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Primary biliary cirrhosis (PBC) is a chronic cholestatic immune liver disease

characterized by persistent cholestasis, interlobular bile duct damage, portal

inflammation, liver fibrosis, eventual cirrhosis, and death. Existing clinical and

animal studies havemade a good progress in bile acid metabolism, intestinal flora

disorder inflammatory response, bile duct cell damage, and autoimmune

response mechanisms. However, the pathogenesis of PBC has not been

clearly elucidated. We focus on the pathological mechanism and new drug

research and development of PBC in clinical and laboratory in the recent 20

years, to discuss the latest understanding of the pathological mechanism,

treatment options, and drug discovery of PBC. Current clinical treatment

mode and symptomatic drug support obviously cannot meet the urgent

demand of patients with PBC, especially for the patients who do not respond

to the current treatment drugs. New treatment methods are urgently needed.

Drug candidates targeting reported targets or signals of PBC are emerging, albeit

with some success and some failure. Single-target drugs cannot achieve ideal

clinical efficacy. Multitarget drugs are the trend of future research and

development of PBC drugs.
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1 Introduction

Primary biliary cirrhosis (PBC) is clinically a type of autoimmune

cholestatic liver disease characterized by serum autoantibody

antimitochondrial antibodies (AMAs) (1, 2), chronic progressive

cholestasis, interlobular bile duct damage, liver inflammation,

eventual cirrhosis, and death (3, 4). Studies have found that the

incidence and prevalence of PBC have increased globally in the past

few decades (5, 6), especially among women (7). About 90% of patients

with PBC have developed AMA against PDC-E2 (8). Importantly,

AMA is still not detected in the serum of 5% of patients with PBC.

However, liver tissues of patients with AMA-negative PBC show anti-

nuclear antibodies (9, 10). Many patients with PBC suffer from

complications, such as sicca complex (34%) (11), osteoporosis (20%–

40%) (12), and hyperlipidemia (75%–95%) (13).

At present, the research on serum markers in PBC has made

great breakthroughs. Some new highly sensitive PBC autoantigens

(14–16) and PBC biomarkers with extremely high accuracy (17, 18)

have been discovered. With the introduction of genome-wide

association analysis (GWAS), some key gene loci have been

discovered (19–21). It gives us deeper insight into the

pathogenesis of PBC. However, the key pathological mechanism

of PBC has not yet been clarified. Moreover, effective medicines for

PBC still cannot meet clinical needs. Ursodesoxycholic acid

(UDCA) can improve approximately two of the three of patients

with PBC, but there are still approximately 30% of patients with

PBC who are not responsive to UDCA (22). Encouragingly,

obeticholic acid (OCA) can treat patients with UDCA-

unresponsive PBC. However, it can aggravate the itching

symptoms of patients with PBC (23). The only option for

advanced PBC is liver transplantation (24). Although the

pathogenesis of PBC has a great relationship with the immune

disorder, the classic immunosuppressive agents are not ideal for

PBC (25–27). Therefore, we hope that, by searching for the PBC

pathogenesis, the key pathological mechanism of PBC can be dug

out and provide evidence for targeted therapy of PBC in the future.
2 “Bile acid–intestinal flora–bile acid”
signal axis in the progress of PBC

There are 1013–1014 microbial cells in the human intestine and

more than 1,000 species of bacteria (28–30). The microbiota
Abbreviations: PBC, primary biliary cirrhosis; AMAs, antimitochondrial

antibodies; PDC-E2, pyruvate dehydrogenase E2 component; GWAS, genome-

wide association analysis; UDCA, ursodesoxycholic acid; OCA, obeticholic acid;

BAs, bile acids; CYP7A1, cholesterol 7a-hydroxylase; CYP27A1, sterol-27-

hydroxylase; CYP8B1, sterol 12a-hydroxylase; BSH, bile salt hydrolase; BECs,

biliary epithelial cells; CFTR, cystic fibrosis transmembrane conductance

regulator; InsP3R3, type III inositol 1,4,5-trisphosphate receptor; miR-506,

microRNA-506; GPCRs, G protein–coupled receptors; S1PR2, sphingosine-1-

phosphate receptor 2; TGR5, Takeda G protein–coupled receptor 5; ROS, reactive

oxygen species; NFAT, nuclear factor of activated T cells; BTK, Burton’s tyrosine

kinase; DC, dendritic cells; Tfh, follicular helper T; GC, germinal center.
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composition changes may cause increased intestinal permeability

and bacterial translocation, eventually leading to chronic liver

inflammation and fibrosis (31). Bile acids (BAs; 5%) in the colon

are transformed into secondary BAs by intestinal bacteria (32). BAs

can regulate the composition of intestinal microbes (32). In the

early stage of PBC, the reduction of several potentially beneficial

microbiota and the enrichment of opportunistic pathogens were

observed (30, 33). Some flora can accurately distinguish patients

with PBC from normal people (34).

The synthesis of BAs involves many reaction steps. The classic BA

synthesis pathway is initiated by the 7a-hydroxylation of cholesterol

catalyzed by cholesterol 7a-hydroxylase (CYP7A1), which produces

about 75% of BA production (mainly including CDCA and CA) (35).

The alternative synthesis pathway for BAs is initiated by sterol-27-

hydroxylase (CYP27A1), which mainly synthesizes CDCA (32). The

proportion of CDCA and CA is mainly regulated by sterol 12a-

hydroxylase (CYP8B1) and is not regulated by microbial. However,

intestinal flora can regulate the levels of CYP7A1, CYP7B1, and

CYP27A1 in the liver (36). Studies have proved that, in the absence

of bacteria, the BA pool consists of mainly primary conjugated BAs

(37). Specifically, BA deconjugation is carried out by bacteria with bile

salt hydrolase (BSH) activity (38), preventing the reabsorption of BAs

into the enterohepatic circulation. The deconjugated primary BAs enter

the colon and are metabolized by gut microbial 7-dehydroxylation into

secondary BAs [Lithocholic acid (LCA) and Deoxycholic acid (DCA)]

(32, 39, 40). Gut microbial dysbiosis reduces the activity of BSH and

7a-dehydroxylase, followed by increasing the ratio of conjugated/

unconjugated BAs and primary/secondary BAs (41). BAs can affect

the composition of intestinal flora through direct antibacterial effects

and can also induce antibacterial factors (42) and intestinal protection–

related genes (32). Moreover, Amphiregulin (AREG) inhibits the

activity of CYP7A1 by targeting the activation of the EGFR signal,

preventing toxic BA-induced hepatotoxicity (43). A recent study

reported that taking a probiotic (Lactobacillus reuteri) can increase

circulating BAs more than two-fold (44). Studies have found the

potential role of gut microbes in PBC. However, because of a small

number of patients, the difference between gut microbiota and patients

with different disease stages and different serum immunological

substances has not been studied Figure 1 (45).
3 Small intrahepatic bile duct injury is
the main pathological feature of PBC

Biliary epithelial cells (BECs) are the targets of most chronic

cholestatic diseases (46). In PBC, continuous damage and senescence

of BECs have been observed (47, 48). BECs secrete chemotactic

cytokines and inflammatory cytokines during senescence (47, 49, 50)

and participate in the induction and recruitment of CD4+ T helper

(Th) cells. Toxic BAs can induce mitochondrial dysfunction through

oxidative stress in PBC (51) and induce the senescence of BECs

through a p38 mitogen-activated protein kinase (p38MAPK)-

dependent pathway (52–57). Moreover, the activity of Cyclin-

dependent kinase inhibitor p21 (p21WAF1/Cip1) and Cyclin

dependent kinase inhibitor 2A (p16INK4) and ataxia
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telangiectasia-mutated (ATM)/p53/p21WAF1/Cip1 signals in the

liver may also induce the senescence of bile duct cells of PBC (48,

58–60). Increasing pieces of evidence suggest that BEC apoptosis

may be one of the main mechanisms of the pathogenesis of PBC

(61–63). In PBC, emperipolesis of lymphocytes (mainly

T lymphocytes) in BECs often be found to be related to

inflammation and can reduce the repair of fibrosis (64, 65).

Cholestasis in PBC is related to damage to biliary bicarbonate and a

defective biliary bicarbonate “umbrella” on the outer membrane of

BECs (46). BECs participate in up to 40% of the bile flow by inducing

the active secretion of bicarbonate in the bile (66). By virtue of the

favorable Cl− gradient across the plasma membrane of BECs,

the activation of Na+-independent anion exchanger 2 (AE2) causes

the secretion of bicarbonate in the bile (67). This umbrella is heavily

dependent on the AE2 function (68) and prevents hydrophobic BAs

from damaging cells (69, 70). The lack of AE2 in the bile duct cells in

patients with PBC will cause the cells to be more sensitive to apoptosis

induced by cytotoxic hydrophobic Bas (68). There are two separate

pathways for bile duct bicarbonate secretion, including cAMP/cystic

fibrosis transmembrane conductance regulator (CFTR) signaling and

InsP3/Ca2+ signaling (71). Type III inositol 1,4,5-trisphosphate

receptor (InsP3R3) promotes the secretion of biliary bicarbonate (71,

72). In BECs, pro-inflammatory cytokines enhance the microRNA-506

(miR-506) expression, which can cause overexpression and
Frontiers in Immunology 03
mislocalization of PDC-E2 (26, 73, 74) in PBC (26, 75–79). There

are pieces of evidence that PAMPs that exist in bile can induce the

release of chemokines to stimulate the innate immune response and

damages the bile ducts (80, 81). Interestingly, mitochondria are present

in all cells. However, only BECs are destroyed in PBC (82), which is an

important cause inducing autoimmune reactions.

Multiple BA receptors, including nuclear receptors FXR (83),

plasma membrane–bound G protein–coupled receptors (GPCRs)

(84), the sphingosine-1-phosphate receptor 2 (S1PR2) (85), and the

Takeda G protein–coupled receptor 5 (TGR5) (86), are expressed in

BECs and show a variety of biological activities. S1PR2 is only

activated by conjugated BAs (86). TGR5 is activated by BAs by

increasing reactive oxygen species (ROS) and subsequent EGFR-

dependent signals (87) to promote the proliferation of BECs. Ligand

binding to TGR5 through coupling to a Ga(s) protein activates

adenylate cyclase, increases intracellular cAMP concentrations, and

triggers chloride secretion via the CFTR (36, 88–91). BAs can

activate FXR and induce the expression of FGF15/19, thereby

activating p38 in adjacent BECs and inhibiting the activity of

CYP27 (92). Interest ingly, in a similar inflammatory

environment, compared with other chronic cholestatic liver

diseases, the expression of WAF1 and p53 in the BECs in patients

with PBC is more significant, which is related to bile duct epithelial

cell apoptosis (93) Figure 2.
FIGURE 1

The relationship between intestinal flora and BA synthesis and their possible role in PBC. Intestinal microbial dysbiosis leads to a decrease in BSH and
7a-dehydroxylase activity, subsequently inducing BA pool size and composition changes. Farnesoid X receptor (FXR) activity induces the inhibition
of CYP7A1 via activating SHP, the inhibition of Multidrug resistance-associated protein 4/5 (MRP 4/5) via activating Peroxisome proliferator activated
receptor alpha (PPARa), and the inhibition of OSTa/b. CYP7A1 is also inhibited by Epidermal growth factor receptor (EGFR) signaling pathways. In the
small intestine, BAs, FXR, Apical sodium-dependent bile salt transporter (ASBT), and Ileal bile acid binding protein (IBABP) work together to regulate
Fibroblast growth factor 15/19 (FGF15/19), which binds to Fibroblast growth factor receptor 4 (FGFR4) through the portal vein and directly or
indirectly inhibits CYP7A1 activity. FGF15/19 induces gallbladder filling through TGR5 or FGFR4 signaling pathways.
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4 “Bile acid–inflammation–bile acid”
signal axis in PBC

Studies have shown that the pro-inflammatory effects of

hydrophobic BAs mediate liver inflammation through various signal

pathways (94–100). Normally, 95% of the BAs in the serum of patients

with cholestasis are in conjugated form and are rapidly secreted into the

gallbladder once they have been transported into the liver cells by Na

(+)/taurocholate cotransporter (Ntcp). In the state of cholestasis, BA

efflux transporters are restricted, leading to cholestasis in liver cells

(101). NTCP only exists in hepatocytes; therefore, BA-induced

inflammatory cytokine production is specific to hepatocytes (102).

Excessive BAs in hepatocytes can cause the abnormal expression of

cytochrome c and Grp78, leading to the release of mitochondrial DNA,

which initiates innate immune response by activating Toll-like receptor

9 (TLR9)-dependent and TLR9-independent signals (103). In

hepatocytes, FXR can inhibit NF-kB signaling activity by binding

between Nuclear Factor Kappa-beta (NF-kB) and DNA sequences.

In addition, the NF-kB p50/p65 heterodimer inhibits FXR-mediated

gene [Organic solute transporter alpha/beta (OSTa/b), Bile salt export
pump (BSEP), Multidrug resistance-associated protein homologs 2

(MRP2), Multidrug resistance protein-2/3 (MDR2/3), Small

heterodimer partner (SHP)]) expression by binding to the FXR

promoter in turn (104–107). BAs with high concentration can cause

the ubiquitination and phosphorylation of NLR family pyrin domain

containing 3 (NLRP3) (108) through the TGR5-cAMP-Protein kinase

A (PKA) signal axis and inhibit its activity (109, 110). However,

because of the expression restriction of FXR and TGR5 in
Frontiers in Immunology 04
cholestasis, the activity of NLRP3 cannot be restricted to cause liver

inflammation (111). Nuclear factor of activated T cells (NFAT) plays

an important role in the inflammatory response in PBC (112–114).

Studies suggest that the Ca2+–calmodulin–calcineurin–NFAT signaling

pathway is involved in BA-induced expression of chemokines in

hepatocytes (115), which subsequently recruits neutrophils to

mediate the inflammatory response, leading to hepatocyte necrosis

(103). Previous studies have confirmed that NFAT signals can interact

with innate immune responses through TLR signals (116). The

activated TLR9 stimulates Burton’s tyrosine kinase (BTK) and causes

phosphorylation and activation of phospholipase Cg, which, in turn,

induces Ca2+/NFAT signal (117). However, whether the Ca2+/NFAT

axis is a downstream signal of TLR9 remains to be discussed (103).

NLRP6 inflammasomes in intestinal epithelial cells can inhibit the

destruction of the intestinal barrier by inducing Interleukin 18 (IL-18)

synthesis and promote the production of antimicrobial peptides and

mucus secretion by goblet cells Figure 3.
5 “Cholestasis–inflammation–liver
tissue-specific autoimmunity”
signals in PBC

T-cell dysfunction is an important mechanism for PBC (118). The

CD4+ cell ratio in the portal area is relatively high. It can develop into

two subtypes including T helper type I (Th1) and Th2 cells,

respectively, producing corresponding cytokines. Th1 is mainly

responsible for cellular immune response (119). The distribution of
FIGURE 2

Signaling pathways for BEC injury. Cholestasis induces oxidative stress and mitochondrial injury and leads to BEC senescent and apoptosis. In BECs,
TGR5-dependent signaling triggers Cl− secretion, EGFR transactivation, and CD95 to play a role in anti-apoptosis and promote proliferation. The
stimulation of M3 muscarinic receptors and P2Y nucleotide receptors induces the release of Ca2+ from InsP3Rs. miR-506 targets AE2 to impair
biliary bicarbonate secretion and leads to cholestasis. miR-506 can promote the release of PDC-E2.
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Th1 is consistent with CD8+ cells in the small bile ducts. CD8+ cells are

the main type of lymphocytes that invade BECs in early-stage PBC.

However, in the later stage of PBC, the number, proportion, and

distribution of immune cells have changed greatly (64, 120). T

lymphocytes mediate BEC damage through three pathways: Fas/

FasL, T cell receptor (TCR)/major histocompatibility complex

(MHC) , and Fas/Fas receptor signaling pathways (63, 64). Targeting

nudt1 to inhibit the number and function of CD 103+ TRM cells in the

liver has the potential to alleviate immune bile duct injury in patients

with PBC (121). Some studies have also found that humoral immune

response may also be involved in the inflammatory response in PBC

(122, 123), and the CD5–B-cell population may enhance the process of

T cells invading BECs (124). The serum and liver tissue cytokine

profiles of patients with PBC showed activation and liver recruitment

of Th1 and Th17 cells (50).

It has been shown that pro-inflammatory cytokines are involved

in the immune response in PBC (125). IL-12 is mainly responsible

for Th0 differentiation into Th1 cells. IL-12 can also stimulate the

growth and function of T cells. The presence of significant hepatic

autoantibodies in IL-12Rb1–deficient patients suggests that IL-

12Rb1 signaling is closely related to hepatic autoimmunity (126).

IL-23 can mediate Th17 differentiation from CD4 T cells and

produce IL-6, IL-17, and Transforming growth factor beta (TGF-

b) (50, 54). The IL-23– and IL-17–positive monocytes in the portal

area in PBC were significantly higher. IL-23 promotes Th0

differentiation into Th17 and induces it to secretion IL-17 (27,

127). Previous studies have proved that IL-6 is essential for Th17
Frontiers in Immunology 05
polarization (52, 54). Pro-inflammatory cytokines can activate NK

cells and induce the activation of dendritic cells (DCs). DC can

further activate T lymphocytes, leading to their differentiation

toward the Th1 and Th17 phenotypes. Moreover, it can attack B

cells to produce AMA autoantibodies. AMA can recognize the

PDC-E2 antigen produced by apoptotic BECs, leading to the

formation of antigen–antibody complexes and promoting cell

damage (128). IL-17 in PBC not only has a pro-inflammatory

effect but may also promote the activation of stellate cells, thereby

promoting the occurrence of liver cirrhosis (125, 129). This is also

an important factor that PBC progresses from liver fibrosis to

cirrhosis. Regulatory T (Treg) cells, as “immune suppressors”,

play a protective role in controlling the inflammatory response.

Tregs in the damaged bile duct area in the PBC liver tissue are

reduced (130). There is increasing evidence that Treg level increases

significantly near the inflamed portal area (131). Th17 and Treg

cells seem to maintain a delicate balance in liver immune

homeostasis (132). It has been found that the main effect of the

absence of TGFb pathway signaling is to downregulate immune

regulatory processes and, consequently, upregulate inflammatory

processes. In the mouse PBC model, there are extensive differences

between the dominant-negative transforming growth factor b
receptor II (dnTGFbRII) and normal, wild-type Tregs. Key

transcription factors in dnTGFbRII Tregs are downregulated and

express an activated pro-inflammatory phenotype (133).

Studies have found that follicular helper T (Tfh) cells, which are

differentiated from CD4+ T cells, can promote B-cell activation,
FIGURE 3

Characteristics of BA-induced inflammatory response in PBC. BAs from enterohepatic circulation activate Focal adhesion kinase (FAK)/EGR-1, FAK/
p38, S1PR2/AKT, and sphingomyelinase/Fas cell surface death receptor (FAS) receptor signaling pathways, inducing the release of cytokines,
chemokines, and adhesions and subsequently promoting hepatic injury. BAs play an inflammatory effect by promoting the production of ROS and
Ca2+. In contrast, the ligands of FXR and TGR5 inhibit NLRP3 activity via different signaling pathways. In the small intestine, intestine flora activates
TLR, promotes NLRP6 activity, and inhibits intestinal dysbacteriosis and dysfunction.
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proliferation, affinity maturation, and differentiation (134, 135). They

contribute to the B-cell germinal center (GC) response, which is then

involved in the development of PBC (132, 136, 137). Tfh cells also

express a series of transcription factors, such as Signal transducer and

activator of transcription 3/4 (STAT3/4), Transcription factor B-cell

lymphoma 6 (Bcl-6), Interferon regulatory factor 4 (IRF4), c-

musculoaponeurotic fibrosarcoma (cMaf), and show a similar

relationship with Th effector subsets (138). Another study also found

that the survival, proliferation, and differentiation of GC B cells and Tfh

cells are reciprocally dependent on each other (138). Tfr cells can

express Foxp3 and suppress the same function as Treg cells (139, 140).

Intrahepatic Treg cells and Tfr cells have inadequate inhibition of

inflammatory and autoimmune responses (141). In GWAS studies,

genetic factors have been found to play a key role in the development of

primary cholangitis (PBC). Relatives of patients with PBC had a

significantly higher risk of developing the disease, and, even among

second - and third-degree relatives, the risk was significantly increased

(19, 142). Because of the insufficient sample size of patients with PBC,

GWAS has not revealed the key pathological mechanism of PBC. A

new CD103+ CD69+ CD8+ T cell has recently been found to invade

BEC, and the E-cadherin expressed by this type of cell accelerates its

invasive ability Figure 4.
6 Natural small molecules have great
potential in the treatment of PBC

Currently, there are a limited number of drugs that have been

approved for clinical use in the treatment of PBC. Natural small

molecules are an essential area of research for candidate drugs for
Frontiers in Immunology 06
PBC treatment. FXR agonists have been found to be a promising

direction for PBC-targeted drug research. The approved FXR

agonist OCA has shown outstanding therapeutic efficacy in the

clinical treatment of PBC (143). It is noteworthy that multi-acid

receptor agonists have more tremendous therapeutic potential for

PBC (144). On this basis, we reviewed the research progress of

laboratory and clinical research on FXR agonists (Table 1).
7 Conclusion

By summarizing the mechanism of PBC in BA cytotoxicity, the

correlation characteristics of inflammation with BAs and immune

response, and the main targets of hepatocyte necrosis and

senescence and apoptosis of BEC, we have a generally in-depth

understanding of the pathogenesis of PBC. Immune pathogenesis

has a special relationship with the development of PBC. The

immune response involves both innate immune response and

humoral immune response that directly damage liver cells and

BECs. However, the clinical effects of existing classic

immunosuppressants and clinical trials of new biological agents

modifying the immune system have been disappointing (158–160).

Therefore, it is necessary to rethink the role of the immune

mechanism in the pathogenesis of PBC. Limiting immune

response to “downstream pathogenic factors” cannot achieve the

desired efficacy in the treatment of PBC. Therefore, it is necessary to

improve the “upstream pathogenic factors” of PBC, such as BA or

inflammation, while suppressing immunity. This requires the new

functions of new potential therapeutic drugs for PBC. It is worth

noting that most patients with PBC have AMA autoantibodies.
FIGURE 4

Characteristics of bile duct injury and immune disorder in PBC. DCs activated by proinflammatory cytokines activate T lymphocytes and prompt
them to differentiate into Treg, Th17, Th1, Tfh, and Tfr phenotypes. Th1, CD8+, and Th17 cells promote bile duct injury. CD4+ cells induce
cholangiocyte apoptosis through cytotoxic T lymphocytes (CTL)/TCR and Fasl/Fas signaling pathways. The mitochondria in damaged cholangiocytes
produce PDC-E2 antigen, which can be recognized by AMA, leading to the formation of antigen–antibody complexes.
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However, there are still a few patients with PBC who cannot be

detected with AMA autoantibodies, but they do have other anti-

nuclear antibodies. This suggests that the current research on the

immune mechanism is flawed, and the key immune pathogenesis

still needs further research and discovery.

As a possible “upstream factor” in the pathogenesis of PBC,

BAs also show metabolic abnormalities in viral hepatitis,

alcoholic or non-alcoholic steatohepatitis, drug-induced liver

injury, and intrahepatic cholestasis of pregnancy, but no AMA

autoantibodies appear as in PBC. This distinction suggests

whether the relationship between BA metabolism disorder and

autoimmune response is mediated by a “third party” in PBC,

which requires further study. BAs are synthesized in hepatocytes,

excreted into the small intestine through the gallbladder, and

absorbed by the liver through blood circulation. Various cells

throughout the enterohepatic circulation are exposed to BAs.

However, in PBC, only the mitochondria in BECs are damaged.

The destruction of mitochondria in BECs is also an important

cause of autoimmune reactions. Therefore, we point out that BA-

mediated damage to mitochondria in BECs is likely to be

mediated by specific components of BECs. This is also an

essential step in finding a PBC-targeted therapy strategy. On

the basis of the existing research methods and technologies, some

new high-throughput and high-sensitivity bioinformatics analysis

technologies, such as GWAS, need to be used to reveal the

targeting mechanism of PBC.
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