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Systemic inflammatory response syndrome (SIRS) is a non-specific exaggerated

defense response caused by infectious or non-infectious stressors such as

trauma, burn, surgery, ischemia and reperfusion, and malignancy, which can

eventually lead to an uncontrolled inflammatory response. In addition to the

early mortality due to the “first hits” after trauma, the trauma-induced SIRS and

multiple organ dysfunction syndrome (MODS) are the main reasons for the poor

prognosis of trauma patients as “second hits”. Unlike infection-induced SIRS

caused by pathogen-associated molecular patterns (PAMPs), trauma-induced

SIRS is mainly mediated by damage-associated molecular patterns (DAMPs)

including mitochondrial DAMPs (mtDAMPs). MtDAMPs released after trauma-

induced mitochondrial injury, including mitochondrial DNA (mtDNA) and

mitochondrial formyl peptides (mtFPs), can activate inflammatory response

through multiple inflammatory signaling pathways. This review summarizes the

role and mechanism of mtDAMPs in the occurrence and development of

trauma-induced SIRS.
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Introduction

Systemic inflammatory response syndrome (SIRS) is a non-specific exaggerated

defense response caused by infectious or non-infectious stressors such as trauma, burn,

surgery, ischemia and reperfusion, and malignancy, which can eventually lead to an

uncontrolled inflammatory response (1). In trauma medicine, SIRS can be regarded as an

independent predictor of mortality after trauma (2). Moreover, trauma-induced SIRS

increases susceptibility to infections, which can lead to multiple organ dysfunction

syndrome (MODS), which is often detrimental and leads to poor prognosis in trauma
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patients (3). Therefore, understanding the role and mechanism of

trauma-induced SIRS may provide new perspectives for clinical

diagnosis, treatment, and scientific research.

Early studies indicate that trauma-induced tissue damage leads

to pathogen invasion and the release of pathogen-associated

molecular patterns (PAMPs). The binding of specific pattern

recognition receptors (PRRs) by PAMPs activates the innate

immune system, a prerequisite step for generating immunogenic

signals that ultimately lead to infectious SIRS (4). Gradually,

researchers found that SIRS is not caused by pathogens (5) but

rather by the endogenous damage-associated molecular patterns

(DAMPs) released by tissue injury in many trauma patients. Just

like PAMPs, DAMPs can bind to PRRs, activate the immune

system, and cause further tissue damage. It is largely accepted

that DAMPs can be sensed by several classical PRRs, including

Toll-like receptors (TLRs), C-type lectin receptors (CLRs), retinoic

acid-inducible gene (RIG)-I-like receptors (RLRs), NOD-like

receptors (NLRs), and multiple intracellular DNA sensors (6–8).

DAMPs are mainly derived from the plasma membrane, nucleus,

cytosol, and mitochondria (9). Mitochondrial DAMPs (mtDAMPs)

mainly include mitochondrial DNA (mtDNA), mitochondrial

formyl peptides (mtFPs), mitochondrial transcription factor A

(TFAM), cardiolipin (CL), ATP, cytochrome c, and mitochondrial

RNA (mtRNA), which are also related to trauma-induced SIRS (5).

Trauma causes mitochondrial damage and dysfunction, leading

to mtDAMP release and the induction of an immune response

similar to that against pathogen infection (10). This phenomenon is

theoretically supported by the danger model of immune recognition

and the endosymbiotic theory. Matzinger’s danger model theory

points out that the activation of the body’s immune system occurs

through the recognition of danger signals released by damaged

tissues rather than by the recognition of non-self-molecules (11).

These endogenous danger signals are called DAMPs, which

normally avoid contact with the immune system because of the

plasma membrane and intracellular compartmentalization (12).

When cells and tissues are damaged, DAMPs are released into the

extracellular space or circulation (12). According to the

endosymbiotic theory, the mitochondria evolved from ancient

bacterial endosymbiont; therefore, the endogenous molecules

released by the mitochondria are similar to bacterial PAMPs,

which mediate inflammatory reactions similar to bacterial

infections. This review focuses on the research progress of

mtDAMPs in trauma-induced SIRS and summarizes the

development and pathophysiology at the cellular and organ levels.
Cellular level study of mtDAMPs in
trauma-induced SIRS

MtDNA

Human mtDNA is a closed-circular double-stranded molecule

coding 37 genes. Unlike nuclear DNA, mtDNA can be easily

damaged by the lack of repair systems and histone protection

(13). Similar to bacterial DNA, mtDNA contains unmethylated
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CpG repeats that are recognized by the immune system as non-self.

Post-traumatic mitochondrial damage causes mtDNA released

outside the mitochondria (10, 14, 15). A recent study in a trauma

cohort from Briggs GD showed that the size of mtDNA in the

circulation post-trauma is a mixture of “larger forms” and low

molecular weight mtDNA, and it was the low-molecular-

weight version of cell-free mtDNA that is associated with

inflammation and poor clinical outcomes post-trauma (16). Free

mtDNA mediates inflammation through a variety of signaling

pathways (17).

Toll-like receptor 9 signaling pathway
As a PRR, Toll-like receptor 9 (TLR9) can directly bind to CpG

DNA. After the stimulation by CpG DNA, TLR9 and its

intracellular adaptor protein myeloid differentiation factor 88

(MyD88) localize in the endoplasmic reticulum, rapidly

redistribute to the CpG DNA accumulation site, and transfer to

the endosomal membrane and lysosomal compartment (18).

MtDNA/TLR9 signaling pathway has been demonstrated in

various cell types, such as dendritic cells, neutrophils, macrophages,

and natural killer cells (19). Stimulated TLR9 binds to MyD88 to

activate the nuclear factor kappa-B (NF-kB) and mitogen-activated

protein kinase (MAPK) cascades (6). The activation of NF-kB
induces the expression of tumor necrosis factor-a (TNF-a),
interleukin-1b (IL-1b), interleukin-6 (IL-6), and other

proinflammatory cytokines (6). The activation of MAPK cascades

induces activator protein-1 (AP-1) formation and promotes

cytokine expression (6). In plasmacytoid dendritic cells, TLR9/

MyD88 activates interferon regulatory factor 7 (IRF7), which

transfers to the nucleus, and induces the expression of type I

interferon (20). In contrast, in myeloid dendritic cells and

macrophages, TLR9/MyD88 activates IRF1 and induces the

expression of interferon-b (IFN-b) (21). In addition, mtDNA

activates neutrophils through TLR9, causing Ca2+ influx and

MAPK phosphorylation, mediating neutrophil degranulation and

migration, and inducing inflammation (10).

Cyclic GMP-AMP synthase/interferon gene
stimulator signaling pathway

Cyclic GMP-AMP synthase (cGAS) and interferon gene

stimulator (STING) are widely expressed in mammalian cells that

mediate the expression of type I interferon and other cytokines in

infections and inflammatory diseases (22). cGAS is mainly limited

in the cytoplasm to avoid the continuous activation of its DNA in

the nucleus. However, recent studies have demonstrated that cGAS

also exists in the nucleus (23) and plasma membrane (24).

cGAS binds to mtDNA and catalyzes the generation of 2′-3′
cyclic GMP-AMP (cGAMP) from its substrates GTP and AMP

(25). The secondary messenger cGAMP binds to STING in the

endoplasmic reticulum (ER) membrane, thereby promoting STING

conformational change and forming dimers (26). The activated

STING is transferred to the ER–Golgi intermediates and Golgi by

vesicle transport (27). In this process, STING triggers inflammatory

storms and interferes with autophagy in an interferon-dependent

manner (28). There are two main downstream pathways of STING
frontiersin.org
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(29, 30). In the first pathway, STING directly binds and

phosphorylates TANK-binding kinase 1 (TBK1), mediates the

phosphorylation and nuclear transfer of IRF3, and initiates the

expression of type I IFN. In the second pathway, STING directly

binds and phosphorylates the inhibitor of kB kinase (IKK) complex,

activates NF-kB, and promotes the expression of cytokines, such as

IL-1b, IL-6, and TNF-a.

NLRP3 inflammasomes
Nucleotide oligomerization domain-like receptor thermal

protein domain associated protein 3 (NLRP3) inflammasome is a

macromolecular complex composed of NLRP3, caspase-1, and

apoptosis-associated speck-like protein containing a caspase

recruitment domain (ASC) (31). It is usually present in

neutrophils, monocytes, dendritic cells, macrophages, and non-

hematopoietic cells (32). A study indicated that NLRP3

inflammasomes could be activated through three different

signaling pathways: canonical NLRP3 activation, non-canonical

NLRP3 activation, and alternative NLRP2 activation (33). The

typical NLRP3 activation pathway involves two steps, namely,

initiation and activation. The initiation step revolves around TLR

recognition of PAMP or DAMP, activation of NF-kB, synthesis of
IL-1b and IL-18 precursor, and expression of NLRP3 (34).

However, the exact mechanism of the activation step remains

unclear. Several NLRP3 agonists trigger the activation of NLRP3

inflammasome; however, these agonists are not chemically or

structurally related, and there is little evidence regarding whether

NLRP3 directly binds them (33). A possible explanation is that

NLRP3 agonist-mediated molecular and cellular events (including

K+ outflow, mitochondrial dysfunction, reactive oxygen species

(ROS) and mtDNA release, and lysosomal destruction) are

upstream signals for inflammasome assembly and activation (35,

36). However, these events do not apply to all NLRP3 agonists, and

a consistent NLRP3 activation pathway is lacking (35).

Unlike cGAS, which binds to both oxidized and non-oxidized

mtDNAs, NLRP3 prefers oxidized mtDNA (ox-mtDNA) (13, 37).

Ox-mtDNA exits the mitochondria through mitochondrial

permeability transition pores and voltage-dependent ion channels

and acts as a ligand to activate the NLRP3 inflammasome (38).

Extracellular mtDNA does not serve as an NLRP3 ligand directly,

while it triggers the TLR9/MAPK/NF-kB pathway to induce the

initiation and activation of NLRP3 (39). After NLRP3 activation,

the activated caspase-1 processes IL-1b and IL-18 precursor into a

mature secreted form. Moreover, it cleaves gasdermin D (GSDMD)

that is subsequently transferred to the cell membrane to form pores,

thereby mediating the release of proinflammatory cytokines and

causing pyroptosis (40). In addition, gasdermin D promotes

mitochondrial fragmentation and mtDNA release (41).

Zhong et al. confirmed that the newly synthesized mtDNA is

indispensable for NLRP3 inflammasome activation (42). TLR

activation triggers the IRF1-dependent transcription of CMPK2,

which acts as a rate-limiting enzyme to catalyze mtDNA synthesis

after exposure to NLRP3 agonists (42). The newly synthesized

mtDNA is oxidized by mitochondrial ROS to generate ox-

mtDNA, which subsequently triggers NLRP3 inflammasome

activation (42). Xian et al. stimulated mice with myeloid-specific
Frontiers in Immunology 03
knockout of cytidine/uridine monophosphate kinase (CMPK2)

with lipopolysaccharide (LPS) and observed decreased NLRP3

inflammasome activation and blocked IL-1b secretion in mouse

alveolar macrophages, which is consistent with the results of Zhong

et al. (42, 43). However, in the study on severe fever caused by

thrombocytopenia syndrome virus infection, ox-mtDNA activated

NLRP3 inflammasome, but no significant new mtDNA synthesis

was observed (44). Therefore, whether newly synthesized mtDNA is

necessary for NLRP3 inflammasome activation remains unclear.
MtFPs

MtFPs are proteins synthesized from mtDNA, and like in

bacteria, N-formyl methionine is the first amino acid during

translation initiation. Severe trauma causes mitochondrial damage

and the release of mtFPs into the blood circulation, where they bind

and activate formyl peptide receptor (FPR), and recruit immune

cells to mediate inflammatory response (45). FPR1, FPR2, and FPR3

are three human FPRs (5) expressed in multiple cell types. The

highest expression levels of FPR1 and FPR2 have been detected in

neutrophils, and those of FPR3 have been detected in mononuclear

macrophages (46). Among FPR ligands, mtFPs are the only ligand

common to all human FPRs (46).

Downstream signaling pathways after FPR activation remain

unclear. Hazeldine et al. demonstrated that mtFPs activate

neutrophils through extracellular signal-related kinase 1/2 (ERK1/

2) and MAPK signaling pathways (47). MtFP-stimulated FPR1

induces chemotaxis, degranulation, and Ca2+ outflow of the

polymorphonuclear neutrophils (PMNs); promotes ROS and

proinflammatory cytokine production; and enhances cytoskeletal

rearrangement and network formation (5, 48). Liu et al. discovered

that FPR2 can directly interact with transforming growth factor-b-
activated kinase 1 (TAK1), thereby enhancing inflammation and

oxidative stress related to Nrf2 activation (49). Lee et al. confirmed

the presence of FPR3 in neutrophils; moreover, the use of FPR3

agonists could activate neutrophils, inhibit inflammatory cytokines

generation, and kill bacteria through ROS generation (50). Studies

have discovered that the binding of mtFPs to PMN stimulating

FPR1 leads to the desensitization and inline of multiple PMN

chemokine receptors, thereby reducing the number of PMNs that

can migrate to secondary infection sites (51, 52). Therefore, the

blockage of FPR1 not only protects the receptors from

desensitization but also preserves the immune response at the

injection site (triggered by the stimulation of monocytes with

PAMP), which improves overall anti-pathogen efficacy and

diminishes SIRS (5).
Other mtDAMPs

TFAM is abundant in the mitochondria and plays a key role in

stabilizing the mtDNA structure and protecting mitochondrial

function (13). TFAM damage has a dual role in the inflammatory

response. On the one hand, TFAM damage disrupts mtDNA

stability, leading to mtDNA escape and inflammatory response
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through multiple signaling pathways (53). On the other hand,

TFAM, as a DAMP, enhances the secretion of proinflammatory

cytokines (54).

mtRNA, synthesized through mtDNA transcription, can also

lead to inflammation because of abnormal accumulation and

release. Mitochondrial ssRNA can activate TLR8/MyD88

signaling pathway (55). After recognition by RIG-I, dsRNA

activates NF-kB and IRF3/7 through MAVS to induce type I IFN

expression (56). However, dsRNA cannot activate the type I IFN

response in all cells, such as human islet b-cells (57).
CL is a crucial phospholipid in the bacterial membrane and

mitochondrial inner membrane and plays a pivotal role in

maintaining the electron transport chain, mitophagy, and

apoptosis (58). Chen et al. discovered that the loss of Sam50

(which connects the mitochondrial inner and outer membrane)

led to CL externalization. This causes mitochondrial membrane

remodeling, mtDNA aggregation, and release through Bax/Bak

mitochondrial pore, mtDNA/cGAS/STING signaling pathway

activation, and hepatitis damage (59).

Extracellular ATP (eATP) induces the generation and release of

IL-1b, IL-6, and TNF-a by activating phospholipase A2/D, MAPK,

NF-kB, and other pathways (60). In the mouse model of acute

pancreatitis, the levels of eATP increased and promoted

proinflammatory cytokine production and induced SIRS by

activating MAPK and NF-kB signaling pathways (61).

Cytochrome c is released from damaged cells into the

extracellular space and acts as DAMP to trigger the inflammatory

response. Wenzel et al. discovered that cytochrome c induced the

inflammatory activation of microglia through the TLR4 signaling

pathway (62). Moreover, Pullerits et al. discovered that extracellular

cytochrome c triggered neutrophil-mediated and monocyte-

mediated inflammation through the NF-kB signaling pathway (63).
Interaction of mtDAMPs

Multiple signaling pathways of mtDAMPs that mediate

inflammatory response interact with each other.

MtDAMPs mediate proinflammatory cytokine release and form

positive feedback, leading to further release of mtDAMPs from the

mitochondria and exacerbation of the inflammatory response.

Aarreberg et al. demonstrated that exogenous IL-1b promotes

mitochondrial aggregation in bystander cells, such as fibroblasts

and epithelial cells, lowers mitochondrial membrane potential, and

induces mtDNA release, thereby activating the cGAS/STING-

dependent type I IFN response (64). Willemsen et al. discovered

that long-term TNF stimulation also triggers the release of mtDNA

and induces type I IFN response through cGAS/STING (65). In

diABZIP (a kind of STING agonist)-administered mice, STING

activation-induced cell death and mtDNA release, thereby

activating the cGAS/STING signaling pathway (66). The excessive

activation of STING amplifies the inflammatory cycle (67).
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Organ-level evaluation of trauma-
related SIRS induced by mtDAMPs

Post-traumatic tissue damage leads to mtDAMP release from

the mitochondria, which promotes inflammatory cytokine release

through a variety of signaling pathways and mediates inflammatory

response. Clinical studies have demonstrated that the plasma

mtDNA levels of trauma patients were significantly higher than

those of healthy individuals (10, 67); the levels continued to increase

24 h after injury (10), indicating that plasma mtDNA has a

moderate discriminative power in predicting the risk of SIRS after

trauma (68). In addition, the plasma mtFP levels of trauma patients

with SIRS and sepsis were higher than those of controls (69). Hu

et al. claimed that plasma mtDNA concentration was remarkably

high in patients with intraperitoneal infection and MODS;

moreover, the baseline plasma mtDNA concentration at

admission could effectively predict their prognosis (70). Martinez-

Quinones et al. evaluated critical patients who had undergone open

laparotomy and discovered that peritoneal lavage reduced the level

of mtDAMPs in ascites (71). They proposed that increasing the

frequency of peritoneal lavage may decrease systemic absorption of

mtDAMPs, thereby reducing the risk of aseptic SIRS (71).

One of the features of the SIRS response is a widespread

inflammatory response, defined in part by immune cell activation

and the production of proinflammatory cytokines. In-depth studies

have demonstrated that mtDAMPs including mtDNA/mtFPs can

activate innate immune cells such as antigen-presenting cells,

macrophages, neutrophils, and dendritic cells play crucial roles in

recognizing, phagocytosing, and releasing inflammatory mediators

(8). For example, via PRRs activating antigen-presenting cells and

neutrophils, the production of local ROS, cytokines, chemokines,

MMPs, and NETs increased (8, 72–74). Moreover, injection of

DAMPs into rodents has been shown to be associated with organ

damage, while patients who have high levels of mtDNA in their

circulation when sampled 2 h post-injury are at higher risk of

developing MODS (75). Therefore, scavenging DAMPs may help

alleviate the proinflammatory response triggered by DAMPs. For

example, Lee et al. have demonstrated that nucleic acid scavenging

microfiber meshes represent an effective strategy to inhibit trauma-

induced inflammation and thrombosis in vitro and in vivo (76).

Moreover, Aswani et al. have shown in vitro that the use of nucleic

acid scavenging polymers, for example, hexadimethrine bromide

(HDMBr), can reduce circulating mtDAMP levels and reduce the

severity of organ injury in rat hemorrhagic shock models (75).

SIRS often involves multiple organ injuries and inflammation

such as acute lung injury (ALI), acute respiratory distress syndrome

(ARDS), acute kidney injury (AKI), and traumatic brain injury

(TBI) (8). The following describes the latest research on mtDAMPs

in trauma-induced SIRS at the organ level. The mechanisms and

therapeutic targets of mtDAMPs in various organs of trauma-

induced SIRS are also summarized in Tables 1, 2.
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TABLE 1 Mechanisms of post-trauma organ inflammation induced by mtDAMPs.

Organ Type of
inflammation

Mechanism

Lung Trauma-induced ARDS Elevated plasma mtDNA levels may predict the risk of ARDS in response to distal injury (77, 78).

Sepsis-related ARDS MtOGG1 repairs and inhibits ox-mtDNA release, alleviating lung neutrophils and macrophage infiltration (38).

Sepsis-related ALI MtFPs aggravate lung fluid imbalance in ALI through FPR1 signal (79).

Burn-induced ALI Elevated plasma mtDNA levels may enhance neutrophil infiltration and ALI after burn through cGAS/STING and NLRP3
signaling pathways (80, 81).

Invasive tracheal
intubation-induced
tracheitis

Epithelial cell injury activates neutrophils and releases mtDNA, thereby activating TLR9 signaling pathway (82).

Mechanical ventilation-
induced lung
inflammation

MtDNA is released and activates TLR9 (83), and mtFPs synergize IL-1b to promote neutrophil chemotaxis (84). PINK1-
dependent mitophagy induces mtDNA release, activates mtDNA downstream signaling pathway, and mediates
inflammatory response (85).

Kidney Trauma-induced AKI There is a significant temporal correlation between post-traumatic circulating mtDNA level and severity of AKI (86).

IR-AKI RIP3 promotes mitochondrial degradation and mtDNA release, activating cGAS/STING (87).
MtROS inhibited renal TFAM transcription and promoted its degradation, resulting in mtDNA damage (88).
Kidney PGAM5 is upregulated to promote Bax-dependent mtDNA release and initiate cGAS/STING signaling pathway
(89).

Cardiovascular Hemorrhagic shock Increased plasma mtFPs activate FPR, leading to NO release and severe hypotension (90).
Increased mtDNA release and ROS contents in myocardial tissues activate the systemic inflammatory response (14).

Dysfunction of blood
vessel

MtDNA/cGAS/STING signaling pathway inhibits endothelial proliferation and vascular repair by downregulating YAP
signal (91).
MtDAMPs influence endothelial cells and neutrophils through diverse signals, which can promote the adherence and
interactions of neutrophils to endothelial cells, consequently elevating systemic endothelial permeability (92).

Heart operation Early postoperative plasma mtDNA level is associated with postoperative SIRS and multi-organ failure (93).
The plasma mtDNA level of patients undergoing MiECC is lower than that during CPB surgery and is positively
correlated with postoperative myocardial injury (94).
MtDAMPs such as TFAM and cytochrome c elevated in venous grafts after CABG surgery (95).

Brain TBI Ccf-mtDNA elevated in CSF and serum within 48 h after acute brain injury (96). Ccf-mtDNA level in CSF is correlated
with injury severity and has a stronger predictive effect on neuronal injury and inflammation after TBI (96, 97).
NLRP3 inflammasome of microglia was activated, releasing inflammatory cytokines such as IL-1b and IL-18 (98), and
NLRP3 peak is associated with poor prognosis (99).
Gasdermin D is a downstream factor of NLRP3 inflammasome activation (100).
MaxiK expression was significantly increased in the cerebral cortex, which may activate NLRP3 inflammasome by
promoting K+ transport (94).
STING/NLRP3 signaling pathway was involved in neuroinflammation after TBI (101).
MtDNA/cGAS/STING and its mediated type I IFN response play an important role in the neuroinflammatory response
after TBI, mainly in microglia (102–104).
STING expression was significant upregulation in late traumatic human brain samples (105).
Compared with young mice, aged mice showed greater activation of cGAS/STING and type I IFN (103, 104).
NLRX1 restricts the activation of cGAS/STING and the overexpression of type I IFN after TBI (102).

Bone and
muscle

Orthopedic trauma
operation

There is a correlation between preoperative mtDNA level and post-traumatic time, and also a correlation between the
duration and magnitude of surgical intervention and postoperative mtDNA concentration (103).

Cartilage damage Synovial mtDNA levels increased (17).
Extracellular mtDNA is associated with post-traumatic arthritis and is an important marker of early cartilage damage
(106).

Liver Liver transplantation Plasma mtDAMPs increase during liver transplantation, which is relevant to the prognosis (107).

Burn-induced live injury Liver NLRP3 inflammasome activates Kupffer cells and releases inflammatory cytokines by recognizing ox-mtDNA (108).

Intestines Pancreaticoduodenectomy Circulating mtDNA level after operation is correlated with inflammatory response (109).

IR MtDNA derived from intestinal epithelial cells mediates proinflammatory cytokines production via TLR9 (110).
F
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mitochondrial damage-associated molecular patterns; TFAM, mitochondrial transcription factor A.
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Lung

ARDS is an acute inflammatory lung injury. Clinical studies

have discovered that plasma mtDNA levels correlate with ARDS

severity in trauma patients and can also predict the risk of ARDS

during distal injury (77, 78).

MtFPs aggravate lung fluid imbalance through the FPR1

signaling pathway (79). In vivo experiments of burn-induced ALI

mice revealed that elevated plasma mtDNA levels may enhance

neutrophil infiltration and post-burn ALI through cGAS/STING

and NLRP3 signaling pathways (80, 81).

Acute tracheitis is often secondary to invasive endotracheal

intubation because of epithelial cell damage. This activates

neutrophils and mtDNA release, which mediate proinflammatory

cytokine secretion through the mtDNA/TLR9/NF-kB signaling
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pathway (82). In addition, mechanical ventilation can lead to

excessive lung traction and mechanical damage, resulting in the

activation of the TLR9/MyD88/NF-kB signaling pathway (83).

MtFPs cooperate with IL-1b to promote neutrophil chemotaxis

(84), thereby aggravating inflammation and lung injury. In the

cyclic stretching cell culture model constructed by Jing et al., the

overexpression of PTEN-induced putative kinase 1 (PINK1) in lung

epithelial cells exacerbated stretch-induced inflammatory response

(85) through PINK1-dependent mitophagy to induce mtDNA

release (85). Therefore, the inhibition of mitophagy and mtDNA-

mediated TLR9/MyD88/NF-kB signaling pathway may be a

potential therapeutic approach for lung injury caused by

mechanical ventilation (85). Xian et al. discovered that 8-

oxoguanine DNA glycosylase 1 (mtOGG1), an mtDNA base

excision repair enzyme, repaired ox-mtDNA and inhibited its
TABLE 2 Therapeutic measures targeting mtDAMPs and the signaling pathways.

Organ Drug/targets Role and signaling pathways

Lung Cyclosporine-A Reduce lung mtDNA release and oxidative stress in burn and sepsis (86, 111).

Metformin Block new mtDNA synthesis, thereby blocking NLRP3 activation and improving ARDS (38).

EGCG Clear mtROS and ox-mtDNA, inhibit NLRP3 activation, and protect lung injury caused by acute pancreatitis (112)

Tanreqing Alleviate sepsis-related ALI by inhibiting mtDNA/cGAS/STING signaling pathway (113).

PSPAs Promote Parkin-dependent mitophagy, reduce the release of mtROS and mtDNA, and inhibit NLRP3 activation (114).

Suhuang Maintain mitochondrial homeostasis, reduce mtROS overproduction and mtDNA release, downregulate MMP9
expression, and inhibit NF-kB and NLRP3 signaling pathways (115).

Corticosteroids Inhibit NF-kB and mtROS-dependent NLRP3 activation (116).

MSC-EVs Regulate alveolar epithelial-capillary barrier integrity and improve mitochondrial oxidative phosphorylation of
macrophages through mitochondrial transfer (117–119).

Kidney SS31 peptide Targeted inhibit mtROS/NLRP3 pathway to improve mitochondrial oxidative stress in kidney (120).

MEC-EVs Restore the stability of TFAM and TFAM–mtDNA complexes, thereby reversing mtDNA depletion in damaged
kidney cells (121).

Cardiovascular TLR9 antagonists Block TLR9 downstream signaling pathway, thereby significantly reducing IL-6 expression (122).

Sulforaphane Reduce mtDNA release (122).

SkQ1 Protect the ultrastructure of rat myocardial mitochondria, reduce mtDNA release and the ROS content, and thus
reduce inflammation (14).

Brain NLRP3 inhibitors (MCC950,
gastrodin, ACT001, oridonin,
and parthenolide)

Inhibit the expression and assembly of NLRP3 inflammasome components, reduce the secretion of IL-1b and IL-8,
effectively alleviate the inflammatory response and BBB damage after TBI, and play a protective role on neurons (123–
127).

LIFUS Inhibit the activation of NF-kB and NLRP3 inflammasome after TBI by promoting the expression of orexin-A and
orexin receptor 1 (101).

Let-7i Intranasal injection of let-7i can inhibit the expression of STING and reduce neuronal apoptosis after TBI (128).

Bone and
skeletal
muscle

SS31 peptide Reduce mtDNA to baseline level (17).

CoQ10 Decrease mtDNA, inhibit the expression of ASC and NLRP3, and reduce the levels of IL-1a, IL-1b, and IFN-g,
thereby alleviating the systemic inflammatory response after skeletal muscle burn (129).

Intestines ACA Inhibit mtROS production and mtDNA oxidation to reduce NLRP3 inflammasome activation and alleviate colitis
(130).

MODS nucleic acid scavenging
(microfiber meshes,
HDMBr)

Nucleic acid scavenging microfiber inhibits trauma-induced inflammation and thrombosis in vitro and in vivo (76).
Nucleic acid scavenging polymers hexadimethrine bromide (HDMBr) can reduce circulating mtDAMP levels and
reduce the severity of organ injury in rat hemorrhagic shock models (75).
EGCG, epigallocatechin-3-gallate; PSPAs, purple sweet potato anthocyanins; MSC-EVs, mesenchymal stem cell-extracellular vesicles; SS31, D-Arg-Dmt-Lys-Phe-NH2; ACA, 1′-acetoxychavicol
acetate; BBB, blood–brain barrier; TBI, traumatic brain injury; LIFUS, low-intensity focused ultrasound; mtDNA, mitochondrial DNA; ARDS, acute respiratory distress syndrome.
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release, thereby alleviating pulmonary vascular endothelial injury

and infiltration of neutrophil and macrophage; this provided

resistance to LPS-induced ARDS in mtOGG1 transgenic mice (38).

The inhibiting of mtDAMP synthesis and release, blockage of

downstream signaling pathways of mtDAMPs, and maintenance of

mitochondrial homeostasis may control pulmonary inflammation.

Cyclosporine-A attenuates oxidative stress and mtDNA release in

lung tissue in a dose-dependent manner, thereby exerting a protective

effect on both burn-induced ALI and LPS-induced ALI (86, 111).

Xian et al. discovered that metformin ameliorated ARDS by

inhibiting mtDNA synthesis and blocking NLRP3 inflammasome

activation (43). Epigallocatechin-3-gallate (EGCG) may inhibit

NLRP3 inflammasome activation by clearing mtROS and ox-

mtDNA, thereby protecting against lung injury caused by acute

pancreatitis (112). In a study, Tanreqing significantly alleviated

LPS-induced ALI by inhibiting the mtDNA/cGAS/STING signaling

pathway (113). Dong et al. reported that purple sweet potato

anthocyanins (PSPAs) inhibited NLRP3 inflammasome activation

by promoting parkin-dependent mitophagy and reducing the release

of mtROS and mtDNA; this resulted in reduced lung inflammation

and mortality of Klebsiella pneumoniae-infected mice (114). Suhuang

exhibited a positive effect on mitochondrial homeostasis in ALI mice

by reducing mtROS overproduction and mtDNA release,

downregulating MMP9 expression, and inhibiting NF-kB and

NLRP3 inflammasome activation (115). Corticosteroids protect

against inflammation response and ALI by inhibiting the NF-kB
signaling pathway and mtROS-dependent NLRP3 inflammasome

activation (116). Mesenchymal stem cell-extracellular vesicles

(MSC-EVs) regulate alveolar epithelial–capillary barrier integrity

through mitochondrial transfer; this restores metabolic and

immune homeostasis of airway macrophages and thereby reduces

the release of alveolar mtDNA, which effectively alleviates lung

inflammation and improves organ function (117–119).
Kidney

In critically injured patients, the continuous monitoring of

circulating mtDNA levels within 48 h after trauma has a

significant temporal correlation with AKI (131). AKI is frequent

among patients with severe burns and is associated with high

mortality (132). Although the incidence of AKI is low, late AKI is

severe and is a poor prognostic factor for severe burns (132).

According to Feng et al., receptor-interacting protein 3 (RIP3)

promotes mitochondrial degradation and mtDNA release, which

activates the cGAS/STING signaling pathway and exacerbates

inflammation and kidney injury after renal IR (87). Zhao et al.

noted renal TFAM deficiency and mtDNA damage in patients with

IR-AKI; in the mouse model, mtROS disrupted TFAM and mtDNA

homeostasis by inhibiting renal TFAM transcription and

promoting its degradation, thereby driving mtDNA release and

renal inflammatory response (88). Li et al. discovered that

phosphoglycerate mutase 5 (PGAM5) was upregulated in the

kidneys of AKI human biopsy samples and mouse models; the
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upregulation promoted Bax-dependent mtDNA release and

initiated the mtDNA/cGAS/STING signaling pathway (89).

In a cisplatin-induced AKI mouse model, mitochondrial-

targeted therapy with SS31 peptide (D-ARG-DMT-lys-Ph-NH2, a

mitochondrial targeting antioxidant) improved renal oxidative

stress by inhibiting the mtROS/NLRP3 signaling pathway (120).

In addition to lung inflammation alleviation, MSC-EVs play an

active role in kidney inflammation. Zhao et al. reported that the

application of MSC-EVs restored the stability of TFAM and

TFAM–mtDNA complexes, thereby reversing damage caused by

mitochondrial oxidative phosphorylation in renal tubular cells and

alleviating kidney inflammation (121). However, intravenous

injection of MSC-EVs into mice with weakened TFAM

expression had poor efficacy, and TFAM overexpression had

better efficacy (121). These results suggest that MSC-EVs are a

promising nanotherapy for diseases with mitochondrial damage;

the TFAM signaling pathway is essential for maintaining

mitochondrial regenerative capacity (121).

AKI can damage distal organs such as the lung. Hepokoski et al.

discovered that mitochondrial dysfunction occurred in the lungs

and systemic circulation of IR-AKI mice, leading to an increase in

extracellular mtDNA and TFAM levels and enhanced infiltration of

pulmonary neutrophils (133). Intraperitoneal injection of renal-

derived mtDAMPs resulted in metabolomic changes caused by lung

mitochondrial dysfunction in vivo (133). Therefore, mitochondrial

function and mtDAMPs may be potential therapeutic targets for

preventing AKI-related lung injury (133).
Cardiovascular

MtFPs mediate inflammation through FPR activation, also

dilate resistant arteries, and induce vascular endothelial cell

dysfunction in a blood-dependent manner (90). Specifically, the

collapse of blood vessels is the primary pathophysiology feature of

the sepsis-like syndrome. F-MIT does not affect the arteries’

relaxation induced by acetylcholine. However, arteries incubated

in blood containing F-MIT or blood from rats treated with F-MIT

show reduced relaxation compared to their respective control

groups. These findings indicate that F-MIT induces blood-

dependent endothelial dysfunction (90). In a rat model of

hemorrhagic shock, mtFPs lead to NO release and severe

hypotension through FPR, and elevated plasma mtFP levels were

associated with aseptic trauma-induced ALI (90). Moreover, the

activation of the mtDNA/cGAS/STING signaling pathway inhibits

endothelial proliferation and vascular repair by downregulation of

the YAP signaling pathway (91). Therefore, mtFPs may serve as a

bridge between trauma, SIRS, and cardiovascular failure (90).

Moreover, the release of mtDAMPs into the bloodstream can

occur through various mechanisms, causing cellular damage and

resulting in increased pathological endothelial permeability. Sun

et al. demonstrated that the mitochondria contain numerous

DAMP motifs capable of influencing endothelial cells and

neutrophils through diverse signals, which can promote the
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adherence and interactions of neutrophils to endothelial cells,

consequently elevating systemic endothelial permeability (92).

Recent research by our team has also identified myocardial

mitochondrial structure disruption in the rat model of

hemorrhagic shock (HS), resulting in increased mtDNA release

and ROS contents, which in turn activates the systemic

inflammatory response (131). More importantly, we found the

mitochondrial antioxidant SkQ1 can protect myocardial

mitochondria, improve the ultrastructure of rat myocardial

mitochondria, reduce mtDNA release and the ROS content, and

thus reduce inflammation (14). Cardiopulmonary bypass, surgical

trauma, and ischemia–reperfusion injury stimulate a systemic

inflammatory response in cardiac surgery. Early postoperative

plasma mtDNA level is a predictive marker for SIRS and multi-

organ failure in patients undergoing cardiac surgery (93). The

elevated plasma mtDNA level during cardiopulmonary bypass

(CPB) surgery may be involved in SIRS pathogenesis and the

related postoperative inflammatory events (such as postoperative

atrial fibrillation and infection) (67). Compared with traditional

CPB, minimally invasive extracorporeal circulation (MiECC)

results in a lower plasma mtDNA level, positively correlated with

CPB duration and postoperative myocardial injury (94). Naase et al.

further confirmed that mtDNA-mediated inflammation through

TLR9 and TLR9 antagonist administration significantly reduced IL-

6 expression (122). The antioxidant sulforaphane reduces mtDNA

release and may have a potential therapeutic role in stimulating the

systemic inflammatory response in cardiac surgery (122).
Brain

TBI can damage the blood–brain barrier (BBB), which can lead

to neuroinflammation. This inflammation can be caused by

mtDAMPs, which trigger the release of proinflammatory

cytokines and polarize microglia/macrophages toward an M1-like

phenotype (134). A series of previous studies have proved that the

levels of IL-1b, IL-8, TNF-a, and other cytokines in serum and

cerebrospinal fluid (CSF) of TBI patients increased, which were

correlated with the degree of tissue damage; IL-1b might especially

be an independent prognostic factor after TBI (135, 136). The

increased expression of these cytokines is related to TBI-mediated

mtDNA release (121). Within 48 h after TBI, circulating cell-free

mtDNA (ccf-mtDNA) levels in both CSF and serum are elevated

(96). Moreover, compared with serum, ccf-mtDNA level in CSF is

correlated with injury severity and inflammatory cytokine response

and has a more robust predictive effect on neuronal injury and

inflammation after TBI (96, 97).

The circulating mtDNA was first identified as the mtDAMP

activated by NLRP3 (10) and a crucial component of the NLRP3

activation pathway (37, 42). Moreover, mitochondrial dysfunction-

induced mtDNA and mtROS release after TBI could serve as stimuli

regulating the NLRP3 inflammasome downstream by transcriptional

or post-translational modifications (137). Therefore, we further

elucidate the role of the NLRP3 inflammasome in TBI. NLRP3
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inflammasome of microglia is involved in the development of

neuroinflammation after TBI. Liu et al. showed for the first time

that TBI induced upregulation of NLRP3-related genes and proteins

in the mouse cerebral cortex, activating NLRP3 inflammasome

assembly and releasing inflammatory cytokines such as IL-1b and

IL-18 (98). The concentration of NLRP3 in the CSF of infants with

TBI changes significantly with time after trauma, and the NLRP3

peak is associated with poor prognosis (99). It is worth noting that

NLRP3 knockdown does not lead to changes in IL-1b production, but
some markers of microglia and astrocytes will be overexpressed,

increasing cytokine levels (138). As a downstream factor of NLRP3,

the expression of GSDMD is also blocked (100). According to RNA

sequencing, both GSDMD knockdown and NLRP3 knockdown

reversed the expression of genes related to neuroinflammation after

TBI (100). MaxiK channel, also known as large-conductance Ca2

+-activated K+ channels, big K+ (BK) channels, is important for K+

transport. MaxiK channels are important in a variety of physiological

functions, including regulation of neuronal firing, endocrine cell

secretion, smooth muscle tone, and cellular proliferation and

migration (139, 140). In explosion-induced TBI, MaxiK

significantly increased in the cerebral cortex, which may activate

NLRP3 inflammasome by promoting K+ transport. Blocking this

channel can effectively inhibit NLRP3 activation and

neuroinflammatory response (139). The STING/NLRP3 signaling

pathway has also been shown to be involved in neuroinflammation,

and the NLRP3-mediated inflammatory response can be partially

inhibited by blocking the expression of STING (101, 136).

NLRP3 inhibitors can restrain the expression and assembly of

NLRP3 inflammasome components and reduce the secretion of

caspase-1-activated IL-1b and IL-8, thereby effectively alleviating

the inflammatory response and BBB damage after TBI, playing a

protective role on neurons (123, 126, 127). As a specific inhibitor of

NLRP3, the neuroprotective effect of MCC950 depends on the

presence of microglia and is limited to the first 6 h after TBI (123).

MCC950 combined with rapamycin treatment further enhances

neuroprotection after TBI through rapamycin-mediated

mitochondrial phagocytosis (141). In addition to inhibiting the

expression of NLRP3, oridonin extracted from Chinese herbal

medicine can also improve mitochondrial function by enhancing

the activation of the Nrf2 signal and reducing the number of

degenerated neurons and the volume of cortical lesions (124).

Parthenolide treatment simultaneously suppresses STAT3/NF-kB
and NLRP3 inflammasomes, thereby inhibiting microglial

activation, alleviating neurological deficits, and improving

memory and learning in TBI mice (125). In addition to drug

therapy, low-intensity focused ultrasound (LIFUS), as a novel

treatment for neurological diseases, significantly inhibited the

activation of NF-kB and NLRP3 inflammasome after TBI by

promoting the expression of orexin-A and orexin receptor 1 (142).

Previous studies have demonstrated that STING mRNA is

significantly upregulated in post-mortem human TBI brain

samples (105). In recent years, many experimental studies have

shown that mtDNA/cGAS/STING and its mediated type I IFN

response play an important role in the neuroinflammatory response
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after TBI, and microglia are the main cell type expressing cGAS and

STING in the brain (102–104). STING activation is also age-related.

Compared with young mice, aged mice showed greater activation of

cGAS/STING and significantly upregulated type I IFN response

(103, 104). Fritsch et al. found that NLR containing X1 (NLRX1)

could limit the activation of cGAS/STING after brain injury and

inhibit the overexpression of type I IFN (102). Let-7i is the upstream

signal of STING, whose expression level decreases in TBI mice

(128). Intranasal injection of let-7i helps to inhibit the expression of

STING, reduce neuronal apoptosis, and improve the cognitive

function of mice (128).
Bone and muscle

A study of heterogeneous orthopedic trauma patients

emphasizes the sustained presence of predominantly mtDNA in

the plasma of trauma patients following surgical intervention. The

correlation between the degree and timing of surgery and mtDNA

concentration suggests that mtDNA may serve as a potential

marker for a postoperative secondary strike and post-traumatic

complications (143). Seewald et al. demonstrated for the first time

the relationship between extracellular mtDNA and post-traumatic

osteoarthritis (PTOA) (106). In another study in horses,

mechanically induced cartilage injury resulted in increased

synovial mtDNA concentration either through the selective

release of mtDNA from living cells or through cell death or

rupture; however, treatment with SS31 peptide effectively reduced

mtDNA levels to the baseline level (17). These results suggest that
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synovial mtDNA concentration is a non-invasive method to detect

cartilage dysfunction and acute cartilage injury; moreover,

mitochondrial protective drugs may be a novel PTOA prevention

and treatment strategy (17).

In smooth muscle, Thankam et al. found that TFAM,

cytochrome c, and other mtDAMPs were elevated in venous

grafts after coronary artery bypass grafting (CABG), which was

related to the increase of ROS content in hypoxic smooth muscle

and the damage of membrane integrity, leading to graft failure (95).

In mice with skeletal muscle burn, CoQ10 treatment decreased

mtDNA level, inhibited the expression of ASC and NLRP3, and

reduced the levels of IL-1a, IL-1b, and IFN-g, thereby alleviating the
systemic inflammatory response after burn (129).
Liver

In a retrospective study on patients undergoing a liver

transplant, Nagakawa et al. discovered that the measurement of

plasma mtDAMPs might predict the post-transplantation recovery

of the patients (107). In burn and delayed resuscitation experiments

in rats, liver NLRP3 inflammasomes activated Kupffer cells by

recognizing ox-mtDNA, releasing inflammatory cytokines, and

causing liver injury (108).
Intestines

The circulating mtDNA level after pancreaticoduodenectomy is

associated with inflammatory responses and may be used as an early
FIGURE 1

The role of mtDAMPs in the trauma-induced systemic inflammatory response syndrome. Trauma causes tissue damage, resulting in the release of
mtDAMPs including mtDNA, mtFPs, TFAM, eATP, CL, cytochrome c, and mtRNA, in the injured mitochondria. MtDAMPs activate downstream
signaling pathways in immune cells, such as neutrophils, monocytes, and dendritic cells, thereby inducing the production and release of
proinflammatory cytokines. In addition, proinflammatory cytokines act positively on normal cells, increasing mtDAMP release and exacerbating
inflammatory response. An uncontrolled inflammatory response causes SIRS and the dysfunction of multiple organs throughout the body. mtDAMPs,
mitochondrial damage-associated molecular patterns; mtDNA, mitochondrial DNA; mtFPs, mitochondrial formyl peptides; TFAM, mitochondrial
transcription factor A; CL, cardiolipin; eATP, extracellular ATP; mtRNA, mitochondrial RNA; SIRS, systemic inflammatory response syndrome.
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marker of the postoperative disease course (109). During intestinal

IR, mtDNA derived from intestinal epithelial cells mediates

proinflammatory cytokine generation through the TLR9 signaling

pathway, which exacerbates acute inflammatory response (110). Sok

et al. constructed mouse models of peritonitis and colitis and

demonstrated that 1′-acetoxychavicol acetate (ACA; a natural

compound in the rhizome of tropical ginger) inhibited mtROS

production and mtDNA oxidation to reduce NLRP3 inflammasome

activation, thereby alleviating the colitis in mice (130).
Conclusion

Post-trauma tissue damage releases mtDAMPs from the

mitochondria into the cytoplasm or the extracellular space,

leading to proinflammatory cytokine release and immune cell

activation through a series of signaling pathways. MtDAMP-

induced inflammatory reaction protects the body; however,

excessive inflammation damages organ function and causes SIRS

and MODS, which are poor prognostic factors for trauma patients.

Figure 1 summarizes the role of mtDAMPs in the trauma-induced

systemic inflammatory response syndrome. For the optimal

management of trauma-induced SIRS, further clinical studies on

mtDAMPs are required such as the quantification of mtDAMPs

levels in different trauma patients, the correlation of mtDAMPs

with trauma injury severity or clinical outcomes, the potential

intervention strategies targeting mtDAMPs to reduce traumatic

SIRS, and the effectiveness and safety assessments. Such studies may

lead to the usage of mtDAMPs, especially mtDNA, as biomarkers

for predicting the course and prognosis of SIRS in trauma patients.

Drugs targeting mtDAMPs and maintaining mitochondrial

homeostasis are promising therapeutic strategies.
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