With the persisting low vaccination intake, particularly in children of low-and middle-income countries (LMICs), seroepidemiological studies are urgently needed to guide and tailor COVID-19 pandemic response efforts in schools and to put mitigation strategies in place for a future post-pandemic resurgence. However, there is limited data on SARS-CoV-2 infection-induced and vaccine-induced humoral immunity in schoolchildren in LMICs, including Ethiopia.
As the spike receptor binding domain (RBD) is the major target for neutralization antibodies and useful to predict the correlates of protection, we used an in-house anti-RBD IgG ELISA to assess and compare infection-induced antibody response at two-time points and BNT162b2 (BNT) vaccine-induced antibody response at a one-time point in schoolchildren in Hawassa, Ethiopia. In addition, we measured and compared the levels of binding IgA antibodies to spike RBD of SARS-CoV-2 Wild type, Delta, and Omicron variants in a small subset of unvaccinated and BNT-vaccinated schoolchildren.
When we compare SARS-CoV-2 infection-induced seroprevalences among unvaccinated school children (7-19 years) at the two blood sampling points with a 5-month interval, we observed an over 10% increase, from 51.8% (219/419) in the first week of December 2021 (post-Delta wave) to 67.4% (60/89) by the end of May 2022 (post-Omicron wave). Additionally, we found a significant correlation (
Our serological data indicate a significant increase in SARS-CoV-2 seroprevalence in children at a post-Omicron five-month follow-up compared to a post-Delta enrolment. Despite the small sample size of study participants, the BNT vaccine is shown to be immunogenic and safe for schoolchildren. Hybrid immunity would likely provide a broader humoral immunity against Wuhan strain, Delta, and Omicron variants than natural infection or vaccination alone does. However, future longitudinal cohort studies in SARS-CoV-2-naïve and COVID-19-recovered schoolchildren receiving the BNT vaccine are needed for a better understanding of the kinetics, breadth, and durability of BNT vaccine-induced multivariant-cross reactive immunity.