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Comprehensive analysis and
immune landscape of
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receptors-based signature in
hepatocellular carcinoma
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Beijing, China, 5School of Basic Medical Sciences, Anhui Medical University, Hefei, China, 6State Key
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and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing
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Background: Despite encouraging results from immunotherapy combined with

targeted therapy for hepatocellular carcinoma (HCC), the prognosis remains

poor. Chemokines and their receptors are an essential component in the

development of HCC, but their significance in HCC have not yet been fully

elucidated. We aimed to establish chemokine-related prognostic signature and

investigate the association between the genes and tumor immune

microenvironment (TIME).

Methods: 342 HCC patients have screened from the TCGA cohort. A prognostic

signature was developed using least absolute shrinkage and selection operator

regression and Cox proportional risk regression analysis. External validation was

performed using the LIHC-JP cohort deployed from the ICGC database. Single-

cell RNA sequencing (scRNA-seq) data from the GEO database. Two nomograms

were developed to estimate the outcome of HCC patients. RT-qPCRwas used to

validate the differences in the expression of genes contained in the signature.

Results: The prognostic signature containing two chemokines-(CCL14, CCL20) and

one chemokine receptor-(CCR3) was successfully established. The HCC patients

were stratified into high- and low-risk groups according to their median risk scores.

We found that patients in the low-risk group had better outcomes than those in the

high-risk group. The results of univariate and multivariate Cox regression analyses

suggested that this prognostic signature could be considered an independent risk

factor for the outcome of HCC patients. We discovered significant differences in the

infiltration of various immune cell subtypes, tumor mutation burden, biological

pathways, the expression of immune activation or suppression genes, and the

sensitivity of different groups to chemotherapy agents and small molecule-

targeted drugs in the high- and low-risk groups. Subsequently, single-cell analysis
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results showed that the higher expression of CCL20 was associated with HCC

metastasis. The RT-qPCR results demonstrated remarkable discrepancies in the

expression of CCL14, CCL20, and CCR3 between HCC and its paired adjacent non-

tumor tissues.

Conclusion: In this study, a novel prognostic biomarker explored in depth the

association between the prognostic model and TIME was developed and

verified. These results may be applied in the future to improve the efficacy of

immunotherapy or targeted therapy for HCC.
KEYWORDS

hepatocellular carcinoma, chemokine, tumor immune microenvironment, prognosis,
single-cell RNA-seq
Introduction

Hepatocellular carcinoma (HCC) is the third leading

contributor to mortality from cancer globally, with a five-year

overall survival rate of about 18% and 830,000 deaths from the

disease each year (1). Despite substantial advances in local and

systemic therapy for intermediate to advanced HCC, in particular,

immunotherapy and molecular targeted therapy, most patients may

not respond or develop resistance to the drugs and eventually died

of the disease (2). Therefore, there is still an emergency to explore

more effective systemic therapies, as well as predictable biomarkers,

to enable personalized and cost-effective treatment stratification.

Chemokines are a class of 8- to 12-kDa secreted proteins that

can be classified into four categories XC, CC, CXC, and CX3C (3).

Their main functions include the regulation of target cell migration

(chemotaxis), adhesive properties, cell development, cellular

localization, and cell-cell interfaces which serve an instrumental

part in intracellular homeostasis, and pathological processes, in

particular tumorigenesis (4). Chemokines contribute to tumor

immunity in a variety of aspects, as they are involved in the

localization and migration patterns of immune cells in the

lymphoid tissue and tumor immune microenvironment (TIME)

and directly shape the immune response (5). In general, tumor-

associated mesenchymal and cancer cells could unleash a diverse

array of chemokines, resulting in the recruitment and the activation

of various cell types, which in turn mediate the equilibrium between

anti-tumor and pro-tumor reactions (6). Several chemokine

receptor antagonists have shown antitumor effectiveness in

preclinical studies in various cancers, including hepatocellular

carcinoma (7, 8). Recent studies have also shown that the

combination of chemokine antagonists may boost the therapeutic

efficacy of immune checkpoint inhibitors (ICIs) or molecularly

targeted therapies in patients with HCC (9, 10). However, the

mechanisms of chemokines in TIME are only just beginning to

be discovered (5). In addition, studies of chemokines or chemokine

receptors in HCC remain scarce, particularly in the prediction of

survival in HCC patients and the relationship between the
02
proportion of various immune cell subtypes in TIME and the

expression of chemokines-related genes (CRGs).

In the present study, we first established and substantiated a

kind of HCC predictive risk signature based on chemokine and

chemokine receptor family genes. Nomograms were then developed

and evaluated to precisely and conveniently forecast the outcome of

HCC patients. Subsequently, the association between CRGs and

immune infiltrating cells were analyzed at the transcriptomic and

genomic mutational levels, respectively. Finally, we verified the

differential expression of CRGs in HCC tissues and adjacent non-

tumor tissue using real-time quantitative polymerase chain reaction

(RT-qPCR).
Materials and methods

Data acquisition and processing

Download mRNA expression profiles and pathological features of

HCC patients from The Cancer Genome Atlas (TCGA) and

International Cancer Genome Consortium (ICGC) databases. 342

HCC patients were screened from the TCGA-LIHC cohort,

excluding patients with missing expression data and those with

survival times of less than 30 days (n=35). 231 HCC patients were

obtained from the ICGC-LIHC-JP cohort as an external validation

dataset. Table 1 summarizes the detailed clinical profiles of the HCC

patients enrolled in this study. Gene expression data of normal liver

tissue were downloaded from the GTEx portal. scRNA-seq data for

GSE149614 were obtained from the Gene Expression Omnibus (GEO)

database, including 10 cases of primary tumor (PT), 2 cases of portal

vein tumor thrombus (PVTT), 1 case of metastatic lymph node (MLN)

and 8 cases of non-tumor liver tissue (NTL). The single-cell data were

filtered by setting each gene to be expressed in a minimum of 3 cells,

with each cell expressing at least 250 genes, resulting in 71915 cells. The

percentage of mitochondria and rRNA was calculated using the

“PercentageFeatureSet” function and ensuring that each cell

expressed >100 and less than 8000 genes, that the mitochondrial
frontiersin.org
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content was less than 10% and that the UMI of each cell was at least

>100, resulting in 67101 cells. We then normalized the data for each of

the 21 samples by log-normalization. Variable features were identified

by finding highly variable genes (based on variance stabilization

transformation using the “FindVariableFeatures” function. All

genes were scaled using the “ScaleData” function. Then we

removed batch effects between samples and integrated the data by

using the “FindIntegrationAnchors” and “IntegrateData” functions.

Subsequently, we performed PCA downscaling to find anchor points

by “RunPCA” function, selecting a dim of 40, and clustering the cells by

using the “FindNeighbors” and “FindClusters” functions (setting

Resolution=3) to obtain a total of 51 subgroups. Meanwhile, we used

the “RunTSNE” function to perform T-distributed Stochastic

Neighbour Embedding (tSNE) downscaling analysis on 67101 cells.

Cells were annotated through published literature, the cell-marker

website, and the “SingleR” package. Malignant cells were predicted

using the “copycat” package. The genes used for the final annotation

are shown in Figure S1). The detailed workflow diagram and

corresponding analysis for the study were illustrated in Figure 1.
Frontiers in Immunology 03
Development of prognostic risk signature

A total of 66 CRGs, including 47 chemokine ligands and 19

different chemokine receptors, were included in this study based on

previous literature reports (Table S1) (11). In the TCGA dataset, we

used the R project “limma” package to screen differentially

expressed CRGs between HCC and adjacent non-tumor tissue

with thresholds set to false discovery rate (FDR)< 0.05 and |log2

fold-change (FC)| > 1. CRGs related to overall survival (OS) in HCC

patients were screened using univariate Cox regression analysis

with a screening criterion of P< 0.05. The 342 HCC patients were

subsequently randomized in a 3:1 ratio into the training and testing

group using the R project “caret” package. The least absolute

shrinkage and selection operator (LASSO) analysis with one

standard error (SE) and 1000-fold cross-validation to filter the

most significant markers in the training dataset using the “glmnet”

and “survival” R packages. Given the simplicity and repeatability of

the model, a backward stepwise Cox proportional risk regression

model was developed using multivariate Cox analysis. Determine
TABLE 1 Clinical characteristics of HCC patients.

Characters Training dataset
n=257

Testing dataset
n=85

ICGC dataset (LIRI-JP)
n=231

Age

≤ 65 164 (63.81%) 52 (61.18%) 89 (38.5%)

> 65 93 (%) 33 (38.82%) 142 (61.5%)

Gender

Female 77 (29.96%) 32 (37.65%) 61 (26.4%)

Male 180 (70.04%) 53 (62.35%) 170 (73.6%)

Grade

G1-G2 155 (60.31%) 59 (69.41%) N/A

G3-G4 97 (37.74%) 26 (30.59%) N/A

Unknow 5 (1.95%) 0 (0%) N/A

TNM stage

I-II 183 (71.21%) 55 (64.71%) 141 (61.0%)

III-IV 59 (22.96%) 24 (28.24%) 90 (39.0%)

Unknown 15 (5.84%) 6 (7.06%) 0 (0%)

Tumor stage

T1-T2 194 (75.49%) 58 (68.24%) N/A

T3-T4 60 (23.35%) 27 (31.76%) N/A

Unknow 3 (1.17%) 0 (0%) N/A

Survival status

Alive 169 (65.8%) 50 (58.8%) 189 (81.8%)

Deceased 88 (34.2%) 35 (41.2%) 42 (18.2%)
N/A, Not available.
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the model with the lowest AIC value as the final model. The risk

score for each HCC patient in the three cohorts was determined by

the following formula:

Risk score =o
n

i=1
½coefficient(Gene   i)*expression(Gene   i)
Assessment and confirmation of the
prognostic risk signature and nomogram

All HCC patients in the three cohorts were allocated into the

high- and low-risk groups according to the median risk score.

Kaplan-Meier analysis was utilized to assess and compare the

differences in survival outcomes between high- and low-risk
Frontiers in Immunology 04
groups of HCC patients in the training, test and ICGC datasets,

respectively. The nomogram was constructed using the ‘rms’ and

‘regplot’ R packages, combining tumor staging and risk scoring.

Calibration and time-related receiver operating characteristic (time

ROC) curves were used to assess the accuracy and discrimination of

the risk model and the nomogram using the “time ROC” and “rms”

R packages.
The landscape of immune and
gene mutation

The Cell-type Identification By Estimating Relative Subsets

Of RNA Transcripts (CIBERSORT) algorithm was implied

for the quantitative assessment of the transcriptomic data and
FIGURE 1

Flow chart of screening for chemokines- and chemokine receptors-based signature in hepatocellular carcinoma.
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subsequently translated into the abundance of 22 types of immune

and stromal cells (12). The single sample GSEA (ssGSEA) approach

was applied to evaluate the inflammatory infiltration profiles and

immune functions. Furthermore, we evaluated various immune cell

infiltration using different algorithms with the Tumor Immune

Estimation Resource (TIMER) database (http://timer.comp-

genomics.org/) (13, 14). The Somatic Copy Number Alterations

(SCNA) module of the TIMER database was adopted to investigate

the association between specific genes and immune infiltration.

Gene somatic mutation data were downloaded from Genomic Data

Commons (GDC) database. The “oncoplot” function in the

“maftools” package was performed to plot the respective

mutations in the high- and low-risk groups and estimated the

significantly different distribution of mutated genes by the

“mafCompare” function in the “maftools” package.
Drug sensitivity assessment and
enrichment analysis

The semi-inhibitory concentration (IC50) values of well-known

chemotherapeutic and targeted therapeutic agents were predicted

by the “oncoPredict” R package to compare their efficacy in the

different risk groups (15). Hallmark gene set and KEGG analysis

were conducted using Gene Set Enrichment Analysis (GSEA)

software 4.1.0. Gene ontology (GO) analysis was performed

employing the R package “clusterProfiler” for identifying the

functional differences between the two groups (16, 17).

Furthermore, the gene sets of “c2.cp.kegg.v7.4.symbols.gmt” were

downloaded from the MSigDB database to run GSVA enrichment

analysis using the “GSVA” R package (18).
RT-qPCR and proteomics for further
demonstration

A total of 19 paired HCC and adjacent non-tumor tissue

specimens were collected from the First Medical Centre of the

Chinese PLA General Hospital. All specimens were quickly placed

in liquid nitrogen (-196˚C) for preservation after excision. RNA

extraction was performed using TRIzol reagent (Invitrogen,

California, USA) and complementary DNA (cDNA) was

constructed using ReverTra Ace qPCR RT Kit (Toyobo, Japan).

Similarly, the detection and amplification of the prognostic genes

were conducted using SYBR® Green Realtime PCR Master Mix

(Toyobo, Japan) in the ABI Step One Plus Real-Time PCR system

(Applied Biosystems) while b-Actin was kept as an endogenous

control. Each sample was repeated three times. The primer

sequences are given in Table S2. Differences in gene expression

between HCC and its paired adjacent non-tumor tissues were

compared using the 2−DDCt approach. In addition, in the CPTAC

dataset (Clinical Proteomics), we analyzed the protein expression

levels of CCL14 and CCL20 in HCC using the UALCAN portal.
Frontiers in Immunology 05
Statistical analysis

The Kruskal-Wallis test or the Mann-Whitney U test was used

for comparisons of continuous variables. Categorical variables were

indicated as frequencies and compared using either the chi-square

test or Fisher’s exact test. Survival curves were created using the

Kaplan-Meier method and compared by applying a log-rank test.

Independent risk factors associated with OS were identified using

univariate and multivariate Cox regression analysis. P values< 0.05

were statistically significant and all tests were two-tailed. Data

analysis and processing using R version 4.1.0, SPSS 26.0 and

GraphPad Prism 8.
Results

The construction of risk signature on
chemokine-related genes

A total of 19 CRGs were sieved in the TCGA database that was

differentially expressed between HCC and adjacent non-tumor

tissues (Figures S2A, B). Four of the 19 differentially expressed

genes were notably related to overall survival time in HCC patients

(Figure S2C). In the training dataset, we selected the candidate with

the lowest AIC value as the final risk model (Figure S2D).

Ultimately, the risk score for each HCC patient was obtained by

the following equation:

Risk score = CCR3*0:501 + CCL20*0:089 − CCL14*0:84
Assessment and validation of prognostic
risk signature

HCC patients were classified into two groups (high risk and low

risk), depending on median risk values in the training, testing and

ICGC dataset, respectively. There were no apparent discrepancies in

clinical characteristics between high- and low-risk groups in the

TCGA cohort, while the tumor stage and risk score were

significantly correlated in the ICGC cohort (Table 2). In the three

cohorts, risk scores decreased with the increased expression of

CCL14 and increased when the expression of CCR3 and CCL20

increased (Figures 2A–C). Mortality in HCC patients tends to

increase with higher risk score in the training (Figure 2D), testing

(Figure 2E), and ICGC dataset (Figure 2F). Furthermore, HCC

patients in the low-risk group had better overall survival outcomes

compared to those in the high-risk group. (P< 0.05). (Figures 2G–I).

The results of univariate (Figures S3A, B) and multivariate (Figures

S3C, D) Cox regression analyses indicated that the risk score was an

independent high-risk factor for HCC patients (P< 0.05). The time-

dependent ROC curve (time ROC) analysis was further employed to

assess the credibility and accuracy of the signature. The AUC of

time ROC for this model to predict one, two, and three years OS in
frontiersin.org
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HCC patients was 0.683, 0.627, and 0.615 in the training dataset.

(Figure S4A). Correspondingly, the AUC values for predicting one,

two, three years OS in HCC patients were 0.719, 0.720, 0.656

(Figure S4B) and 0.644, 0.663, 0.637 (Figure S4C) in the testing

and external validation datasets respectively. The results of Harrell’s

concordance index (C-index) for the risk model and clinical

features to predict one-five years OS in three groups were shown

in Figures S4D-F.
Construction and assessment of
the nomogram

Combining risk score and tumor staging, we constructed

nomograms in the TCGA (Figure 3A) and ICGC (Figure 3B)

datasets, respectively. This can be applied as a clinically relevant

quantitative method to enable clinicians to predict the survival

outcome of HCC patients more accurately. The results of

calibration plots indicated that the performance of the

nomograms was comparable to the ideal model (Figures 3C, D).

The time-dependent ROC of the two cohorts also demonstrated

the high accuracy and predictive power of the nomograms

(Figures 3E, F).
Frontiers in Immunology 06
Immune cell infiltration in the TCGA
dataset based on risk score groupings

Given the intense relationship between CRGs and immune cells

or immune function, we depicted and compared the discrepancies

in the proportion of immune cells in TIME and immune function

profiles between high- and low-risk groups using diverse

algorithms. The results of CIBERSORT method discovered that B

cell (naïve and memory), natural killer (NK) cells (resting and

activated), monocytes, macrophages (M1, M2), and resting mast

cells accounted for a substantially greater proportion of TIME in

low-risk HCC than in high-risk group (P< 0.05). Activated memory

CD4+ T cells, T-follicular helper (Tfh) cells, regulatory T cells

(Tregs), M0 macrophages, and resting dendritic cells accounted

for a significantly higher proportion of TIME in the high-risk HCC

than in low-risk patients (P< 0.05) (Figure 4A). An overview of the

22 subtypes of tumor-infiltrating immune cells in the two groups is

presented in Figure S5A. In addition, we calculated the Spearman

correlation coefficients between each gene in the signature and 22

types of immune cells. The expression of CCL14 correlated

negatively with M0 macrophages, Tregs, and memory B cells and

positively with monocytes, M2 macrophages, NK cells and naive B

cells (P< 0.05) (Figure S5B). The expression of CCL20 (Figure S5C)
TABLE 2 Baseline characteristics of HCC patients in the high- and low-risk groups.

Characters TCGA dataset P value ICGC dataset (LIRI-JP) P value

High risk Low risk High risk Low risk

Age 0.275 0.244

≤ 65 110 106 40 49

> 65 56 69 75 67

Gender 0.776 0.626

Female 52 57 32 29

Male 115 118 83 87

Grade 0.097 N/A

G1-G2 95 119 N/A N/A

G3-G4 72 56 N/A N/A

Unknown 2 3 N/A N/A

TNM stage 0.079 < 0.001

I-II 110 128 55 86

III-IV 49 34 60 30

Unknown 8 13 N/A N/A

Tumor stage 0.073 N/A

T1-T2 118 134 N/A N/A

T3-T4 49 38 N/A N/A

Unknown 0 3 N/A N/A
fron
N/A, Not available.
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and CCR3 (Figure S5D) was negatively correlated with NK cells,

monocytes and M2 macrophages and positively correlated with

Tregs, CD4+ memory T cells and M0 macrophages (P< 0.05). The

correlation between risk score and the proportion of immune

cell subtypes in TIME calculated by different algorithms were

illustrated in Figure S5E. The single sample GSEA (ssGSEA)

algorithm obtained similar findings for immune cell infiltration

as the CIBERSORT algorithm. Furthermore, there were also

considerable differences in immune functions between the two

groups, with significant activation of immune checkpoints,

human leukocyte antigen (HLA), pro-inflammation, para-

inflammation, T cell co-stimulation, and CC motif chemokine

receptor (CCR) in the high-risk group (Figure 4B). In addition,

we found that the expression of HLA genes (Figure 4C), immune

checkpoint genes (Figure 4D), and T-cell stimulation genes

(Figure 4E) was significantly higher in the high-risk group.
Frontiers in Immunology 07
scRNA analysis of the CCL cellular pathway
network in PT, PVTT and MLN

To systematically assess the role of the CCL signaling pathway

in the immune microenvironment and tumor progression of HCC,

we analyzed scRNA-seq data. The results of the data pre-processing

in detail are shown in Figures S6A–C. A total of 67101 cells were

identified in four relevant tissue types: non-tumor liver (NTL),

primary tumor (PT), portal vein tumor thrombus (PVTT) and

metastatic lymph node (MLN) (Figure 5A). These cell clusters were

then marked into 12 cell types based on specific genetic markers

(Figure 5B). The proportion of the 12 cell types in each sample was

shown in Figure 5C. We subsequently found that the expression of

CCL20 was higher in CD4+ T cells, CD8+ T cells, endothelial cells,

macrophages, malignant cells, mast cells, mature B cells, and

myeloid cells in PVTT and MLN than in other cell and tissue
A B

D E F

G IH

C

FIGURE 2

Validation of the prognostic signature. Heatmap of cluster analysis of HCC patients in (A) training, (B) testing, and (C) ICGC (LIRI-JP) dataset showing
the expression levels of genes in the prognostic model. Distribution of risk score in the (D) training, (E) testing, and (F) ICGC (LIRI-JP) dataset, as well
as survival time and survival condition of patients in the low-risk and high-risk groups. Kaplan-Meier survival analysis of chemokine-related gene
prognostic signature in the (G) training, (H) testing, and (I) ICGC (LIRI-JP) dataset.
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types (Figure 5D). We investigated the overall profile (Figures 6A–

C) and the CCL signaling pathway (Figures 6D–F) of differences in

possible incoming or outgoing signaling pathways between

different types of tissues. We found that in the CCL signaling

pathway of PT or PVTT and MLN, the main cells for incoming and

outgoing signals were CD4+ T cells and macrophages, respectively.

We subsequently studied the differences in cell-cell communication

networks in the CCL signaling pathway between different types of

tissues by calculating the communication probabilities and

obtained concordant results (Figures 6G–I). Finally, we examined

the expression of CCL signaling pathway-related genes in different

cell subpopulations in three tissue types (Figures 6J–L).

Interestingly, we observed that the expression of CCL20

dominated intercellular communication in MLN tissues and that
Frontiers in Immunology 08
CCL20 was highly expressed in macrophages, malignant cells and

myeloid cells.
Genetic variation analysis in the
TCGA dataset

The results of the gene mutation analysis showed notable

differences between the high-risk and low-risk groups of HCC

patients, and we ranked the top 20 mutated genes (Figures 7A,

B). However, we did not identify the mutations associated with

CRGs. We also observed a higher incidence of mutations in

common genes among the high-risk group, compared to the low-

risk group of HCC patients. Furthermore, we identified a much
A B

D

E F

C

FIGURE 3

Constructing and evaluating the nomograms related to the risk score. Nomogram for predicting the probability of overall survival at 1, 3, and 5 years
for HCC patients in the (A) TCGA dataset and (B) ICGC (LIRI-JP) dataset. Calibration plot for nomogram in the (C) TCGA dataset and (D) ICGC (LIRI-
JP) dataset. Nomogram-based survival probabilities are plotted on the x-axis; actual survival rates are plotted on the y-axis. The time-dependent
area under ROC curves of the nomogram, risk score, and stage for OS prediction in the (E) TCGA and (F) ICGC (LIRI-JP) datasets.
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higher frequency of mutations in TP53, ARID1A, DNAH10, and

C10orf90 genes associated with tumorigenesis and progression in

the high-risk group than in the low-risk group (Figure 7C).

Subsequently, we initially investigated the type and frequency of

alterations among chemokine family genes in HCC samples (Figure

S7A), as well as the specific location of these genes in the

chromosomes (Figure S7B). The relationship between the level of

tumor immune infiltration and CNAs was further assessed using

the TIMER database. The results suggested that changes in CCL14

and CCL20 somatic copy number alterations were closely associated

with the level of immune cell infiltration (Figure S8).
Risk score-based strategies for the
treatment of HCC

Using the “oncoPredict” method, we calculated IC50 values for

each HCC patient receiving chemotherapy or small molecule

targeted therapy to predict their sensitivity when given different

treatments. By comparison of the differences in IC50 values

between different groups in the TCGA dataset, we identified that

HCC patients in the high-risk group were more sensitive to

treatment with Lapatinib, 5-Fluorouracil, Dasatinib, and Gefitinib

(P< 0.001), compared to patients in the low-risk group (Figures 8A–

D). Patients in the low-risk group were more sensitive to treatment
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with Entospletinib, Leflunomide, Gemcitabine, Sorafenib, and

Axitinib, (P< 0.001) compared to patients in the high-risk group

(Figures 8E–I).
Functional analysis, RT-qPCR, and
proteomics verification

GSEA and GO functional analysis were carried out to delineate

the differential gene expression profiles and function deviations

between two risk groups, while GSVA analysis was conducted to

elucidate the correlation between biological activity pathways and

risk score. GSEA results of the hallmark genes set indicated that

remarkable enrichment of immune-related pathways in the high-

risk group compared to the low-risk group, such as IL6-JAK-

STAT3, G2M-checkpoint, and P53 pathway (Figure 9A). On the

other hand, the low-risk group was significantly enriched in

metabolic function pathways compared to the high-risk group,

such as b-alanine metabolism, fatty acid metabolism, and tyrosine

metabolism (Figure 9B). All results of the GO functional analysis

are shown in Figure 9C and Table S3. The main components of the

bioprocess (BP) module are the humoral immune response,

lymphocyte-mediated immunity, immunoglobulin-mediated

immune response and other immune functions. The cellular

component (CC) consists mainly of the immunoglobulin
A B

D EC

FIGURE 4

Differences in the TIME and the expression of immune-related gene sets between the different risk groups in the TCGA dataset. (A) Differences in
the proportion of 22 immune cells infiltrating tumor tissue in the high- and low-risk groups. (B) Box plot depicting the difference in immune scores
and immune function between the high- and low-risk patients of HCC. Gene expression of HLA (C), immune checkpoint (D), and T cell stimulators
gene sets (E). *P< 0.05, **P< 0.01, ***P< 0.001.
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complex, the external side of the plasma membrane, and the

collagen-containing extracellular matrix. The molecular Function

(MF) primarily included antigen binding and immunoglobulin

receptor binding (Figure 9D). A total of 121 enriched pathways

were recognized by GSVA analysis among the two groups. The low-

risk group primarily enriched in metabolism-associated pathways,

while the high-risk group was primarily enriched in immune-

related pathways (Figure 9E and Table S4). Given the paucity of

adjacent non-tumor tissue samples in the TCGA database, we

increased adjacent non-tumor tissue samples through the GTEx

database and found that CCL14 (Figure 10A) was significantly

highly expressed in adjacent non-tumor tissue, while CCL20

(Figure 10B) and CCR3 (Figure 10C) were significantly less

expressed when compared with HCC tissue.

For the further investigation of the expression of the three genes

(CCR3, CCL14, CCL20) in HCC tissues, RT-qPCR was applied to

the detection of mRNA expression of the three genes between HCC

tissues and adjacent non-tumor tissues. We affirmed the expression

of genes in the signature and obtained consistent results

(Figures 10D–F and Table S5). As for the expression of protein

levels, the CPTAC database results showed that the expression of

CCL14 in HCC tissues was significantly lower than that in normal

tissues (Figure 10G), while the CCL20 expression level was

significantly higher than that in normal tissues (Figure 10H).
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Discussion

Sophisticated genetic mutations and cellular dysfunction drive

the formulation of hepatocellular carcinoma (HCC) with extensive

heterogeneity. Compared to wide-spectrum molecular drive

therapies that apply to specific patient populations for specific

cancer types, current immunotherapy and targeted therapies for

advanced HCC are “one-size-fits-all”, without detailed patient

stratification, which limits the efficacy of systemic treatment and

fueling the unsatisfied medical needs of HCC (19). The

development of a novel, reliable prognostic scoring system is

urgent to improve the risk stratification of HCC patients and

predict the efficacy of systemic therapy (20). The cancer cell and

tumor microenvironment could modulate the expression and

function of chemokine-related genes, which in turn shapes the

type and consequence of the immune response to malignant cells

and cancer systemic therapy (5). However, no studies are focusing

on the relationship between CRGs and the prognosis of HCC

patients or the tumor immune microenvironment.

In this study, we have established a prognostic signature based

on chemokines and chemokine receptors. This signature showed

strong predictive power for HCC patients with an external dataset.

Notably, we have also developed and evaluated nomograms, which

have good accuracy and reliability to facilitate clinical application.
A B

DC

FIGURE 5

scRNA-seq analysis of primary and metastatic HCC and non-tumor liver tissue. (A) The tSNE map of 67101 cells from primary and metastatic HCC
and paired non-tumor liver tissues. (B) Annotations for 12 cell types. (C) The proportion of different cell types in each sample. (D) The expression of
CCL20 between different tissues and cell types.
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The comprehensive multi-omics analysis could detect and discover

not only the meticulous genetic modifications and mutations in

HCC but also the precise composition of the different cell types in

the TIME and their interactions with hepatocellular carcinoma cells
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(21, 22). Therefore, we investigated the association between the

chemokine-based signature and the various subtypes of immune

cells in the TIME employing different algorithms. We further

demonstrated that chemokines play an integral part in the
A B

D E F

G IH
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C

FIGURE 6

Results of cell-cell communication analysis in the CCL pathway. Bubble diagram visualizing the overall profile of possible incoming or outgoing
signaling pathways between cells in (A) PT, (B) PVTT and (C) MLN. Bubble maps visualize possible incoming or outgoing CCL signaling pathways
between cells in (D) PT, (E) PVTT and (F) MLN. The intensity of cell-cell interactions in the CCL signaling pathway in (G) primary tumor (PT),
(H) portal vein tumor thrombosis (PVTT) and (I) metastatic lymph nodes (MLN). The expression of genes in the CCL signaling pathway in (J) PT,
(K) PVTT and (L) MLN in different cell subpopulations.
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shaping of different types of TIME, which have significant

implications for tumor progression and treatment outcome in the

TCGA cohort.

We identified two chemokine ligands and one chemokine

receptor, CCL14, CCL20 and CCR3, which are uniquely

advantageous in predicting the prognosis of HCC patients. It has

been shown that the overexpression of CCL14 inhibits cancer cell

proliferation and promotes apoptosis and that its low expression is

associated with poor prognosis in HCC patients (23). MMP-21

promotes macrophage recruitment by increasing CCL-14 levels and

M2 macrophage polarization by increasing CSF-1 and FGF-1

expressions, thereby regulating the immune microenvironment

and metastasis of HCC (24). The CCL20-CCR6 axis has been

reported to be associated with a variety of cancers, including

HCC, colorectal cancer, breast cancer, pancreatic cancer, cervical

cancer and renal cancer (25). The CCL20-CCR6 axis facilitates

cancer progression directly by potentiating the migration and

proliferation of cancer cells, and indirectly by reshaping the
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tumor microenvironment through immune cell manipulation

(25). Consistent with our single-cell analysis results, CCL20 gene

expression was significantly higher in metastatic HCC tissues

(PVTT and MLN). Moreover, the CCL20 gene dominates

intercellular communication in MLN and was highly expressed in

macrophages, malignant cells and myeloid cells. There is also a

study using online databases that have found significantly higher

expression of CCL20 in HCC tissues compared to the adjacent non-

tumor tissues (26). Another retrospective clinical study revealed

that the expression of CCL20 was significantly associated with

tumor recurrence and survival outcomes in HCC patients (27).

These results were consistent with our study. In addition, the role of

CCL20 in the TIME is manifested mainly through the recruitment

of Th17 cells, immature DCs, Tregs and tumor-associated

macrophages (TAMs) (5). No studies of CCR3 in HCC have been

reported. However, studies in other types of cancer have shown that

CCR3 plays a major role in promoting tumor progression and is

strongly associated with poor prognosis of patients, with its role in
A B

C

FIGURE 7

Relationship between somatic mutations and risk score in HCC. (A) Somatic mutations in the high-risk group. (B) Somatic mutations in the low-risk
group. (C) Comparison of mutations between the high- and low-risk groups. *P< 0.05, **P< 0.01.
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the TIME exhibited through the recruitment of TAMs to facilitate

tumor progression (5, 28–30). In addition, it has been found that

inhibition of CCR3 in cancer cell lines induces polyploid giant cell

formation and b-catenin stabilization through the PI3K/Akt/GSK-

3b signaling pathway, a process associated with EMT, as a result of

CCR3 inhibition, transformed cells acquired enhanced mobility and

proliferation (31).

Non-polarized (M0) macrophages are derived from monocytes

following colony-stimulating factor 1 (CSF-1) induction. M0

macrophages can be differentiated into M1 and M2 macrophages

when stimulated by different cytokines. M1 macrophages exhibited

cytotoxic properties on tumors by secreting cytokines such as IL-2

and TNF-a. In contrast, M2 macrophages have the potential to

promote tumor progression (32). Furthermore, the increased
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infiltration of TAMs in TIME was associated with worse patient

outcomes based on TCGA analysis of HCC (33). The phenotypes of

dendritic cells were complex, with either subtype that promotes

CD8+ T cell activation or subtypes that contribute to T cell

dysfunction (33). Tfh cells were known to promote anti-tumor

immune responses but suffered strong immunosuppression due to

the high expression of PD-1 (34). NK cells are a subtype of immune

cells with anti-tumor properties and serve an indispensable part in

the immune surveillance and eradication of tumors. However, in

the environment of tumor or chronic infection, NK cells manifest a

state of exhaustion similar to that of T cell exhaustion, with

depressed effector function and altered phenotype (35). Tregs are

a subset of lymphocytes with highly immunosuppressive properties

that suppress tumor-infiltrating cytotoxic T lymphocytes and
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FIGURE 8

IC50 values were predicted for HCC patients between the different risk groups when treated with specific drugs. (A) Lapatinib. (B) 5-Fluorouracil.
(C) Dasatinib. (D) Gefitinib. (E) Entospletinib. (F) Leflunomide. (G) Gemcitabine. (H) Sorafenib. (I) Axitinib.
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accumulate commonly in HCC (36). The increased infiltration of

Tregs in TIME is firmly associated with the aggressiveness and

progression of HCC, as well as poor patient prognosis (37). In the

present research, macrophages, Tregs, dendritic cells, and Tfh cells

accounted for significantly higher proportions of TIME in the high-

risk group compared to the low-risk group. At the same time, NK

cells, monocytes, and M1 macrophages comprised a substantially

more proportion of TIME in the low-risk group. The findings could

provide an explanation for the unfavorable outcomes of HCC

patients in the high-risk group. In addition, we observed

remarkable activation of immune-related functions such as HLA,

T cell co-stimulation and immune checkpoints in the high-risk
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group of HCC patients. The activation of immune functions in

these three groups was then confirmed at the level of gene

expression. These results corresponded to a higher frequency

TMB in the high-risk group of HCC patients. Since meaningful

mutations occurring in tumors are tailored into neoantigens which

are delivered to CD8+ T cells via major histocompatibility complex

(MHC) proteins. The increased TMB results in larger numbers of

neoantigens, increasing the opportunity for recognition by CD8+ T

cells (38).

We also stratified HCC patients in the TCGA dataset according

to risk score profile and assessed the sensitive properties of patients

in different groups to specific drugs. Sorafenib was the first small
A B

D
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C

FIGURE 9

Pathway enrichment in the different risk groups and the expression of various gene sets between the two groups. (A) Gene set enrichment analysis
(GSEA) of the Hallmark gene set for the high-risk group versus the low-risk group. (B) GSEA of KEGG pathway analysis for the low-risk group versus
the high-risk group. (C) GO analysis indicated differentially enriched sets of genes between high- and low-risk groups. (D) Top 10 BP, CC, and MF
terms in GO analysis. (E) Gene Set Variation Analysis.
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molecule-targeted drug to be demonstrated effectiveness in the

systemic therapy of advanced HCC and remains one of the first-

line of treatments for advanced HCC (39). Our prediction results

indicated lower IC50 values in the low-risk group of HCC patients

treated with sorafenib. This suggested that HCC patients in the

high-risk group were not as sensitive to sorafenib as those in the

low-risk group. In addition, we identified six small molecule-

targeted drugs and three chemotherapeutic drugs with meaningful
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differences in IC50 values in the different risk groups, which shed

light on potential chemotherapies and targeted therapy for HCC.

GSEA, GO, and GSVA analysis provides mechanistic insights

into the discrepancy in the infiltration of various immune cell

subtypes of TIME in different groups. GSEA profiling indicated that

immune function-related signaling pathways such as Notch,

MAPK, P53, and Jak-Stat were notably abundant in the high-risk

group of the TCGA cohort. These pathways serve as critical
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FIGURE 10

Further affirmation of the expression of genes in the signature. Analysis of (A) CCL14, (B) CCL20, and (C) CCR3 expression differences between HCC and
normal tissues by combining TCGA and Genotype-Tissue Expression (GTEx) databases. Further demonstration of significant differences in the expression of
(D) CCL14, (E) CCL20, and (F) CCR3 between HCC and normal tissues by RT-qPCR. Differential expression of (G) CCL14 and (H) CCL20 in normal and
tumor tissues analyzed by UALCAN.
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components in the development of HCC and targeted therapy

(40–43). Correspondingly, metabolism-related signaling pathways

were substantially concentrated in the low-risk group, while

interactions between nutrients, metabolites and immune cells

played a principal role in immune editing and tumor escape.

Metabolic reprogramming, for example, is the backbone of T cell

differentiation and activation, as the transition from quiescence to

activation, proliferation, differentiation and infiltration bears a

heavy energy burden (44, 45). We obtained consistent results

from GO and GSVA analyses, with considerable discrepancy in

the enrichment of immune- and metabolism-associated signaling

pathways in the two groups of HCC patients. All of the above results

provide sufficient evidence for the immune or inflammatory

activeness profile of chemokine-associated signaling in TIME for

patients with HCC, and firmly substantiate the underlying

mechanism by which the signature predicts the prognosis of

HCC patients.

Although the chemokine-related signature is a valid independent

prognostic factor and was strongly associated with TIME in patients

with HCC, some limitations should still be recognized. Firstly, all

cohorts used for analysis are sourced from the public database and

the conclusions require additional external data validation. Second,

the genes in the signature need to be further validated in cellular and

animal models for understanding the functions and mechanisms

involved in TIME and tumor development.

In conclusion, a novel signature was successfully developed and

substantiated to forecast the prognostic outcome of patients with

HCC. The relationship and potential mechanisms involved in the

chemokines-related signature and the TIME in HCC were

preliminarily explored. This study presents a promising landscape

for clinical research in the application or targeting of chemokines in

monotherapy or combination therapies.
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values for multivariate Cox regression in the (A) training and (B)
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respectively. (D, E) Concordance index analysis for the training group, testing
group, and external validation group respectively.
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Analysis of immune cell infiltration about risk score and prognostic genes in

the TCGA database. (A) Overview of 22 immune cell infiltrations in the high-
and low-risk groups. Correlation analysis of (B) CCL14, (C) CCL20, and (D)
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The results of scRNA-seq data reprocessing. (A) Relationship between
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upper) Relationship between mRNA, UMI, mitochondrial content and rRNA
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filtering. (D) Principal component downscaled sample distribution and

principal component anchor point plots.

SUPPLEMENTARY FIGURE 7

The alterations of CRGs in the TCGA-LIHC cohort. (A) The proportions of

copy number variations (CNVs) of CRGs in HCC. (B) Determining the

chromosomal location of CRGs that occur CNVs in HCC.

SUPPLEMENTARY FIGURE 8

Relationship between the CNVs types of prognostic genes and immune cell
infiltration in the TCGA database. *P< 0.05, ***P< 0.001.
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