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cancer and providing
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Background: High-grade serous ovarian cancer (HGSOC) is a highly lethal

gynecological cancer that requires accurate prognostic models and personalized

treatment strategies. The tumor microenvironment (TME) is crucial for disease

progression and treatment. Machine learning-based integration is a powerful tool

for identifying predictive biomarkers and developing prognostic models. Hence, an

immune-related risk model developed using machine learning-based integration

could improve prognostic prediction and guide personalized treatment for HGSOC.

Methods: During the bioinformatic study in HGSOC, we performed (i) consensus

clustering to identify immune subtypes based on signatures of immune and

stromal cells, (ii) differentially expressed genes and univariate Cox regression

analysis to derive TME- and prognosis-related genes, (iii) machine learning-

based procedures constructed by ten independent machine learning algorithms

to screen and construct a TME-related risk score (TMErisk), and (iv) evaluation of

the effect of TMErisk on the deconstruction of TME, indication of genomic

instability, and guidance of immunotherapy and chemotherapy.

Results:We identified two different immune microenvironment phenotypes and

a robust and clinically practicable prognostic scoring system. TMErisk

demonstrated superior performance over most clinical features and other

published signatures in predicting HGSOC prognosis across cohorts. The low

TMErisk group with a notably favorable prognosis was characterized by BRCA1

mutation, activation of immunity, and a better immune response. Conversely, the
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high TMErisk group was significantly associated with C-X-C motif chemokine

ligands deletion and carcinogenic activation pathways. Additionally, low TMErisk

group patients were more responsive to eleven candidate agents.

Conclusion: Our study developed a novel immune-related risk model that

predicts the prognosis of ovarian cancer patients using machine learning-

based integration. Additionally, the study not only depicts the diversity of cell

components in the TME of HGSOC but also guides the development of potential

therapeutic techniques for addressing tumor immunosuppression and

enhancing the response to cancer therapy.
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Introduction

Although targeted drugs for ovarian cancer (OC), consisting of

PARP inhibitors and Bevacizumab, limitedly prolong the survival of

patients with advanced disease, OC continues to be the leading

cause of cancer death in women (1). Among multiple histological

types of epithelial OC, high-grade serous ovarian cancer (HGSOC)

is the most common type, accounting for 60–80% of all cases and

being responsible for approximately 80% of all OC deaths (2, 3). For

more precise clinical management of patients, the researchers

devote themselves to investigating the subtypes of OC, including

The Cancer Genome Atlas (TCGA) project, generally suggesting

that, in addition to molecular subtypes of tumor cells with different

mutations or abnormal activation states, heterogeneity in

proportion and anatomical location of non-tumor cells also leads

to different phenotypes (4–6). Indeed, molecular or immunological

subtyping gives unique insights for basic research, but the

robustness of these subtypes across studies and their clinical

implications remain controversial (7).

Inarguably, cancer immunotherapies, including immune

checkpoint blockade (ICB), have significantly improved the

treatment of advanced solid tumors and benefited overall survival

of patients when compared to conventional therapy (8, 9). However,

in patients with advanced ovarian cancer, the benefit of ICBs is

limited (10, 11). The mortality rate continues to be a growing

concern. Despite repeated associations between HGSOC survival

and T cell infiltration, especially for tumor-infiltrating CD8+ T

lymphocytes (TILs), human HGSOC remains poorly responsive to

immunotherapy (12, 13). One possible explanation for this failure is

that T cells are unable to penetrate the extracellular matrix (14, 15).

It is now well recognized that the TME, the soil in which tumors

live and thrive, influences prognosis and therapy effectiveness. With

advances in single-cell sequencing, depicting the cellular diversity in

the TME at high resolution provides a characterization of the

cellular composition in three tumor immune phenotypes

(infiltrated, excluded, and desert) in HGSOC (16) and highlight

the contributions of tumor-associated stromal components
02
in supporting tumor growth and hindering the efficacy of

immunotherapy (4, 17, 18).

While previous studies have explored the potential of

constructing gene signatures based on TME or immune-related

genes as predictive indicators for tumor prognosis and

immunotherapy (19, 20). The published studies have limited

predictive performance when assessed in different independent

cohorts. In this study, mining data from several HGSOC bulk

RNA-seq datasets, we aim to uncover the TME subtypes in

HGSOC with consistency across multiple datasets and develop a

robust and clinically practicable prognostic scoring system.

Considering the contributions of both immune and stromal

components, we start with identifying the inherent TME subtypes

from a meta-cohort of HGSOC and TME-related genes. To address

the robustness of the scoring system, we have implemented 108

combination frames constructed by 10 machine learning algorithms

to achieve the best prognostic scoring performance that was

assessed in multiple independent cohorts. The scoring system was

termed the TMErisk score, which was able to indicate genomic

instability, recognize the tumor immune microenvironment and

cancer-related dysfunctions, and guide the identification of effective

treatments for individual HGSOC patients.
Materials and methods

Data collection and processing

This study included seven public cohorts of HGSOC tumors,

including two RNA-Seq datasets from the International Cancer

Genome Consortium (ICGC; OV-AU) portal and The Cancer

Genome Atlas (TCGA; TCGA-OV), as well as five microarray

datasets from the Gene Expression Omnibus (GEO: GSE13876,

GSE140082, GSE30161, GSE32062, and GSE9891) (Table S1).

Besides the transcript data, the corresponding clinical data was also

taken into account. A total of 1386 HGSOC tumor samples were

included in this study, which excluded patients whose overall survival
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data was insufficient. From the Genotype-Tissue Expression

Database (GTEx, https://gtexportal.org/home/), the expression

information of normal ovarian samples was downloaded. The

IMvigor210 cohort, an immune checkpoint blockade treatment

cohort, was obtained from http://research-pub.gene.com/

IMvigor210CoreBiolo. These cohorts’ initial raw data were pre-

processed and normalized in accordance with our previous studies

(19, 21). As for RNA-Seq datasets, raw counts were converted into

values for the number of transcripts per million bases (TPM). The

batch effects among various cohorts were eliminated using the

“ComBat” algorithm of the “SVA” package. Somatic mutations and

copy number variations (CNAs) of HGSOC were downloaded from

TCGA. The mutation landscape of TCGA-OV was examined and

represented using the “maftools” and “ComplexHeatmap” packages.

Fisher’s exact test was used to identify the top 20 mutation genes and

differentially mutated genes. A GISTIC 2.0 analysis was conducted to

investigate the CNV associated with HGSOC by GenePattern

(https://www.genepattern.org/).
Human tissue specimens

In this study, a total of 25 patients with high-grade serous

ovarian cancer (HGSOC) who had undergone curative resection at

Xiangya Hospital, Central South University, were recruited. All

patients provided informed consent, and the study was approved by

the Xiangya Hospital Ethics Committee.
RNA extraction and real-time
quantitative PCR

Total RNA was extracted from human tissue specimens using

FFPE RNA Extraction Kits (AmoyDx, Xiamen, China), in

accordance with the manufacturer’s instructions. The purity and

quantity of RNA were evaluated using the NanoDrop 1000

Spectrophotometer (Thermo Fisher, USA), with OD260/OD280

ratios of 1.8-2.0 and OD260/230 ratios of 2.0-2.2. Reverse

transcription was carried out using HiScript II Reverse

Transcriptase (Vazyme, Nanjing, China) from 1 mg of total RNA,

to obtain first-strand cDNA. Quantitative real-time PCR (qRT-

PCR) was conducted in triplicate on an ABI Prism 700 thermal

cycler (Applied Biosystems, Foster City, CA, USA), as previously

described (22). GAPDH was used as the reference gene for RNA

quantification. The following primer sequences were used: SNRPE

(forward primer: ATGTCAGGACTAGGAGCCACTGTG; reverse

primer: AGCATGATCCGACCCAGTTGTTTTC), CD274

(forward primer: GACCACCACCACCAATTCCAAGAG; reverse

primer: TGAATGTCAGTGCTACACCAAGGC), CD8A (forward

primer: GCGAGACAGTGGAGCTGAAGTG; reverse primer:

ACGAAGTGGCTGAAGTACATGATGG), and GAPDH

(forward primer: AACGGATTTGGTCGTATTGG; reverse

primer: TTGATTTTGGAGGGATCTCG).
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Estimation of TME cell infiltration

The relative abundance of immune and stromal cells infiltrated

in the TME of HGSOC was quantified using the “XCELL” package

in accordance with the gene expression profiles. In this study, the

abundance of CD8+ T cells and the ESTIMATE score were

calculated using the ssGSEA, EPIC, TIMER, QUANTISEQ,

MCPCOUNTER, XCELL, CIBERSORT, CIBERSORT-ABS, and

ESTIMATE algorithms (23–29).
Identification of ovarian cancer
TME-related genes

Consensus clusteringwas carried out using the “ConsensusClusterPlus”

package to identify TME-related subtypes for additional investigation

in accordance with the infiltration of immune and stromal cells

(30). Using the limma package (31), the differentially expressed genes

(DEGs) between various immune subtypes were screened with an adjusted

P < 0.05. TME-related genes of HGSOC were defined as genes that are

co-upregulated or co-downregulated in not fewer than six cohorts.
Construction of the TMErisk score

We used the same procedures as in the previous study to screen

out the most valuable TMErisk score (32, 33). First, ovarian cancer

TME-related genes in each cohort were subjected to univariate Cox

regression analysis. Genes with a stable prognostic value were then

further filtered out, with the filter criteria being an adjusted P < 0.1

and the same hazard ratio direction for at least five cohorts. Second,

a machine learning-based integrative method was developed using

ten distinct machine learning algorithms, including Lasso, Ridge,

stepwise Cox, CoxBoost, random survival forest (RSF), elastic

network (Enet), partial least squares regression for Cox (plsRcox),

supervised principal components (SuperPC), generalized boosted

regression modeling (GBM), and survival support vector machine

(survival-SVM). Then, to fit the most useful prediction models in

the TCGA-OV cohort, 108 algorithm combinations from 10

machine learning algorithms were applied to the TME- and

prognostic-related genes. Each of these prediction models was

further tested in validation cohorts, and the C-index was

calculated for each cohort. Finally, the TMErisk signature was

built using the CoxBoost and SuperPC algorithms, which had the

highest average C-index in the validation cohorts.
Pathway enrichment analysis

The R package “clusterProfiler” was used to conduct analyses of

the Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and gene set enrichment analysis (GSEA)

(34). With the “GSVA” package, single-sample GSEA (ssGSEA)

was also carried out (35).
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Prediction of response to immunotherapy
or chemotherapy

Different tumor immune evasion mechanisms were modeled

using the Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (36). Immunophenoscore (IPS) and Subclass mapping

were used to predict anti-PD-1 and anti-CTLA-4 immunotherapy

responses between low- and high-TMErisk groups (37). Based on the

genomics of drug sensitivity in cancer, the ridge regression model

implemented in the “pRRophetic” package was chosen to predict the

chemotherapy response of each sample (38). To find potential

therapeutic agents, Spearman correlation analysis and differential

analysis between various TMErisk groups were conducted.
Statistical analysis

All data processing was carried out using R 4.0.5 software. To

compare continuous variables, the Wilcoxon and Kruskal-Wallis

tests were used, and the chi-square (c2) test was used to test

categorical data. Correlation coefficients were calculated using

Spearman’s correlation test. To examine any associated

independent predictors of prognosis in HGSOC, the log-rank test,

univariate, and multivariable Cox regression models were used.

Statistical significance was defined as a two-sided P value < 0.05.
Frontiers in Immunology 04
Results

Consensus clustering for
TME-infiltrating cells

The TME of HGSOC requires consideration of more than just

immune cells due to its significant stromal characteristics. To

identify potential tumor-immune-stroma phenotypes of HGSOC,

we performed consensus cluster analyses in seven independent

cohorts (GSE13876, GSE140082, GSE30161, GSE32062, GSE9891,

ICGC, and TCGA-OV) and an integrated meta-cohort based on 48

signatures of non-tumor components in TME, including

lymphocytes, myeloid, and stromal cells (Figure 1A, Figure S1).

As shown in Figures S1A, B, two clusters could achieve the best

clustering efficacy in the meta-cohort, and similar clustering results

were obtained in all seven independent cohorts (Figures S1C–I).

The result of clustering demonstrated that the distribution of cell

signatures was biased between the two clusters. Thus, we defined the

cluster with higher infiltration of immune and stromal cells as

cluster-H and named the cluster with lower ones as cluster-L

(Figure 1A). Principal component analysis (PCA) suggested a

significant difference between the two clusters (Figure 1B).

Survival analyses indicated that cluster-H was correlated with a

notably favorable prognosis in GSE13876 (log-rank test, P = 0.003),

GSE32062 (log-rank test, P = 0.011), and the meta-cohort (log-rank
A B

C

FIGURE 1

Consensus clustering for TME-infiltrating cells in HGSOC. (A) Heatmap illustrating the infiltration of immune and stromal cells between clusters-L
and cluster-H in the meta-cohort. (B) Principal component analysis suggesting two distinct clusters in the meta-cohort. (C) Kaplan-Meier analysis
estimating the overall survival between cluster-L and cluster-H.
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test, P < 0.001), while there was no significant correlation in the

other cohorts (Figures 1C, S2).
Construction of the TME-related risk
score in HGSOC

To mine for TME-related genes specific to HGSOC, we

screened out the differentially expressed genes (DEGs) between

Cluster-H and Cluster-L with an adjusted P < 0.05 in all cohorts.

The gene that was upregulated or downregulated in no less than six

cohorts was defined as TME-related genes of HGSOC for further

integrated analysis. In Cluster-H, there were 390 upregulated genes

and 1260 downregulated genes, respectively (Figures S3A, B). Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses indicated that the

upregulated genes in Cluster-H were mainly enriched in immune-

related signatures, indicating the reliable results we obtained before

(Figures S3C–F). Subsequently, univariate Cox regression analysis

was performed on TME-related genes, and 76 genes had stable
Frontiers in Immunology 05
prognostic value in different cohorts (Figure S4A). These 76 genes

associated with prognosis were included in the procedures based on

different combinations of machine learning algorithms to develop a

TME-related risk score (TMErisk). As in the previous study by

Zaoqu Liu et al. (32), we integrated 10 machine learning algorithms,

including CoxBoost, stepwise Cox, Ridge, RSF, GBM, survival-

SVM, Lasso, Enet, plsRcox, and SuperPC, to acquire the TMErisk

with high accuracy and stability performance in different cohorts. In

the TCGA-OV cohort, 108 kinds of prediction models were fitted,

and the average C-index of each model in the other seven validation

cohorts was further calculated (Figure S4B). Among these

prediction models, a combination of CoxBoost and SuperPC

algorithms had the highest average C-index in validation cohorts,

and the 16 most valuable TME-related genes (APC, CD38, CXCL13,

GTF2F2, ING4, PEX3, RAB10, SMNDC1, SNRPE, SOCS5, SOX6,

TM2D1, TSPAN13, TWSG1, ZNF780A, and ZNF780B) were

identified by the CoxBoost algorithm (Figure 2A, S4B). CD38 and

CXCL13 were negatively correlated with the TMErisk score, while

the others were positively correlated with the TMErisk score

(Figure 2A). Also, we compared the expression of 16 TME-related
A B

D E

F G

C

FIGURE 2

Construction of the TMErisk score in HGSOC. (A) Heatmap illustrating the expression of 16 TME-related genes and the TMErisk score in low- and
high-TMErisk groups. The bar chart on the left illustrates the relationships between TME-related genes and TMErisk score. (B) Kaplan-Meier analysis
estimating the overall survival between low- and high-TMErisk groups in meta-cohort. (C) Univariate Cox regression analyses revealing the
correlation between TMErisk score and HGSOC survival. (D) Time-dependent AUC value of the TMErisk score in different cohorts. (E) C-index of the
TMErisk score in different cohorts. (F) Univariate Cox regression analysis of the TMErisk score and other published signatures across diverse cohorts.
(G) C-index of the TMErisk score and other published signatures across diverse cohorts. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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genes between HGSOC (TCGA-C) and normal ovarian tissue

(GTEx-N) and noticed that CD38, CXCL13, RAB10, SNRPE,

SOX6, TSPAN13, and TWSG were upregulated in HGSOC, while

APC, GTF2F2, SOCS5, TM2D1, ZNF780A, and ZNF780B were

downregulated in HGSOC (Figure S5A).
Prognostic value of the TMErisk
score in HGSOC

It should be considered that TME in HGSOC patients is not

only determined by the type of cells infiltrated but also by the

molecular characteristics of the tumor and the individual conditions

of the patients. Therefore, we examined the scores in different types

of patient groups. There was no difference in TMErisk scores

between age, grade, or stage subgroups. TMErisk score did,

nevertheless, correlate with immune and molecular subtypes

(Figure S6A). Specifically, the TMErisk scored highest in the

proliferative molecular subtype and lowest in the immunoreactive

and IFN-dominant subtypes (Figure S6A). Meanwhile, the cluster-L

group had a higher TMErisk score (Figure S6A). According to the

median TMErisk score in each cohort, HGSOC patients were

divided into high- or low- TMErisk groups. Kaplan–Meier

survival analyses exhibited that the patients in the high TMErisk

score group had poorer overall survival in all cohorts, and

unfavorable progression-free survival in six cohorts (Figures 2B,

S7A, B). Univariate and multivariate Cox regression analyses were

applied to test the significance of the impact of TMErisk in terms of

the overall survival of HGSOC patients. The TMErisk score was an

independent prognostic biomarker for evaluating patient survival in

various cohorts (Figures 2C, S8A). Meanwhile, the time-dependent

area under the curve (AUC) suggests that the TMErisk score is a

prognostic biomarker for predicting survival of HGSOC patients in

the TCGA and GEO datasets (Figure 2D). All these results

suggested that the TMErisk score had stable as well as robust

performance in diverse independent cohorts. The C-index of the

TMErisk score and other clinical variables in HGSOC patients were

calculated, and the TMErisk score presented significantly greater

accuracy than other variables (Figures 2E, S8B). To further evaluate

the predictive performance of the TMErisk score in HGSOC

patients, we compared our TMErisk signature with other

published signatures (Table S2). Due to the differences in

platforms, the gene expression (mRNA level) signatures that can

be detected in the seven cohorts mentioned above were taken into

account. A univariate Cox regression analysis and the C-index of

each signature were performed. Generally, the predictive

performance of the TMErisk signature was much better than that

of other signatures (Figures 2F, G).
Genomic status of different TMErisk groups

Somatic mutations caused by genome instability result in an

abundance of neoantigens, which were thought to influence TME

and contribute to effective immunotherapy. To characterize the

genomic states of different TMErisk groups in the TCGA-OV
Frontiers in Immunology 06
database, the somatic mutation frequency was first analyzed. We

identified a negative correlation between the TMErisk score and

somatic mutation count, suggesting the low-TMErisk group had

more somatic mutations, including synonymous and non-

synonymous mutations (Figure 3A). The top 20 genes with the

highest mutation rates in the two TMErisk groups were then

identified, but there was no significant difference in mutation

rates between groups (Figure S9A). Moreover, using Fisher’s exact

test, distinct mutant genes were identified between the low- and

high-TMErisk groups at a P < 0.05 significance level (Figure S9B).

In the low-TMErisk group, the genes with the highest mutation

rates were SETDB1, BRCA1, LRP4, XIRP1, and TOMM70A (Figure

S9B). Preliminary evidence suggests that BRCA1/2 mutated tumors

tend to contain more neoantigens and greater lymphocyte

infiltration compared to non-BRCA1/2 tumors (39, 40). Here, we

investigated the association between TMErisk score and BRCA1

mutation and discovered that BRCA1 mutation samples had lower

TMErisk scores (Figure 3B). Different tumor types show a variety of

copy number variations (CNVs), of which serous HGSOC has a

wide and diverse alterations (5, 41). To further understand the

relationship between genomic variation and TMErisk score, we

analyzed and screened the CNVs in the different TMErisk groups of

each group. For example, in the high TMErisk group, the genes on

chromosomes 1, 2, and 13 tended to have amplified copy number,

whereas on chromosomes 4 and 9, genes were likely to be deletions

(Figure 3C). CXC chemokines and receptors are momentous for

attracting immune cells from the circulatory system to

inflammation or tumor sites (42). According to a recent study, a

copy number deletion of chromosome arm 4q was found in an

immune-cold type of HGSOC, which tended to be associated with

immunosuppression (40). In detail, genes in chromosomal bands

4q13.3 (including CXCL1–3, CXCL5–6, and CXCL8) and 4q21.1

(including CXCL9/10/11, and CXCL13) were widely deleted in the

high TMErisk group compared to the low TMErisk

group (Figure 3D).
The TMErisk score was associated with
immune-related pathways

To describe the biological characteristics of tumors under the

TMErisk classification system, GSEA was performed with

annotations of the GO and KEGG gene sets. The top 10 enriched

pathways according to the normalized enriched score (NES) for

each TMErisk group were displayed. ECM receptor interaction,

Tgf-ß signaling, Wnt, focal adhesion, and mesenchymal cell

proliferation signaling were enriched in the high TMErisk group.

While gene sets associated with chemokines, chemokine receptors,

antigen processing and presentation, and immunological response

were enriched in the low TMErisk group (Figures 4A, B, S10A).

When comparing the high- and low-TMErisk groups, GSVA

enrichment analysis was also conducted. The low TMErisk group

was markedly enriched in immune response-related pathways, and

the high TMErisk group was enriched in pathways associated with

carcinogenic activation pathways (Figure 4C). Moreover, the

TMErisk score was adversely linked with the vast majority of
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1164408
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2023.1164408
immune-related signature scores (Figure 4D). We concluded, based

on these findings, that the TMErisk scoring system effectively

discriminated between distinct HGSOC tumor microenvironments.
Immune landscapes of different
TMErisk groups

To depict the specific characteristics of TMErisk in the immune

landscape of HGSOC samples, the differences in the chemokines,

interleukins, and interferons between the low- and high-TMErisk

groups were first compared. It has been previously shown that the

CXCL9/CXCL10-CXCR3 axis is able to dictate the chemoattraction

of gamma-delta T-cells, activated Th1 cells, natural killer cells,

macrophages, and dendritic cells towards tumors (43, 44). The

majority of chemokines/interleukins were expressed at higher levels

in the low-TMErisk group compared to the high-TMErisk group,

especially CXCL9/10/11 and CXCL13 located on chromosome band
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4q21.1 (Figure 5A). Further investigation focusing on the immune

components in TME between the two groups revealed that the low-

TMErisk group had many signatures representing lymphoid and

myeloid cells but few signatures representing stromal cells

(Figure 5B). To ensure that the results were not biased by the

analytical algorithm, the relationship between the TMErisk score

and CD8+ T cells was further verified by multiple algorithms

(Figure S11A). In the Cancer Digital Slide Archive (CDSA)

database (45), we confirmed that there was more infiltration of

immune cells in the tumor nests of low-TMErisk groups but less

infiltration of immune cells in the tumor tissue of high-TMErisk

groups (Figure 5C). Next, we explored associations between the

TMErisk score and immune-related functions (46). The low-

TMErisk group was enriched in immune activation signatures

(Figure 5D). Meanwhile, the TMErisk score was negatively

correlated with the critical steps of cancer–immunity cycle,

including the release of cancer cell antigens (Step 1), priming and

activation (Step 3), trafficking of immune cells to tumors (Step 4),
A B

D

C

FIGURE 3

Genomic states of different TMErisk groups in HGSOC. (A) Boxplots comparing all mutation counts (left), synonymous mutation counts (middle), and
non-synonymous mutation counts (right) between low- and high-TMErisk groups, and the correlation between mutation count and the TMErisk
score in TCGA-OV cohort. (B) Distribution of TMErisk scores in the BRCA1 mutant and wild-type groups. (C) Gains and losses in copy numbers in
groups with low and high TMErisk. (D) Copy number variations at chromosomal bands 4q13.3 and 4q21.1 between low- and high-TMErisk groups.
*P < 0.05; **P < 0.01.
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infiltration of immune cells into tumors (Step 5), and killing of

cancer cells (Step 7) (Figure S11B). In line with the characteristics of

infiltrated immune cell and immune signatures, many immune

checkpoint genes and HLA family genes were generally upregulated

in low TMErisk groups indicat ing a tumor immune

microenvironment with more neoantigens and potential effective

immunotherapy (Figure 5E).

Besides, we further evaluated the correlation between 16

immune-related genes and immune cells, immune checkpoint

genes, as well as HLA family genes. CD38 and CXCL13 showed

mostly positive correlations with lymphoid and myeloid cells,

immune checkpoints, and HLA genes, while others, especially

SNRPE, exhibited the opposite results (Figures S12A, B). To

investigate the roles of CD38, CXCL13, and SNRPE in the TME

of HGSOC, we detected relationships between the three genes with

the CD8 T effector signature (CD8A, GZMA, GZMB, IFNG,

CXCL9, CXCL10, PRF1, and TBX21) and immune checkpoint

signature (CD274, PDCD1LG2, CTLA4, PDCD1, LAG3, and

HAVCR2) in eight cohorts. The results showed that CD8 T

effector signatures and immune checkpoint signatures correlated

positively with CD38 and CXCL13 but negatively with SNRPE
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(Figures S12C–E). Prior research has demonstrated that CD38 is

expressed in activated T, B, and natural killer (NK) cells (47).

Meanwhile, CXCL13 is typically expressed in secondary lymphoid

organs by follicular dendritic cells, macrophages, and fibroblasts,

and the presence of CXCL13-positive T cells has been associated

with increased sensitivity to anti-PD-L1 therapy (48, 49). In this

study, we sought to confirm the relationship between SNRPE and

the CD8 T effector signature and immune checkpoint signature in

ovarian cancer tissues. Our qRT-PCR analysis revealed a negative

correlation between SNRPE expression and the expression of

CD274 and CD8A in ovarian cancer tissues (Figure S12F).
Predictive value of the TMErisk score in
immunotherapy and chemotherapy

The TMErisk score was constructed by 16 TME-related genes

and associated with infiltration of immune cells, the immune

checkpoint signature, and immune-related pathways. Therefore,

we assumed that there were differences in immunotherapy effects

for HGSOC patients with different TMErisk scores. Firstly, we
A B

DC

FIGURE 4

The TMErisk score was associated with immune-related pathways in HGSOC. (A, B) Analysis of GO molecular function (A) and KEGG pathway gene
sets (B) in the low- and high-TMErisk groups. (C) Analysis of hallmark gene sets in the low- and high-TMErisk groups. (D) The correlations between
TMErisk score and immune-related signatures.
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applied the TIDE algorithm to assess the potential clinical efficacy

of immunotherapy for TCGA-OV samples. We found that the

TMErisk score was negatively correlated with dysfunction (r =

-0.304, P < 0.001) and positively correlated with TIDE scores and

exclusion (TIDE: r = 0.156, P = 0.003; exclusion: r = 0.546, P <

0.001) (Figure 6A). The IPS was a superior predictor to identify

determinants of immunogenicity and characterize the tumor

immune landscape. Higher IPS scores usually represented better

outcomes with ICB treatment (50, 51). The results showed that the

low TMErisk group had higher IPS, PD1-blocker, CTLA-blocker,

and CTLA4-PD1-blocker scores (Figure 6B). In addition, we

applied a subclass mapping approach to assess the treatment

response of immunotherapy specifically targeting CTLA-4 and

PD-1 in TCGA and ICGC samples. We discovered that patients

with low TMErisk exhibited promising responses to anti-PD-1

therapy, while patients with high TMErisk showed no responses

to anti-PD-1 therapy (Figure 6C). In the IMvigor210 cohort, we

investigated whether TMErisk could predict patient response to the

ICB therapy in an independent immunotherapy cohort. As

expected, the patients with a higher TMErisk score were less

likely to benefit from immune checkpoint therapy and had a
Frontiers in Immunology 09
worse prognosis than those with a lower TMErisk score

(Figures 6D, E).

To study further the treatment methods for the various

TMErisk groups, the pRRophetic software was used to predict the

medication response of each sample. We investigated correlations

between the TMErisk score and the IC50 of drug candidates in the

GDSC database. Using Spearman correlation analysis, we

discovered that the IC50 of eleven candidates was positively

correlated with the TMErisk score, while the IC50 of eleven other

drugs was negatively correlated (Figure 6F). The predicted IC50 of

these medicines differed significantly across the two TMErisk

groups (Figures 6G, S13A). Paclitaxel was considered the first-line

drug for HGSOC treatment among these drugs, and patients in the

low-TMErisk group may be more sensitive to Paclitaxel

(Figure S13A).
Discussion

HGSOC tumors are comprised of multiple populations of

various tumor, immune, and stromal cells that are inherently
A

B

D

E

C

FIGURE 5

Immune landscape of different TMErisk groups in HGSOC. (A) Expression of chemokines, interferons, interleukins, and other cytokines in low- and
high-TMErisk groups in TCGA-OV cohort. (B) Heatmap showing the infiltration of immune and stromal cells between low- and high-TMErisk groups
in TCGA-OV cohort. (C) CDSA images of representative HE-stained samples of HGSOC from TCGA in low- and high-TMErisk groups. (D, E)
Differences in immune-related functions (D), immune checkpoints and HLA gene expression (E) between low- and high-TMErisk groups. nsP > 0.05;
*P < 0.05; **P < 0.01; ***P < 0.001
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heterogeneous and could develop different phenotypes.

Pathbreaking research by Tothill et al. (4) identified six subtypes

of HGSOC through optimal clustering of array data. Significantly,

patients from the high stromal response subtype (C1) had the

poorest survival. C2 and C4 subtypes with more abundant CD3+

cells and lower expression of stromal genes had better survival than

C1. They also identified a high-grade serous subtype with a

mesenchymal expression pattern, characterized by highly

expressed N-cadherin and P-cadherin and low expression of

differentiation markers, with relatively reduced OS compared with

C2 and C4 subtypes. Similarly, TCGA project delineated four

HGSOC transcriptional subtypes, including proliferative,

mesenchymal, differentiated, and immunoreactive subtypes,

generally suggesting that, in addition to molecular subtypes of

tumor cells, heterogeneity in proportion and anatomical location

of non-tumor cells also leads to different phenotypes (5). For

example, high expression of HOX genes and markers suggestive

of increased stromal components characterized the mesenchymal

subtype. T-cell chemokine ligands and receptors characterize the

immunoreactive subtype. However, some research casts doubt on
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these models due to independent validation efforts that failed to

identify subtypes or only two or three reproducible subtypes (6, 52).

A large proportion of models exhibited lower accuracy in other new

datasets than in the validation sets used in their own papers. And

the robustness across studies and clinical relevance of these

subtypes require improvement to be of value (7). Significant effort

is needed to translate these subtypes into clinical practice.

Heterogeneity and diversity of cell composition pose a major

challenge to determining the immune landscape and effective

immunotherapy in HGSOC. Given the previously reported

prognostic significance of intertumoral T cells within HGSOC

(12, 53), CD8+ TILs are undoubtedly a key factor in certain

histotypes of HGSOC and need to be studied additionally for

immunotherapy (13). The immunoreactive subtype from TCGA

is so named because these tumors display prominent T cell

infiltration (5). Additionally, stromal cells are a significant

population of cells that also influence immunological state and

subtyping. Cancer-associated fibroblasts (mCAF) in matrix

expressing vimentin, SMA, COL3A, COL10, and MMP11 were

predominant in HGSOC tumors and were capable of inducing EMT
A B

D E

F G

C

FIGURE 6

Predictive value of the TMErisk score in immunotherapy and chemotherapy. (A) The correlations between the TMErisk score with TIDE score (left),
dysfunction score (middle), and exclusion score (right). (B) The correlation between the TMErisk score and IPS predictor. (C) Submap analyses
predicting the probability of immunotherapy responses (anti-PD-1 and anti-CTLA-4) in low- and high-TMErisk groups, in TCGA-OV and ICGC
cohort, respectively. (D) Kaplan-Meier analysis estimating the overall survival of low- and high-TMErisk groups in IMvigor210 cohort. (E) The
distribution of TMErisk scores across groups with different immune response status (left) and immune phenotypes (right). (F) The relation between
the IC50 of candidate drugs and TMErisk scores. (G) Boxplots showing the estimated higher IC50 values of drugs in the low-TMErisk group.
**P < 0.01; ***P < 0.001; ****P < 0.0001.
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characteristics in HGSOC cells (18). Meanwhile, an elevated

stromal response and its relevant gene expression signature are

significant prognostic indicators within HGSOC (4). Therefore, it is

desirable to consider the immune cells as well as stromal cells in a

coordinated way for elucidating the TME of HGSOC.

Out of regard for consistent results across independent cohorts

and clinical feasibility, we extensively collect multiple HGSOC datasets.

The consensus cluster analyses were performed in seven independent

cohorts and an integrated meta-cohort to identify tumor-immune-

stroma phenotypes. Explicitly, two clusters could achieve the best

clustering efficacy in the meta-cohort, and consistent clustering results

were obtained in all independent cohorts. When establishing the

TMErisk scoring system, we integrated ten independent machine

learning algorithms to acquire the TMErisk with stable performance

and high accuracy in different cohorts. 108 combinations of prediction

models were fitted out in the TCGA-OV cohort, and the average C-

index of each model in the other seven validation cohorts was further

calculated. To confirm the robust and stable performance of the

TMErisk in multiple independent cohorts, we compared our

TMErisk signature with other published signatures. Univariate Cox

regression analysis and the C-index of each signature revealed that the

predictive performance of the TMErisk signature was much better

than that of other signatures.

The close association of somatically mutated genes with specific

tumor subtypes or immunological phenotypes led to the discovery of

molecules or antibodies specific to these cancer targets (54). To

identify possible targets influencing TME and contributing to the

efficacy of immunotherapy for patients with different TMErisk scores,

we examined the frequency of somatic mutations and copy number

variations. Preliminary studies suggested HGSOC patients with

BRCA1 mutations demonstrated higher CD8+ TILs, and

neoantigen load might explain higher CD8+ TILs (39, 40), which is

consistent with patients with low TMErisk scores exhibiting more

neoantigens and an increased number of tumor-infiltrating

lymphocytes. It has been suggested that copy number variations

may contribute more than somatic mutations to the process of

tumorigenesis (55). T-cell chemokine ligands CXCL11 and

CXCL10, and their receptor CXCR3, characterized the

immunoreactive subtype of TCGA, which is consistent with that in

the low-TMErisk group in our study. CNV analysis reminded us of

the mechanism underlying the abnormal expression of chemokines

and relevant receptors and revealed that the 4q21.1 region (including

CXCL9/10/11 and CXCL13) was widely deleted in the high TMErisk

group compared to the low TMErisk group, probably explaining the

prominent T cell infiltration in the low TMErisk group.

To develop a patient-specific treatment based on the

phenotyping of HGSOC tumors, we evaluated the effectiveness of

the TMErisk score in guiding immunotherapy and chemotherapy.

Using TIDE, IPS and subclass mapping to measure the immune

response, HGSOC patients with a high TMErisk score were not only

less likely to respond to ICB treatment but also more susceptible to

immunological escape. In addition, a patient with a low TMErisk

score and a positive response to ICBs were observed in anti-PD-1

immunotherapy cohorts. Moreover, we recognize some

medications with considerably distinct IC50 estimates between

two TMErisk groups. Among them, Paclitaxel was regarded as the
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first-line treatment for HGSOC, and individuals with a low

TMErisk were more likely to be sensitive to the medicine.

The current study has several limitations that warrant discussion.

Firstly, the results were derived from an online database, and all

samples were retrospective, necessitating larger clinical trials,

particularly prospective trials, to validate the findings. Secondly, we

screened many genes that are associated with the immune

microenvironment of ovarian cancer, and further in vitro and in

vivo experiments are necessary to confirm the function of these genes.

Furthermore, owing to the lack of immunotherapy information for

ovarian cancer, the study only confirmed the association between

TMErisk and immunotherapy response through website predictions

and the analysis of the IMvigor210 cohort. Therefore, a new ovarian

cancer cohort is required for further investigation.

In conclusion, our study not only depicts the diversity of cell

components in the TME of HGSOC, but also highlights the

contributions of the cross-talk within those components in

shaping the biology of the TME, which eventually influences the

patients’ response to immunotherapies. To address the robustness

across studies and clinical relevance of subtyping when designing a

prognostic scoring system for HGSOC patients, we have performed

a machine learning-based procedure to guide the identification of

the TMErisk score, achieving high accuracy and stability

performance in different independent cohorts. Significantly, the

predictive performance of the TMErisk signature was much better

than other published signatures. Finally, our findings assist to

identify potential targets and provide novel therapeutic strategies

for addressing tumor immunosuppression and enhancing the

response to cancer therapy.
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