor

interactions. In paired ligand–receptor activity analysis, we

extracted top 100 ligands and top 1,000 targets of DEGs of “sender

cell” and “affected cell”, respectively.
Statistical analysis

All the statistical analyses were generated by R software (version

4.1.2). All statistical p-values were two-sided, and p-value < 0.05 was

considered statistically significant. A univariate Cox regression

model was utilized to calculate the hazard ratios (HRs) for CRGs

and cuprotosis phenotype-related genes. Patients with complete

clinical information were included, and a multivariate Cox

regression model was established to ascertain the independent

prognostic risk factors. The results of multivariate and univariate

prognostic analysis were visualized by applying the forest plot R

package. Spearman correlation analysis and distance correlation

analysis was used to calculate the correlation coefficient. Based on

the median COPsig scores, the sample was divided into two groups:

the high and low scoring groups. Differences between three or more

groups were compared using one-way ANOVA and Kruskal–Wallis

tests (46). The waterfall function in the maftools package was

employed to display mutations in the TCGA-CRC cohort (47).

Using the R package “Rcircos”, the CNV landscapes of 10

cuprotosis-regulated genes in human chromosomes were plotted.
Cell line culture and quantitative real-time
polymerase chain reaction

The CRC cell lines HT-29, HCT116, RKO, SW480, and SW620

and the normal cell line NCM460 were purchased from the China
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Center for Type Culture Collection (CCTCC; Shanghai, China) and

cultured in RPMI-1640 (Gibco, Grand Island, NY, USA),

supplemented with 10% fetal bovine serum and 1% penicillin–

streptomycin (Gibco). All cells were incubated at 37°C in

humidified air with 5% CO2. The total RNA of each cell line was

extracted by FastPure® Cell/Tissue Total RNA Isolation Kit V2

(Vazyme, China). Then, the NanoDrop 2000 spectrophotometer

(Thermo) was used to quantify RNA. After reverse transcription of

RNA to cDNA by HiScript® RT SuperMix for qPCR with gDNA

wiper (Vazyme, China), we performed quantitative real-time

polymerase chain reaction (RT-qPCR) on cDNA using ChamQ

Universal SYBR qPCR Master Mix (Vazyme, China). The cycler

protocol is as follows: Stage 1: 30 s at 95°C; Stage 2: 40 cycles of 10 s

at 95°C and 30 s at 60°C; and Stage 3: 15 s at 95°C, 60 s at 60°C, and

15 s at 95°C. GAPDH was exploited as an internal reference. The

mRNA relative expressions of CRGs were calculated by the 2−DDCt

method. The primer sequences used for analysis are listed in

Table S1.
Tissue microarray and
immunohistochemistry

The CRC tissues (n = 80) and matched adjacent normal tissues

(n = 80) were collected from the Department of General Surgery,

Ruijin Hospital, Shanghai Jiao Tong University School of Medicine.

All patients signed written informed consent before the study. The

immunohistochemical assay was conducted as previously described

(48). Two pathologists, blinded to clinical information, analyzed the

relative intensity of specimens using ImageJ software (National

Institutes of Health, USA).
Western blotting

Proteins were electrophoresed with 4%–20% SDS-PAGE gels

and transferred to polyvinylidene difluoride membranes. The

membrane was blocked with 5% BSA for 1 h at room

temperature and incubated overnight at 4°C in primary antibody

diluent. Then, the membrane was incubated with secondary

antibody for 1 h at room temperature. All bands were measured

and analyzed by Quantity One software (Bio-Rad, Hercules, CA,

USA). The primary antibody was anti-PDHA1 (1 μg/ml, A13687,

ABclonal, CHN). The secondary antibodies such as horseradish

peroxidase (HRP)-conjugated anti-rabbit (A6154) and anti-mouse

(A4416) antibodies were from Sigma-Aldrich.
Results

Landscape of genetic variation of
cuprotosis-regulated genes in
colorectal cancer

In this study, a total of 10 CRGs were finally identified. We first

examined the expression levels of 10 CRGs in pan-cancer. We
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found that in the majority of carcinomas, the CRGs were poorly

expressed in tumors, except for CDKN2A (Figure 1A). Then, we

demonstrated the CNV and somatic mutations of 10 CRGs in CRC.

Among the 399 samples, 9.33% underwent genetic alteration of

CRGs, principally including missense mutation, frame shift

deletions, and nonsense mutation (Figure S1A). It was observed

that LIAS showed the highest mutation frequency, followed by

LIPT1, while neither FDX1 nor CDKN2A showed any mutation in

the CRC samples (Figure 1B). Next, we investigated the CNV

frequency mutations of CRGs, and six genes showed a CNV

mutation. DLD and PDHB had a wide amplification in copy

number. On the contrary, CDKN2A and LIAS were focused on

the prevalent CNV deletions (Figure 1C). The location of CNV

alterations of 10 CRGs on chromosomes is demonstrated in

Figure 1D. Moreover, further analysis was made to investigate the

mRNA expression level of CRGs between normal and CRC

samples, and we found that the expressions of FDX1, DLD,

DLAT, PDHB, and MTF1 were significantly decreased, whereas

LIPT1, GLS, and CDKN2A were significantly upregulated in tumor

samples (Figure 1E). The expression level of CRGs with CNV

amplification was higher in CRC samples compared to normal

samples (e.g., GLS and PDHA1), while the expression level of LIAS

was relatively decreased in tumor samples (Figures 1D, E). In

addition, Spearman correlation analysis was performed to

evaluate the mutual regulation between the CRGs (Figure S1B).

CDKN2A showed a significantly negative correlation with most

other CRGs. The univariate and multivariate Cox model were

established to ascertain whether CRGs were independent risk

factors for prognosis in CRC patients. The forest plots showed

that CDKN2A and GLS could be considered as a risk factor for CRC

patients and correlated with a markedly shorter overall survival

(Figure S1C,D). Thus, in the above analyses, we observed a very

heterogeneous landscape of genetic and expressional changes in

CRGs between normal and CRC samples. Accordingly, the

imbalance in CRG expression was crucial to the occurrence and

progression of CRC.
Cuprotosis patterns mediated by 10 CRGs

Four datasets (GSE103479, GSE39582, TCGA-COAD, and

TCGA-READ cohort) with available survival information and

clinical annotations were merged in one meta-cohort. The CRG

network revealed a landscape of CRG interactions, gene connection,

and their prognosis significance for CRC patients (Figure 2A). The

illustration indicated that the cross-talk among the CRGs probably

plays a pivotal role in different cuprotosis patterns and was involved

in CRC development and progression. Based on the above

hypothesis, we stratified the samples with quantitatively distinct

cuprotosis patterns according to the expression levels of 10 CRGs

utilizing the R package of ConsensusClusterPlus. Three different

cuprotosis patterns were eventually identified using unsupervised

clustering, including 406 cases in COPcluster C1, 206 cases in

COPcluster C2, and 614 cases in COPcluster C3 (Figures 2B, C).

Then, we performed a prognosis analysis for the three main

cuprotosis clusters; the results demonstrated that COPcluster C3
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showed a prominent survival advantage, while COPcluster C2 was

the least likely to survive in the meta-cohort (Figure 2D). Moreover,

the unsupervised clustering discovered three totally different

patterns of cuprotosis in the meta-cohort (Figures 2E, F). There

was significant distinction in the CRG transcriptional profile among

the three different cuprotosis patterns (Figure 2F).
The cuprotosis patterns characterized by
distinct immune landscape

In order to investigate the molecular mechanisms among the

three different cuprotosis patterns, GSVA enrichment analysis was

performed on the KEGG gene set. We found that all the three

clusters were markedly enriched in the immune signaling pathway,

including the T-cell receptor signaling pathway, the B-cell receptor

signaling pathway, and the Toll-like receptor signaling pathway.

However, COPcluster C1 and COPcluster C2 were simultaneously

enriched in stromal elements such as ECM–receptor interaction

and cell adhesion molecules cams (Figures 3A, B). To clarify and

compare the 23 immune infiltration cell subpopulations of each

cluster, we then constructed a boxplot with ssGSEA. To our

surprise, subpopulation analysis of TME cell infiltration indicated

that the vast majority of immune cells, such as active CD4+ cells,

eosinophils, and activated B cells, were enriched in COPcluster C1

and C3, with the least enrichment in COPcluster C2 (Figure 3C).

Nevertheless, patients in COPcluster C3 and C2 had a longer

median overall survival, while those in COPcluster C2 did not

show a matching prognosis advantage (Figure 2D). In addition, the

ESTIMATE algorithm was used to evaluate the immune cell

infiltration level (Immune Score) and stromal cell infiltration level

(Stromal Score) across three different cuprotosis patterns. Further

analysis revealed that COPcluster C3 exhibited the lowest immune

score, followed by C2 and C1 (Figure S1E). Meanwhile, COPcluster

C1 and C2 had a much higher stromal score than COPcluster C3

(Figure S1F). According to previous studies, immune-excluded

tumor phenotype exhibited an abundance of immune cells.

Rather than penetrating tumor parenchyma, these immune cells

remained in the stroma surrounding tumor cell nests (49). Thus, we

hypothesized that the abundant stromal component in COPcluster

C1 and C2 inhibited potential antitumor immune response.

Subsequent TME analysis demonstrated that stromal activation

was significantly enhanced in COPcluster C1 and C2, including

the activity of epithelial–mesenchymal transition (EMT),

transforming growth factor beta (TGF-b). Moreover, previous

studies proposed a novel concept, TMEscore (TMEscore A −

TMEscore B), representing the signature of tumor immune

microenvironment (17). In our study, we found a relatively lower

TMEscore B as well as a markedly higher TMEscore in COPcluster

C3 (Figure 3D). As a result of the above findings, we confirmed that

the three cuprotosis patterns developed significantly different

characterizations of TME cell infiltration. COPcluster C1 was

considered as an immune-excluded phenotype, characterized by

diminished immune cell infiltration and stromal activation.

COPcluster C2 was classified as immune-desert phenotype,

characterized by immunosuppression, while COPcluster C3 was
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considered as an immune-infiltrated phenotype, marked by

immune cell infiltration and immune activation.

We then further explored the specific correlations between CRGs

and TME immune cell infiltration by Spearman’s correlation analysis

(Figure S2A).We found that high expression of CDKN2A andMTF1

was associated with abundant immune cell infiltration, whereas

PDHA1, LIPT1, LIAS, GLS, FDX1, and DLAT expression exhibited

a negative correlation with the immunocyte infiltration. Among these
Frontiers in Immunology 06
CRGs, the relatively high level of negative correlation between

PDHA1 and immune cell infiltration attracted our attention. Based

on the PDHA1 expression level, the CRC samples were assigned into

high- and low-expression groups according to the best cutoff of

6.68376. There was significant prognostic difference between the two

groups of patients (Figure S2B). The results of GSVA indicated that

patients with a low PDHA1 level were more likely to be associated

with enrichment of immune-related signaling pathway such as
D

A B

E

C

FIGURE 1

Landscape of expression and genetic alteration of cuprotosis-related genes (CRGs) in colorectal cancer. (A) The fold changes of the expression level
alterations of CRGs in 18 cancer types, with red representing upregulated genes and green representing downregulated genes in the heatmap. (B) Thirty-
eight of the 399 CRC patients developed genetic mutation of 10 CRGs. Each column represented an individual patient. The upper barplot showed the
tumor mutational burden. The right barplot showed the frequency of each variant type. (C) The CNV frequency mutations of 10 CRGs. Alteration
frequency was represented by the column height. Green dots represented the deletion frequency. Red dots represented the amplification frequency.
(D) The location of CNV alteration of 10 CRGs on chromosomes. (E) The difference of mRNA expression level of 10 CRGs between normal and tumor
CRC samples (TCGA-COAD and TCGA-READ). The asterisks represent the statistical p-value (ns: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
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natural killer cell, Toll-like receptor, and B cell response signaling

pathways (Figure S2C). ESTIMATE algorithm was then used to

quantify the overall immune cell infiltration between low and high

PDHA1 samples. The results demonstrated that low expression of

PDHA1 exhibited higher immune scores, which meant that the
Frontiers in Immunology 07
tumors with low PDHA1 expression were surrounded by more

immunocyte components, thus confirming our above findings

(Figure S2D). Additionally, we discovered that tumors with low

expression levels of PDHA1 had significantly higher infiltration of

23 TME immune cells (Figure S2E). Furthermore, considering that
D

A B

E

F

C

FIGURE 2

Cuprotosis patterns in CRC patients. (A) The network between 10 CRGs in CRC patients. The size of the circle corresponded to the effect of each
gene on the patients’ prognosis, and the range of values was scaled by log-rank test. Protective factor for patients’ OS was illustrated by a green dot,
and risk factors was illustrated by a black dot. The lines showed the interaction of each gene, and the thickness represented the correlation strength.
Blue lines indicated negative correlation, and red lines indicated positive correlation. The CRG cluster A–D was marked with yellow, blue, red, and
brown, respectively. (B) Unsupervised consensus clustering for 10 CRGs in the meta-cohort and the consensus matrices for k = 3. (C) Consensus
values range from 0 to 1. (D) Kaplan–Meier curves for the three cuprotosis patterns based on 1,226 CRC patients from the meta-cohort, including
406 samples in COPcluster C1, 206 samples in COPcluster C2, and 614 samples in COPcluster C3 (log-rank test). The COPcluster C3 showed a
significantly better prognosis than the other two COPclusters. (E) The transcriptome profiles of three cuprotosis patterns were analyzed by principal
component analysis, revealing a striking difference in transcriptome profiles between different patterns. (F) Expression heatmap of three COPclusters
of 10 CRGs in the meta-cohort. Immune subtype, age, gender, N stage, T stage, and prognosis were annotated. Yellow represents a high expression
of CRGs, and blue represents a low expression.
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PD-L1 and CTLA-4 are well-proven biomarkers for predicting the

response of anti-PD-1/PD-L1 and anti-CTLA-4 treatment, we

compared the expression levels of CD274 (known as PD-L1) and

CTLA-4 between the different PDHA1 expression subtypes. It is not

surprising that CD274 and CTLA-4 expression were significantly

upregulated while the expression of PDHA1 was low (Figures S2F,
Frontiers in Immunology 08
G). Taken together, we could speculate that the PDHA1-mediated

cuprotosis process might promote tumor TME immune cell

infiltration, thus enhancing the intratumoral antitumor immune

response. Furthermore, PDHA1 might mediate the regulation of

PD-L1 and CTLA-4, thereby influencing the sensitivity of patients

to immunotherapy.
D

A B

C

FIGURE 3

Biological and TME infiltration characteristics of each cuprotosis pattern. (A, B) Barplot depicting the GSVA score of representative KEGG pathways
curated from MSigDB in three cuprotosis patterns. (A) COPcluster C3 vs. COPcluster C1. (B) COPcluster C3 vs. COPcluster C2. (C) The fraction of
TME cell infiltration of three cuprotosis patterns using the ssGSEA algorithm. The top end, median line, and bottom end of the box represent the
25%, 50%, and 75% value, respectively. The black dots show outliers. The asterisks illustrate the statistical p-value (*p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001, ns p > 0.05). (D) The fraction of different signatures (immune-relevant signature, mismatch-relevant signature, and stromal-relevant
signature) and TMEscore. The line in the box represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles
(interquartile range). The whiskers encompass 1.5 times the interquartile range. The asterisks illustrate the statistical p-value (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, ns p > 0.05).
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Cuprotosis phenotype-related DEGs in
colorectal cancer

Although samples were classified into three different cuprotosis

patterns, the potential genetic alterations and expression

disturbances in these phenotypes remained unclear. Based on

these queries, we further investigated the underlying cuprotosis-

related transcriptional expression change across three cuprotosis

patterns in CRC. For each of the three cuprotosis patterns, the

Limma package was applied to identify overlapping DEGs. A total

of 1,727 DEGs representing the crucial distinct indices of the three

cuprotosis patterns were selected and illustrated in the Venn

diagram (Figure 4A). Afterwards, in order to screen for DEGs

associated with patients’ prognosis, a univariate Cox analysis was

performed, which resulted in 375 genes. To further validate the

biological process of CRGs, we subsequently performed an

unsupervised clustering analysis based on the selected 375 CRGs

to classify the samples into different genomic subtypes. The

stratifications assigned samples into three subgroups consistent

with the clustering grouping of cuprotosis patterns, and we

named the three distinct subgroups COP gene clusters A–C

(Figures 4B-D). The results demonstrated that three different

cuprotosis patterns did exist in CRC. We found that patients with

relatively advanced T stage and N stage were probably represented

by COP gene cluster C, while patients with MSI/dMMR were more

likely to be characterized by COP gene clusters A and B (Figure 4D).

Among 1,226 colorectal patients, 556 were found to be clustered in

the COP gene cluster A, which was linked to a better prognosis.

While a worse survival outcome was observed for patients in gene

cluster C, an intermediate prognosis was observed in gene cluster,

with a total of 462 patients aggregated (Figure 4E). The expression

level of the 10 CRGs among the three gene clusters was compared

and is shown in Figure 4F. We observed significant differences in

CRG expression between the three gene clusters, which was also in

accordance with the expected results of cuprotosis patterns.
Construction of COPsig score and
exploration of its clinical relevance

Despite our findings indicating that cuprotosis patterns were

involved in prognosis and immune infiltration, these analyses are

based only on patient populations and cannot accurately predict the

signatures of cuprotosis in individual tumors. We thus formulated a

scoring scheme known as the COPsig score, which hinged on the

identified cuprotosis-related signature genes, to classify the patterns

of cuprotosis in individual colorectal patient. Due to the complexity

of cuprotosis quantification, an alluvial diagram could be used to

illustrate the workflow of COPsig score construction (Figure 4G).

Meanwhile, we calculated the COPsig score in the ICI cohort in the

same manner, to confirm our results. Kruskal–Wallis test revealed a

prominent difference between COPsig score and COP gene clusters.

Gene cluster B showed a higher median COPsig score, indicating

that high COPsig scores were likely to be associated with immune

activation-related signatures, whereas gene clusters A and C
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illustrated a relatively lower median COPsig score (Figures 4H, I).

In particular, COPcluster C3 had a significantly higher COPsig

score compared to other clusters and COPcluster C1 presented the

lowest COPsig score (Figure 5A). We then ought to ascertain the

prognostic capacity of the COPsig score to predict oncological

outcomes by assigning patients into high or low scoring groups

with a cutoff of 0.658 (see Materials and Methods). As anticipated,

patients with a high COPsig score were markedly related to a better

prognosis (Figure 5B). As an additional step in validating the

COPsig score, we used the three CRC cohorts mentioned above

to determine the relationship between the COPsig score and patient

prognosis (GSE103479, GSE39582, and TCGA-CRC). In a similar

manner to the results above, high COPsig scores were significantly

correlated with better survival outcomes (Figures S3A–C). Based on

the univariate and multivariate Cox regression model analysis

considering patient age, gender, T stage, N stage, and COPsig

score, COPsig score was found to serve as a reliable and

independent protective factor for assessing patient survival

outcomes (Figures S3D, S4E). According to the analysis of the

relevant components of TME, a significant association was revealed

between low COPsig score and stromal-related pathways in both

the meta-cohort and the ICI cohort (Figures 5C, D). To better

characterize the cuprotosis signature, we also examined the

correlation between the signatures and COPsig scores. According

to the heatmap of correlation matrix, COPsig score was negatively

correlated with immune activation process, EMT, and stromal-

related features, but was positively correlated with DNA repair

signatures in both the meta-cohort and the ICI cohort (Figure 5E).

Moreover, the ESTIMATE algorithm was used to further examine

the immune characteristics of high and low COPsig scores. We

could find that in both the meta-cohort and the ICI cohort, low

COPsig scores were strongly associated with high immune scores

and stromal scores (Figures S4A–D). Next, we performed xCell,

MCPcounter, single-sample gene set enrichment analysis (ssGSEA),

and EPIC algorithm, in order to illustrate the immune landscape of

high and low COPsig scores. As shown in Figure S4E, F, abundant

immune cell infiltration could be found in the low COPsig score

group, and the level of immune infiltration was negatively

correlated with the COPsig scores. In light of the above findings,

low COPsig scores were significantly associated with immune

activation and stromal activation. The COPsig score could be

used to distinguish individual colorectal tumors’ patterns of

cuprotosis and further characterize the TME immune cell

infiltration. In addition, high COPsig scores were strongly

correlated with better survival outcomes, creating an accurate

predictor of CRC patient prognosis.

Then, using the Maftools package, the distribution differences of

somatic mutation between high and low COPsig scores in the TCGA-

CRC cohort were analyzed. The high COPsig score group had a

greater tumor mutation burden than the low COPsig score group.

Mutational landscapes revealed that APC (81% vs. 62%) and tp53

(58% vs. 45%) were more susceptible to somatic mutations in the high

COPsig score group (chi-square test, p < 0.05, Figures S3F, G). The

TMB quantification analysis supported the hypothesis that high

COPsig score tumors correlated markedly with a higher TMB
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FIGURE 4

Construction of COP gene clusters and COPsig score. (A) A total of 1,727 cuprotosis-related differentially expressed genes (DEGs) between three
cuprotosis patterns were illustrated in the Venn diagram. (B) Unsupervised consensus clustering for 375 prognosis-related DEGs in the meta-cohort
and the consensus matrices for k = 3. (C) Consensus values range from 0 to 1. (D) Expression heatmap of three COP gene clusters of 375 DEGs.
Immune subtype, COPcluster, age, gender, N stage, T stage, and prognosis were annotated. Yellow represents a high expression of DEGs, and blue
represents a low expression. (E) Kaplan–Meier curves for the three COP gene clusters, including 556 samples in gene cluster A, 462 samples in gene
cluster B, and 208 samples in gene cluster C (log-rank test). Gene cluster A showed a significantly better prognosis than the other two gene clusters.
(F) The expression level of 10 CRGs in three gene clusters. The line in the box represents the median value. The bottom and top of the boxes are the
25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The asterisks illustrate the statistical p-
value (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns p > 0.05). (G) Alluvial diagram showing the changes in COPclusters, gene clusters,
COPsig score, and patients’ prognosis. (H, I) Differences in COPsig score among three COP gene clusters in the meta-cohort (H) and the ICI cohort
(I). The Kruskal–Wallis test was used to compare the statistical difference between three gene clusters (p < 0.001).
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(Figure S3H). Increasing evidence indicated that patients with high

TMB status appear to respond to immunotherapy with durable

clinical effects. In summary, the above results inferred that the

differences in tumor cuprotosis patterns might act as a critical factor

mediating clinical responses to immunotherapy. The COPsig scores

were found to be able to indirectly predict immunotherapy, as well.
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Implications of COPsig scores in
the prediction of immune response
and drug sensitivity

There is no doubt that anti-CTLA-4/PD-1 therapy has made a

significant breakthrough in antitumor therapy. TIDE, a newly
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FIGURE 5

The TME cell infiltration characteristics in the high and low COPsig score groups. (A) Differences in COPsig score among three COPclusters in the
meta-cohort. The Kruskal–Wallis test was used to compare the statistical difference between three gene clusters (p < 0.001). (B) Kaplan–Meier
curves for the two COPsig score groups, including 789 samples in the high COPsig score group, and 437 samples in the low COPsig score group
(log-rank test). The high COPsig score group showed a significant better prognosis. (C) The fraction of TME cell infiltration of the high and low
COPsig score groups using the ssGSEA algorithm. The top end, median line, and bottom end of the box represent the 25%, 50%, and 75% values,
respectively. The black dots show outliers. The asterisks illustrate the statistical p-value (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns p >
0.05). (D) The fraction of different signatures (immune-relevant signature, mismatch-relevant signature, and stromal-relevant signature) and
TMEscore. The line in the box represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range).
The whiskers encompass 1.5 times the interquartile range. The asterisks illustrate the statistical p-value (*p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001, ns p > 0.05). (E) Correlations between COPsig score and the known biological gene signatures in the meta-cohort and the ICI cohort using
Spearman analysis. Negative correlation was marked with blue and positive correlation was marked with orange.
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identified immune response predictor, is widely used and is strongly

recommended in addition to some of the well-known TMB, PD-L1,

and MSI measures (50, 51) According to our analysis, both in the

meta-cohort and the ICI cohort, the TIDE value significantly

declined in the high COPsig group (p < 0.01 in the meta-cohort,

p < 0.001 in the ICI cohort, Figures 6A, B). It appeared from these

findings that the expression of tumor-specific cuprotosis patterns

played a critical role in regulating immune responses. As COPsig
Frontiers in Immunology 12
score offered a robust correlation with immune response, we next

investigated whether COPsig score could predict patient response to

ICI therapy in four immunotherapy cohorts. We found that in the

ICI cohort, patients were assigned into two groups (Figures 6C, D).

Patients with a high COPsig score were proven to have significant

benefit and immune response to ICI treatment (response rate: 30%

vs. 18%, Figure 6E). Figure 6F also illustrates that patients who

received CR/PR tended to have a higher COPsig score (p = 0.0012).
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FIGURE 6

Potential immunotherapy in high and low COPsig score group. (A, B) The relative distribution of TIDE was compared between COPsig score high vs.
low groups in meta-cohort (A) and ICIs cohort (B), respectively. (C, D) Principal component analysis of the ICIs cohort and the response to ICIs. (E,
F) The fraction of patients with immunotherapy response (ICIs cohort) in low and high COPsig score groups (E). The COPsig score of CR/PR and
PD/SD patients in ICIs cohort (F). (G) Expression heatmap in meta-cohort. Gene clusters, response, COPsig score, were annotated. Yellow
represented a high expression, and blue represented a low expression. (H) Univariate cox regression model estimating clinical prognosis significance
between TMB, COPsig score, response, neoantigen and gender. (I) correlation between COPsig score and neoantigen in CR/PR. Yellow represented
CR/PR patients, blue represented SD/PD patients.
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A heatmap illustrated the gene expression difference between the

high and low COPsig score groups, which might be correlated with

the response of ICIs (Figure 6G). Then, we established a univariate

Cox model to predict whether COPsig score was an impact factor

for patient prognosis (Figure 6H). The results showed that COPsig

score, neoantigen, TMB, and gender were protective factors, while

response to ICIs was a risk factor for patients’ long-term survival.

Moreover, for patients who benefited from ICIs, COPsig score was

significantly negatively correlated with neoantigen expression, while

COPsig score was positively correlated with neoantigen expression

in the PD/SD group, which confirmed the above results (Figure 6I).

Since chemotherapy is the most common form of treatment for

CRC, we assessed the effect of two chemo drugs: 5-FU and

paclitaxel. The ridge regression model was then trained by ridge

regression on the GDSC cell line dataset and proven accurate by 10-

fold cross-validation. Based on our predictive models of these two

drugs, we estimated the IC50 for each sample in the meta-cohort.

There was a significant difference between low and high COPsig

scores for the two chemo drugs, with the high COPsig score group

being more sensitive to commonly administered chemotherapy (p <

0.001 for 5-FU and paclitaxel, Figures 7A, B). Furthermore, the

correlation analysis demonstrated that the IC50 values of both drugs

were markedly negatively correlated with the COPsig score as well

(Figures 7C, D).

Then, a drug response prediction model was built using the

CTRP and PRISM datasets that contain gene expression profiles

and drug sensitivity profiles for hundreds of CCLs. Compounds

with NAs in more than 20% of samples and cell lines from

hematopoietic and lymphoid tissues were excluded. Moreover,

NAs were filled using the k-NN algorithm. Ultimately, the

analysis was then carried out using 680 CCLs (containing 354

compounds) from the CTRP dataset and 480 CCLs (containing

1,285 compounds) from the PRISM dataset, respectively.

Afterwards, in order to predict the response for each compound

in each sample, the pRRophetic package with the ridge-regression

model was utilized to obtain an estimated AUC value based on the

expression profile. Next, the correlation between AUC values and

COPsig scores was analyzed using Spearman correlation analysis,

and we select the compounds with the top five and the bottom five

Spearman’s r value in CTRP and PRISM datasets, respectively

(Figures 7E, F). We found that 5-FU showed a higher drug

sensitivity in high COPsig score patients, which further confirmed

the above results. In general, our results strongly indicated that the

COPsig score had a direct link with the response to immunotherapy

and chemotherapy.
Cuprotosis signature genes in single-cell
transcriptomic data

Random forest algorithm was utilized to screen out the top nine

important genes among the cuprotosis signature genes for further

analysis (Figure 8A). After rigorous data normalization and

filtering, 6,490 cells were retained for further analysis. In the

following step, we used graph-based clustering to separate the
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cells into 12 clusters after normalizing them using principal

component analysis (Figure S5A). These clusters can be assigned

to cell lines by marker genes or DEGs (Figures 8B, S5B). According

to the AUC values, two peaks of all cells were observed, whereas

3,918 cells had relatively higher AUC values (Figures 8C, S4C). The

stacking map showed that there were more macrophages in the

AUC_low group, which were consistent with our results of bulk

RNA-seq analysis (Figure 8D). Moreover, GSVA indicated that cell

adhesion pathways and immune-related pathways were enriched in

the AUC_high group, which further confirmed the results of bulk

RNA-seq analysis (Figure S5D). We next used CellChat and

NicheNet to identify the expression of ligands at different cell

interfaces and thus predict the cross-talk of the top 15 active

ligand and relative receptors (Figures 8E, F). The results indicated

that TNFSF12 interacted with TNFRSF12A on macrophage cells

and thus potentially targeted ID2, IER2, and SDC4. In addition,

interactions related to cell adhesion such as MDK–SDC4 and

cytokine interactions such as CXCL2–CXCR4 were observed

(Figure S5E). Previous studies have confirmed that cytokines such

as CXCL2 and CXCR4 can recruit macrophages (52–54). Therefore,

we hypothesized that cuprotosis signature genes might affect TME

through the recruitment of macrophages, thereby influencing the

prognosis of colorectal patients and the response to

immunotherapy. Since cuprotosis influences the TCA cycle, we

then explored the difference in metabolism pathways between

AUC_high and AUC_low groups. As illustrated, TCA-associated

genes observed a preference correlated with the AUC_low group,

and enriched TCA pathway, glycolysis pathway, and oxidative

phosphorylation pathway could be found in the AUC_low group

(Figures 8G, S5F, G). Taken together, our findings indicate that

cuprotosis signature might recruit macrophages and thus developed

interaction networks with surrounding cells, which potentially

induced cellular senescence and promoted the remodeling of

the TME.
PDHA1 was downregulated in CRC and
associated with worse prognosis

Since cuprotosis patterns might influence the prognosis of CRC

patients, RT-PCR was performed to examine the relative expression of

CRGs in CRC cell lines and the normal cell line (Figures 9A-J). Similar

to our previous results, the mRNA expressions of CDKN2A, GLS, and

LIPT1 were upregulated in CRC, whereas the expressions of other

CRGs were downregulated. As a crucial gene in the glucose

metabolism reprogram of tumor cells, there is growing evidence

that PDHA1 might act as a prognostic and immune-related

biomarker and negatively associated with immune cell infiltration in

TME (55). Western blotting confirmed that PDHA1 expression in

normal colon cells was higher than that in CRC cells (Figure 9K). In

order to confirm the relationship between PDHA1 and prognosis of

CRC patients, we enrolled 80 CRC patients from our center. The

expression level of PDHA1 was examined by immunohistochemistry.

Compared with normal tissues, the expression level of PDHA1 in

tumor tissues was significantly lower (Figure 9L, p < 0.001). The tumor
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samples were then divided into PDHA1-high (n = 15) and PDHA1-

low (n = 65) groups according to the relative intensity. Kaplan–Meier

analysis indicated that CRC patients in the PDHA1-low group had a

lower disease-free survival rate (Figure 9M). Our findings further

validated the results of Bulk-RNAseq analysis and demonstrated that

PDHA1 was a potential prognostic biomarker for CRC patients.
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Discussion

Copper-induced cell death, also named cuprotosis, is a novel

discovered type of programmed cell death, which refers to the direct

binding of copper to the lipoylated proteins of the TCA cycle,

further inducing mitochondrial dysfunction and ROS accumulation
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FIGURE 7

Chemotherapy response in the high and low COPsig score groups. (A, B) The differences of response to 5-FU (E) and paclitaxel (F) between the high
and low COPsig score groups. (C, D) The correlation between COPsig scores of patients and the estimated IC50 value of 5-FU (C) and paclitaxel (D).
(E) The results of Spearman’s correlation analysis of 10 CTRP-derived compounds. (F) The results of Spearman’s correlation analysis of 10 PRISM-
derived compounds.
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(18, 19). Mounting evidence has shown that not only mitochondrial

dysfunction and ROS accumulation, but also programmed cell

death pathway, are associated with the TME and immune

response (20–22, 56). Therefore, clarifying the role of cuprotosis

patterns in TME cell infiltration could shed light on the mechanism

of cuprotosis patterns in antitumor immune responses, as well as

facilitate an effective immunotherapy strategy.

In the present study, we examined the 10 CRGs and identified

three different cuprotosis patterns. Distinct patterns of TME cell

infiltration characteristics can be distinguished through these three
Frontiers in Immunology 15
patterns. COPcluster C1 was considered as an immune-excluded

phenotype, characterized by the presence of abundant immune cell

and stromal infiltration, together with EMT and TGF-b signaling

pathway activation. COPcluster C2 was classified as the immune-

desert phenotype, characterized by immunosuppression.

COPcluster C3 was considered as an immune-infiltrated

phenotype, marked by immune cell infiltration and immune

activation. Lots of evidence have reported that TME, particularly

the infiltrating immune and stromal cells, are strongly correlated to

tumor progression and immunotherapeutic response (14, 57, 58).
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FIGURE 8

The expression of cuprotosis signature genes in TME by single-cell transcriptome analysis. (A) Relative importance of cuprotosis signature genes
analyzed by random forest algorithm. (B) The t-SNE (t-distributed stochastic neighbor embedding) plot of 6,490 cells grouped into 12 clusters.
(C) The threshold was chosen as 0.046 and the AUCell score of 3,918 cells exceeded the threshold value. (D) Percentage of each distinct cells in the
high and low AUCell score groups. (E) Heatmap shows the expression of the top 20 active ligands in cells of the high and low AUCell score groups.
The size of the dot represents the percent expressed. Red represents high expression; blue represents low expression. (F) Expression of the first 15
active ligands in different cells, as well as their interacting receptors and downstream potential target genes. (G) Metabolic differences in the high
and low AUCell score groups.
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The presence of immune cells such as CD4+/CD8+ T-cell

infiltrating tumors is correlated with the likelihood of an immune

response (59). Conversely, immune cells can be surrounded by a

dense stroma, maintaining a nest around tumor cells instead of

penetrating the parenchyma. This weakens the antitumor immune

response. The antitumor immune response is thus diminished.

Moreover, recent studies have provided evidence that the

infiltration of lymphocytes into tumor parenchyma is hindered by

activation of EMT and TGF-b pathways (60, 61). Collectively, our

findings were consistent with the above definitions, which
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corroborated the accuracy of our immunophenotype classification

of the three cuprotosis patterns. Meanwhile, we speculated that

CRC patients with COPcluster C3 patterns might benefit from ICI

treatment and have a better prognosis.

Moreover, in the present study, differences in mRNA

transcriptome between distinct cuprotosis patterns have been

demonstrated to be significantly associated with immune-related

biological pathways. The DEGs were considered as cuprotosis-

related signature genes. In accordance with the results of

cuprotosis pattern clustering, three genomic clusters based on
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FIGURE 9

The expression of CRGs in CRC cell lines and tissues. (A-J) The mRNA relative expression of each CRG in 5 CRC cell lines and normal colon cell line.
The asterisks illustrated the statistical p-value. (K) Western blotting results of PDHA1 protein levels in five CRC cell lines and the normal colon cell
line. (L) PDHA1 was downregulated in colorectal cancer tissues compared to normal tissues, as examined by immunohistochemistry. (M) Kaplan–
Meier analysis of the disease-free survival rate of CRC patients, which is stratified according to the expression of PDHA1.
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cuprotosis signature genes were identified and strongly correlated

with different prognosis and TME landscapes. A comprehensive

evaluation of cuprotosis modification patterns will help us to better

understand the infiltration features of TME cells and thus predict

the response to immunotherapy. Therefore, in order to provide

more accurate guidance on individual treatment strategies, we

developed a quantitative system called “COPsig score” to identify

different cuprotosis patterns. The results indicated that the

cuprotosis patterns characterized by the immune-excluded

phenotype showed a lower COPsig score, while the pattern

characterized by the immune-inflamed phenotype had a higher

COPsig score. Further analysis elucidated that COPsig score was an

independent prognosis biomarker in CRC. According to recent

studies, patients with low TIDE scores and high TMB are more

likely to benefit from ICIs, while EMT and TGF-b pathway

activation might play a critical role in resistance to ICIs (34, 60,

62, 63). The activation of EMT and TGF-b pathways, higher

stromal scores, higher TIDE scores, and lower TMB were found

in the low COPsig score group. Indeed, in the four independent ICI

cohorts, the COPsig score was confirmed to be valuable for

predicting the response to immunotherapy. The COPsig score

showed a significant difference between responders and

non-responders.

5-FU is an anti-metabolic drug with substitution of fluorine for

hydrogen at the C-5 position of uracil, which has been broadly used

since 1957 for the treatment of different types of cancer (64). To

improve the efficacy and reduce toxic effects, 5-FU is often used in

combination with other chemotherapeutic agents. Some studies

have shown that combination chemotherapy with 5-FU can

significantly prolong the survival time and relieve symptoms of

CRC patients. For example, a randomized controlled trial of 423

CRC patients showed that combination treatment with 5-FU and

oxaliplatin can significantly prolong the progression-free survival

and overall survival of patients (65). Another clinical study of 572

patients with advanced CRC also showed that combination

treatment with 5-FU and irinotecan can significantly improve the

survival rate and relieve symptoms (66). However, the response rate

to 5-FU-based chemotherapy is still low and the development of

chemoresistance often hampers the benefit of the therapy (67, 68).

Hence, the identification and validation predictive biomarkers for

5-FU-based chemotherapy might improve the prognosis of CRC

patients in the future. Interestingly, recent studies have found that

the activation of ferroptosis is associated with chemosensitization to

5-FU (69). We speculated that copper-induced cell death, as a type

of programmed cell death as well, might be associated with the

chemosensitivity of 5-FU. Our results indicated that 5-FU showed a

higher drug sensitivity in high COPsig score patients in two

datasets. The findings above substantiated our speculation that

cuprotosis patterns could potentially be employed in clinical

pract ice to pinpoint immune phenotypes and guide

therapeutic strategies.

Tumor-associated macrophages (TAMs) in TME promote

tumor development, invasion, metastasis, immune suppression,

angiogenesis, and drug resistance, thereby affecting patient

prognosis and playing a crucial role in regulating complex

immune responses (70–73). In our study, the expression level of
Frontiers in Immunology 17
cuprotosis signature genes was related to the number of TAM

infiltrations. Moreover, the expression of TNFSF12 was higher in

the low AUCell score group, associated with tumor proliferation,

invasion, migration, and angiogenesis (74). Potentially targeted

gene SDC4, a transmembrane heparan sulfate proteoglycan, is

considered as a central mediator of growth factors, ECM

molecules, and cytoskeletal signaling proteins (75–77).

Furthermore, it seems that SDC4 might be a valuable target for

cancer diagnosis and treatment, since it is significantly reduced by

trastuzumab and panitumumab (78, 79). Research has shown that

metabolism can regulate the differentiation, mobilization, and

function of TAMs, such as the glycolysis process leading to the

recruitment of macrophages and polarization towards the M2

phenotype (80). Furthermore, M2 TAMs are associated with fatty

acid and glutamine metabolism (81). According to our results, it

was proposed that cuprotosis signature genes influenced TCA and

increased glutamine and fatty acid metabolism, thereby recruiting

M2 TAMs to TME and influencing the prognosis of CRC patients.

The PDHA1 gene encodes the alpha subunit of the human

pyruvate dehydrogenase complex, which plays a crucial role in

catalyzing the conversion of pyruvate to acetyl-CoA, an important

step in the citric acid cycle and a major pathway for cellular energy

production. There is a complex relationship between the PDHA1

gene and cancer. On the one hand, the PDHA1-encoded pyruvate

dehydrogenase complex plays an important role in energy

metabolism, and the expression level of PDHA1 is closely

associated with cell proliferation and energy metabolism in some

cancers, suggesting that it may promote tumor growth and

metastasis. On the other hand, mutations or deletions of the

PDHA1 gene have also been found, suggesting that PDHA1 may

act as a potential tumor suppressor gene. Several studies have found

that the expression level of the PDHA1 gene is elevated in various

cancers such as ovarian cancer, and high expression levels are

closely related to the malignancy and prognosis of tumors. In

addition, the PDHA1 gene is involved in regulating the oxidative

stress response of tumor cells, enabling them to acquire stronger

antioxidant capabilities and survival advantages, thereby promoting

tumor cell growth and metastasis (82, 83). Some studies have also

suggested that the PDHA1 gene may act as a potential tumor

suppressor gene in gastric and renal cell carcinoma, and its

mutations or deletions can lead to disruptions in cellular energy

metabolism and inhibition of autophagy and apoptosis, and

promote tumor formation and development (84, 85). However,

the relationship between PDHA1 and the prognosis of CRC patients

is still unclear. In our study, we found that PDHA1 might act as a

tumor suppressor in CRC. The lower expression level of PDHA1

was consistent with worse prognosis of CRC patients. Furthermore,

lower PDHA1 expression is associated with higher PD-L1 and

CTLA-4 expression levels, as well as increased immune cell

infiltration, suggesting that PDHA1 may be involved in the

remodeling of the colorectal TME, and may therefore affect the

efficacy of immune therapy.

Taken together, the COPsig score could be clinically applied for

the comprehensive evaluation of the cuprotosis patterns and the

corresponding TME infiltration characteristics in individual CRC

patients. Thus, it is possible to determine the immunophenotype of
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the tumor and devise a more effective therapeutic strategy.

Moreover, as an independent prognostic biomarker, the COPsig

score could predict not only patient survival but also the response to

adjuvant chemotherapy and immunotherapy. Furthermore, we

found that by changing the cuprotosis patterns, the TME

infiltration characteristics subsequently changed, which was the

transformation of immune-excluded and immune-desert

phenotypes to the immune-inflamed phenotype, thus improving

the response to ICIs.

The limitations of this study should not be neglected. First,

although we reviewed the literature and selected 10 genes

recognized as CRGs, other potential genes may exist since the

concept of cuprotosis was somewhat novel and there are few

relevant studies. Second, the evidence level of our study was

relatively low due to the retrospective nature of the ICI dataset as

well as the absence of appropriate ICI-based CRC datasets. Third,

the follow-up time of enrolled CRC patients was relatively short, as

18 out of 65 PDHA1-low patients had less than 1 year of follow-up,

which resulted in imperfect results of Kaplan–Meier analysis.
Conclusion

Collectively, our works led to a better understanding of the

regulation mechanisms underlying cuprotosis patterns on CRC

TME cell infiltration. The distinct cuprotosis patterns laid a solid

foundation to the explanation of heterogeneity and complexity of

individual TME, thus guiding more effective immunotherapy as

well as adjuvant chemotherapy strategies.
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