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Introduction: Pemphigus is an autoantibody driven disease that impairs the

barrier function of the skin and mucosa by disrupting desmosomes and thereby

impeding cellular cohesion. It is known that the different clinical phenotypes of

pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are dependent on the

autoantibody profile and target antigens that, amongst others, are primarily

desmoglein (Dsg)1 and/or Dsg3 for PV and Dsg1 for PF. However, it was

reported that autoantibodiesagainst different epitopes of Dsg1 and Dsg3 can

be pathogenic or not. The underlying mechanisms are very complex and involve

both direct inhibition of Dsg interactions and downstream signalling. The aim of

this study was to find out whether there is target-epitope-specific Dsg3 signalling

by comparing the effects of the two pathogenic murine IgGs, 2G4 and AK23.

Methods: Dispase-based dissociation assay, Western Blot analysis, Stimulated

emission depletion microscopy, Fura-based Ca2+ flux measurements, Rho/Rac

G-Protein-linked immunosorbent assay, Enzyme-linked immunosorbent assay.

Results: The IgGs are directed against the EC5 and EC1 domain of Dsg3,

respectively. The data show that 2G4 was less effective in causing loss of cell

adhesion, compared to AK23. STED imaging revealed that both autoantibodies

had similar effects on keratin retraction and reduction of desmosome number

whereas only AK23 induced Dsg3 depletion. Moreover, both antibodies induced

phosphorylation of p38MAPK and Akt whereas Src was phosphorylated upon

treatment with AK23 only. Interestingly, Src and Akt activation were p38MAPK-

dependent. All pathogenic effects were rescued by p38MAPK inhibition and

AK23-mediated effects were also ameliorated by Src inhibition.

Discussion: The results give first insights into pemphigus autoantibody-induced

Dsg3 epitope-specific signalling which is involved in pathogenic events such as

Dsg3 depletion.

KEYWORDS

pemphigus, autoimmune disease, skin, epidermis, desmosomes, adhesion, keratin,
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Introduction

The skin and mucosa provide an effective barrier against

external hazards such as pathogens or harmful chemicals.

Pemphigus is an autoantibody driven disease that impairs barrier

integrity by disturbing the turnover of desmosomes. Desmosomes

provide mechanical cohesion between neighbouring epithelial cells

(1). As a result, liquid-filled blisters are formed within the epithelia,

which can affect a large portion of the skin or mucous membranes.

The blisters can thus cause severe complications and high mortality,

mostly due to barrier defects (2). Desmosomes consist of the

cadherin adhesion molecules desmoglein (Dsg) and desmocollin

(Dsc) subfamily. These are anchored to keratin filaments by adaptor

proteins such as plakoglobin (Pg) and plakophilin (Pkp) and the

linker protein desmoplakin (Dp). It is well known that the clinical

pemphigus phenotypes correlate with the autoantibody profile. The

most common pemphigus variants are pemphigus vulgaris (PV)

characterized by autoantibodies against Dsg3, affecting the mucosa

only or against Dsg1 and Dsg3, affecting the mucosa and epidermis

and pemphigus foliaceus (PF) characterized by autoantibodies

against Dsg1, affecting the epidermis exclusively (3–5). However,

the pathomechanisms causing the loss of adhesion are quite

complex (6). For anti-Dsg3 antibodies, it was shown that both

direct inhibition of Dsg interaction (7–9) and signalling events

induced by the autoantibody binding play a major role (10, 11). In

this context, it was reported that several kinases and other signalling

proteins relevant for pemphigus pathogenesis form complexes with

desmosomal proteins (12, 13). Recently, interaction of Erk1 and

p38MAPK with Dsg1 was confirmed by BIO-ID (14).

For anti-Dsg1 autoantibodies, direct inhibition was not found in all

studies (7, 15–17). Frequently, autoantibodies against other antigens are

also found (18). Autoantibodies against Dsc1, Dsc2 or Dsc3 were also

reported to be pathogenic (19–26). However, the role of autoantibodies

against other targets is less clear. It is hypothesised that they cause

additive effects, thereby potentiating the pathogenic effects of the

autoantibodies against the desmosomal cadherins (27–29).

It was reported that different anti-Dsg antibodies do not always

show a similar degree of pathogenicity (7, 15–17). Dsg isoforms

consist of five extracellular domains (EC1-EC5), similar to other

cadherins. These share a high structural homology, except for the

membrane proximal EC5 domain (30). Several studies reported that

most pemphigus autoantibodies bind to the N-terminal EC1-

domain, the major mediator of homo- and heterophilic

interactions (31, 32). Approximately 50 % of PV patients exhibit

detectable serum IgGs recognizing the EC1 domain, followed by

EC2 (26 %), EC4 (21 %), EC5 (17%) and EC3 (15%) (33).

Antibodies directed against EC1 or EC2 are known to exhibit

pathogenic effects, whereas those targeting EC5 are reported to be

mostly non-pathogenic (34, 35). It was reported that healthy

individuals from endemic groups with an increased risk of PF

onset often showed increased levels of non-pathogenic anti-Dsg1-

IgGs (35–38). These were exclusively IgG2 whereas pathogenic

autoantibodies were usually of IgG4 subtype (39). However, non-

pathogenic and pathogenic antibodies can often share the same
Frontiers in Immunology 02
light or heavy chains (34). It is even hypothesised that pathogenic

pemphigus autoantibodies can evolve from non-pathogenic

antibodies via epitope spreading (34, 35, 40). Epitope spreading

from Dsg3 to Dsg1 is described in the relatively frequent

transformation from mucosal-dominant (anti-Dsg3-IgG only) to

mucocutaneous PV (anti-Dsg1- and anti-Dsg3-IgG). The same is

true for a less frequent transformation from PF (anti-Dsg1-IgG

only) to PV (anti-Dsg1- and anti-Dsg3-IgG) (41, 42). A further

piece of evidence is the observation that the introduction of a single

Dsg3-reactive T-cell was sufficient to induce the expression of

polyclonal anti-Dsg3 IgG in mice in vivo (43). Pemphigus patient

sera usually display a complex polyclonal mixture of autoantibodies

that in most, but not all cases show a good correlation with the

disease severity (44, 45).

Due to their high prevalence in pemphigus patients and their high

pathogenicity in several in vitro and in vivo studies, EC1-specific

antibodies such as the mouse monoclonal IgG1 AK23 are typically

used to investigate PV pathology (Figure 1A) (46). Recently, a

pathogenic mouse monoclonal anti-Dsg3 IgG called 2G4, directed

against the EC5 domain, was developed (47). The aim of this studywas

thus to directly compare the two antibodies to clarify if autoantibodies

in PV can induce a Dsg3 epitope-specific signalling response.
Results

AK23 is more effective than 2G4 in
reducing cell-cell adhesion

Using immunostaining and super resolution stimulated

emission depletion (STED) microscopy showed that both 2G4

and AK23 produced a Dsg3 staining pattern comparable to a

commercial polyclonal IgG directed against the intracellular

domain of Dsg3 (Figure 1B). In the dispase-based dissociation

assay, 2G4 induced a significant loss of adhesion, compared to

the control using IgG purified from the serum of healthy volunteers

(C-IgG). However, 2G4 showed a 2.54-fold weaker effect on the

adhesion of HaCaT cells than AK23 (1.98-fold without subtracting

background fragments under control conditions). The effects of

both IgGs were ameliorated by inhibition of p38MAPK, a kinase

central for pemphigus pathogenesis (6), using SB202190 (SB20)

(Figures 1C, D) or EO1428 (EO) (Figures 1E, F). Inhibition of Src,

using PP2, on the other hand was effective in reducing AK23-

induced effects, but had no effect on fragment numbers under 2G4

treatment (Figures 1G, H).

To check if there are additive and polyclonal effects potentially

increasing the loss of adhesion, we used mixtures of AK23 and 2G4 in

dispase dissociation assays. A mixture of AK23 and 2G4 at a

concentration of 75 µg/ml each did not lead to a significant increase

in the number of fragments, compared to AK23 alone at a

concentration of 75 µg/ml (as applied in all other experiments). A

mixture of AK23 and 2G4 at a concentration of 37.5 µg/ml for both led

to a number of fragments similar to the number of fragments induced

by 2G4 alone at a concentration of 75 µg/ml (Figures 2A, B).
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Effects of 2G4 and AK23 on the
organization of keratin filaments and
distribution of Dsg3 and Dp

Using STED microscopy, we observed that both 2G4 and AK23

caused fragmentation of Dsg3 staining along cell borders

(Figure 3A, S1A). In addition, following incubation with AK23

the staining intensity of Dsg3 was significantly reduced, both along

the cell borders and in the cytoplasm. This effect was not observed

for 2G4, showing that AK23 led to a stronger redistribution and loss

of Dsg3 than 2G4. The effects were ameliorated by inhibition of

p38MAPK using either SB202190 (Figures 3A, D) or EO1428

(Figures S1A, D). p38MAPK inhibition with SB202190 under

control conditions significantly increased Dsg3 staining intensity

both at the cell border and in the cytoplasm whereas effects of
Frontiers in Immunology 03
EO1428 were not significant. This is indicating that p38MAPK is

involved in Dsg3 turn-over under basal conditions as well

(Figures 3A, D; S1A, D). Furthermore, a significant retraction of

keratin filaments from the cell borders towards the nucleus, another

typical pemphigus hallmark, was observed after incubation with

either 2G4 or AK23. The effect was similar in extent for both IgGs

and was also blocked by inhibition of p38MAPK with either

SB202190 (Figures 3A, C) or EO1428 (Figures S1A, C).

In addition to Dsg3 and keratin filaments, the desmosomal

plaque protein Dp was stained and investigated using STED

microscopy. Neither of the two IgGs caused significant changes in

desmosome morphology (Figures 3B; S1B). Due to the regular size

and shape of desmosomal plaques, this staining was also utilized to

determine the number of desmosomes per µm of cell border. Both

2G4 and AK23 caused a similar reduction of desmosome number,
B
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A

FIGURE 1

2G4 is a pathogenic Dsg3 specific IgG. (A) Schematic depiction of binding positions of AK23 (Black), directed against the EC1 domain and 2G4 (Grey)
directed against the EC5 domain of Dsg3, on a desmosome-bound Dsg3. (B) Co-staining of either 2G4 or AK23 (green) with Dsg3 (intracellular
domain, red) and an overlay of both channels in HaCaT cells after 24 hours incubation with the IgGs (1:50), imaged with the STED microscope
(N=4). (C) Representative images of dispase-based dissociation assay results in HaCaT cells. Vehicle control (left) pre-treated with SB20 (60 µM,
inhibiting p38MAPK, right). (D) Quantification of dispase-based dissociation assay results using SB20 (N=4). (E) Representative images of dispase-
based dissociation assay results in HaCaT cells. Vehicle control (left) pre-treated with EO (40 nM, inhibiting p38MAPK, right). (F) Quantification of
dispase-based dissociation assay results using EO (N=4). (G) Representative images of dispase-based dissociation assay results in HaCaT cells.
Vehicle control (left) pre-treated with PP2 (10 µM, inhibiting Src, right). (H) Quantification of dispase-based dissociation assay results using PP2
(N=4). * indicates statistically significant differences in two-way-ANOVA with Sidaks correction for multiple comparisons p<0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1163066
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schmitt et al. 10.3389/fimmu.2023.1163066
comparable to results for PV-patient skin (12). This effect was also

abrogated by inhibition of p38MAPK with either SB202190

(Figure 3B, E) or EO1428 (Figure S1B, E).
2G4 and AK23 induce overlapping, yet
distinct signalling responses

Next, we analysed the signalling pathways induced by 2G4 and

AK23 respectively, using Western blot analyses after Triton X protein

fractionation. Similar to previous studies, p38MAPK was significantly

phosphorylated in the Triton X soluble (not cytoskeleton-bound

fraction) and both IgGs induced a similar degree of p38MAPK

phosphorylation. This effect was ameliorated upon treatment with

the p38MAPK inhibitor SB202190 (Figures 4A, B) or EO (Figures S2A,

N). Interestingly, Src, which is another well-known Dsg3-dependent

signalling protein involved in loss of cell adhesion in pemphigus (48,

49), was significantly phosphorylated upon treatment with AK23 but

not following 2G4 incubation. The effect was dependent on p38MAPK

since treatment with SB202190 (Figures 4A, B) or EO 1428(Figures

S2A, B) abolished this effect. As a third target of interest, Akt as

downstream kinase of PI3-kinase, which is regulated by the Dsg3-

dependent EGFR signalling pathway (6, 11, 50), was investigated. Akt

phosphorylation was significantly increased to a similar degree after

treatment with either 2G4 or AK23. Inhibition of p38MAPK with

SB202190 (Figures 4A, B) or EO1428 (Figures S2A, B) abolished this

effect. Neither of the two antibodies showed a significant impact on the

activity of RhoA or Rac1 GTPases (Figure S3).

In addition to protein phosphorylation, the Ca2+-influx after

treatment with either 2G4 or AK23 was monitored. 2G4 induced a

rapid influx of Ca2+ into the cells whereas AK23, similar to a previous

report, did not (51) (Figure 5A). 2G4 did not show any signs of cross

reactivity with Dsg1 (Figure S4), indicating a signalling mechanism
Frontiers in Immunology 04
dependent on Dsg3 in this case. This phenomenon was investigated

further, employing mediators used in a previous study (51) (Table S2).

However, in contrast to Dsg1-IgG-dependent signalling (51), inhibition

of PI4K (with GSK-F1), PLC (with U-73122) or IP3R (with

Xestospongin C) was not effective in preventing the 2G4-mediated

Ca2+-influx. Rather, inhibition of the downstream calcium release-

activated channel (CRAC) (with BTP-2) blocked Ca2+-influx,

indicating that 2G4 induced a different pathway of Ca2+-influx into

the endoplasmic reticulum (Figure 5B). Next, we tested whether this

Ca2+-influx is involved in loss of cell adhesion caused by 2G4.

However, none of the mediators including BTP-2 prevented any of

the pathological changes, including loss of adhesion in the dispase-

based dissociation assay (Figures 5C, D), keratin filament retraction

and fragmentation of Dsg3 staining as revealed by STED

microscopy (Figure 5E).

Discussion

Differences in the pathogenic effects
between 2G4 and AK23

We found that 2G4 induced effects typical for pemphigus

pathogenesis including loss of adhesion, keratin filament

retraction and fragmentation of Dsg3 staining, which is in line

with previous data (47). In addition, we observed that 2G4, similar

to AK23, induced a decrease in the number of desmosomes per µm

of cell border. This is important because loss of desmosomes is a

hallmark in pemphigus patient lesions (12, 52). The same was

observed by using transmission electron microscopy of human skin

treated with PV-IgG ex vivo. However, AK23 did not cause

significant loss of desmosomes in intact full skin (53). The results

of the current study show that 2G4 was more than two times less

effective than AK23 in inducing loss of cell adhesion. Despite this,
BA

FIGURE 2

(A) Representative images of dispase-based dissociation assay results in HaCaT cells. Control, treated with C-IgG only (top), treated with either single
2G4, AK23 or a mixture of both at a concentration of 75 µg/ml eacht (left) and at half concentration of 37.5 µg/ml right. (B) Quantification of
dispase-based dissociation assay (N=4). # indicates statistically significant differences towards control conditions, one-way-ANOVA with Dunett
correction for multiple comparisons, p<0.05.
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STED imaging revealed a similar degree of keratin filament

retraction and loss of desmosomes for the two IgGs. The

difference may still be explained in part by the loss of Dsg3

staining caused by AK23, but not 2G4, both along the cell

membrane and within the cytosol, indicating Dsg3 degradation.

In fact, a complete lack of extradesmosomal Dsg3 following

incubation with AK23 was observed, whereas in 2G4-treated cells,

Dsg3 was present in linear streaks between adjacent cells. This is

also in agreement with previous findings, indicating that the

extradesmosomal pool of Dsg3 is affected first, without major

changes in desmosome composition (12, 54–57). It also fits to the

finding that the loss of adhesion and the widening of the

intercellular distance is actually initiated in the spaces between

the desmosomes (58, 59) and the desmosomes are affected only later
Frontiers in Immunology 05
(12, 60–63). Consistent with these reports, the morphology of the

desmosomes did not appear to be altered.

The fact that 2G4 induces the typical hallmarks of pemphigus

pathology despite being directed against the EC5 domain is

interesting because antibodies against most other domains than

EC1 or EC2 and particularly those targeting the EC5 domain of

Dsg3 or Dsg1, were reported to be mostly non-pathogenic (32, 34,

35, 64). For anti-Dsg1-IgGs found in individuals from an endemic

population with high risk to develop PF, EC5-specific IgGs were

reported to cause no symptoms. Individuals carrying anti-EC1 or

anti-EC2 IgGs on the other hand suffered from clinically evident PF

(39). Moreover, anti-Dsg3-IgGs isolated from two patients also

demonstrated no pathogenic effects for any of the IgG fractions

recognizing only EC5 (32). Furthermore, it was reported that IgGs
B

C D E

A

FIGURE 3

STED microscopy images reveal specific pathogenic effects of 2G4 and AK23. (A) Co-staining of Dsg3 (red) and pan-cytokeratin (green) in HaCaT
cells treated with either C-IgG, AK23 or 2G4 for 24 h after 1 h preincubation with vehicle or SB20 (60 µM, inhibiting p38MAPK). Spans illustrate the
degree of keratin filament retraction (yellow) compared to control (white). White arrowheads showcase the fragmented staining of Dsg3, which is
mostly associated with keratin filaments. (B) Staining of Dp (with anti-Dp-pAb, A7169) after 24 h treatment with IgGs and 1 h preincubation with
vehicle or SB20. Yellow arrowheads indicate reduced numbers of desmosomes per µm of cell border. Two different magnifications are shown for
each condition (Scalebars as indicated, boxes with dotted outline indicate the area which was zoomed in on); Quantification of the STED images:
(C) Keratin filament retraction form the cell borders towards the nucleus. (D) Dsg3 staining intensity at the cell borders/membranes (left) or in the
cytoplasm (right). (E) Number of desmosomes per µm membrane (Experiments (N)=4-6, Evaluated images (n)=12-22). * marks statistically significant
differences between the two conditions indicated, # indicates statistically significant differences towards control conditions, both in two-way-
ANOVA with Sidaks correction for multiple comparisons, p<0.05.
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against EC4 and EC5 are rarely found in clinically evident cases and

only appear in rare atypical pemphigus cases, if at all. No patients

were described to exclusively have IgGs against the EC5 domain,

while patients with IgGs exclusively or mostly targeting EC1 and/or

EC2 are common (33, 65). The lack of EC4 and EC5-specific IgGs in

patients may be explained by the lower accessibility of these

domains since the regions closer to the membrane are less

exposed and are thus less likely to be subject to immunological

processes, at least within mature desmosomes.
Differences in the pathogenic effects
between 2G4 and AK23 are potentially
caused by epitope-specific Dsg3 signalling

Signalling is known to be a major mechanism involved in

pemphigus pathogenesis and was found to significantly contribute
Frontiers in Immunology 06
to blistering in human epidermis (66, 67). Stabilizing keratinocyte

desmosomal adhesion may thus represent a novel additive

treatment paradigm for pemphigus (68, 69). We proposed

previously that autoantibody-specific signalling may contribute to

the different clinical phenotypes of pemphigus (6). In line with this,

we observed that 2G4 and AK23 induced p38MAPK activation. Akt

as downstream target of EGFR and PI3-kinase was also

phosphorylated and can thus also be considered to be activated in

a Dsg3-dependent manner.

In addition to that, for the first time, we observed that Dsg3-

mediated signalling is in part epitope-specific. Src was

phosphorylated only after incubation with AK23 but was

unaffected by 2G4. This difference in signalling response might

also provide an explanation for the observed differences between the

two IgGs in degree of loss of adhesion and their effect on the Dsg3

distribution and dynamics. It is likely that extradesmosomal Dsg

complexes are degraded in response to AK23, since Dsg3, E-
B

A

FIGURE 4

Western blot analysis reveals anti-Dsg3 epitope-specific kinase phosphorylation. (A) Representative Western blot images, with respective controls for
Triton-soluble (membranous+cytosolic fraction, right) Gapdh and Triton-insoluble (cytoskeleton/desmosome-bound fraction, left) Dp. The cells
were treated with either C-IgG, AK23 or 2G4 with or without pre-treatment with SB20 for 1 h, to inhibit p38 MAPK. (B) Quantification of differences
in phosphorylation of the investigated proteins from the WB results. Significant changes were observed and quantified in the soluble fraction for
p38MAPK and Akt and the insoluble fraction for Src (N=4-7). * marks statistically significant differences between the two conditions indicated in two-
way-ANOVA with Sidaks correction for multiple comparisons, p<0.05.
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Cadherin and Pg containing complexes were reported to be

regulated in a Src-dependent manner (48, 70, 71). This would

impact adhesion via alterations in the actin cytoskeleton which was

reported to stabilize extradesmosomal Dsg3 binding events (72).

Interestingly, the phosphorylation of both Src and Akt was

dependent on p38MAPK activity. However, previous reports

indicated that p38MAPK can also be regulated by Src, indicating

a feedback loop (49, 73). Src seems to regulate the actin dynamics

(48, 70, 71), p38MAPK on the other hand was reported to regulate

keratin dynamics (74–77). However, p38MAPK was mostly found

to be located in the soluble (non-desmosome-bound) pool and to be

activated by depletion of Pg. Src on the other hand was confined

mostly to the cytoskeleton bound (desmosomal) fraction, as also

shown previously (78). Since it was proposed that autoantibodies in

pemphigus first induce signalling via extradesmosomal Dsg

molecules (79), it may be that Src activity is regulated by

p38MAPK activity via keratin restructuring and p38MAPK

activity at least in part by Src activity via actin restructuring.

These data support the hypothesis that p38MAPK is a central

pathway in pemphigus pathogenesis, which in epidermal

keratinocytes orchestrates other signalling events involved in skin

blistering. The current results together with previous finding may

explain, why p38MAPK inhibition alone was effective to abrogate

PV-IgG-induced skin blistering in vivo and in human skin ex vivo
Frontiers in Immunology 07
(53, 80). Inhibition of Src alone on the other hand was protective

against the effects of AK23 but not PV-IgG in human epidermis

(49). This might be a result of the activation of Dsg1-dependent

pathways via anti Dsg1-IgG, but it is now clear, that this effect could

also be epitope specific and dependent on the presence of the right

mixture of polyclonal IgGs. In contrast to that, for the formation of

mucosal erosions, p38MAPK appears to not be critical. Inhibition

of p38MAPK alone was not sufficient to prevent blister formation in

human mucosa ex vivo (81). This indicates that the interplay of

several different pathways is important for a significant loss of

adhesion and blister formation in vivo. Both p38MAPK and Src are

major players in this context and seem to be interdependent at least

to some degree but can possibly also act independent of each other.

This dynamic seems to be regulated at least in part in an epitope

specific manner.

The second example for epitope-specific signalling we observed

was that 2G4 induced a significant degree of rapid Ca2+-influx,

whereas AK23, similar to previous findings, did not (17, 51). Since

2G4 showed no cross-reactivity with Dsg1, this most likely is a

Dsg3-dependent mechanism. Inhibitors of the known Dsg1-

dependent Ca2+-influx pathway revealed that CRAC was involved

in this effect whereas PI4K, PLC and IP3R were not. Because

inhibition of CRAC did not show any protective effect on 2G4-

mediated loss of cell adhesion, we conclude that Ca2+-influx by this
B
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FIGURE 5

Alterations of intracellular Ca2+ signalling induced by 2G4. (A) Changes in intracellular Ca2+-concentration determined in HaCaT cells, after addition of 2G4,
AK23 or C-IgG, by a measured change in ratio of 340/380 nm fluorescence of intracellular FURA-2AM upon Ca2+ binding (One curve represents one
independent experiment, N=3, obtained from the mean of 8 cells, n=8). (B) Changes in intracellular Ca2+-concentration after addition of 2G4 to HaCaT cells
previously treated with inhibitors of the anti-Dsg1-IgG-dependent Ca-influx pathway (see Table S2). (C) Representative images of dispase-based dissociation
assay results after pre-treatment of HaCaT cells with Ca2+-influx pathway mediators for 1 h. (D) quantification of the dispase-based dissociation assay results
(N=5-13, * makrs statistically significant differences between the two conditions indicated, n.s. (not significant) indicates, that there are no significant
differences to the corresponding C-IgG (negative) or 2G4 (positive) control condition, both in two-way-ANOVA with Sidaks correction for multiple
comparisons, p<0.05). (E) STED images of cells pre-treated with vehicle or Ca2+-influx pathway mediators for 1 h and C-IgG or 2G4 for 24 h. White
arrowheads indicate fragmented Dsg3 staining.
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mechanism does not play a major role in pemphigus pathogenesis,

which is different to the anti-Dsg1-induced Ca2+signalling, which

reduced cell adhesion via PI4K, PLC, IP3R and CRAC (51).

Previous studies reported that the role of p38MAPK for loss of

keratinocyte adhesion and epidermal blister formation might be

dependent on polyclonal effects of anti-Dsg1- and/or anti-Dsg3-IgGs

(82, 83). At least in combination with the bacterial exfoliative toxin A,

which specifically cleaves Dsg1,much lower concentrations of AK23 of

10-15 µg/ml (compared to the 75 µg/ml used in the current study)were

sufficient to cause loss of adhesion in a p38MAPK- and tyrosine

kinase-independent manner. Moreover, a monoclonal PF-IgG was

sufficient to cause epidermal blistering in a p38MAPK-independent

manner. Therefore, we tested whether additive or polyclonal effects of

AK23 and 2G4 on loss of cell adhesion were present when both

antibodies were applied in combination. However, effects were similar

when either the full or half of the concentration was used for both

autoantibodies. These results indicate that polyclonal mixtures of these

two antibodies did not induce additive effects on loss of adhesion and

that the concentrations used are effective to induce maximal loss

keratinocyte adhesion which is blunted by p38MAPK inhibition.

Moreover, a single pathogenic autoantibody directed against Dsg3 is

sufficient to induce an epitope-specific signalling response, at least at

the concentrations used in this study. However, this does not rule out

that combinations with other autoantibodies, which alone are

considered to be non-pathogenic, may alter the signalling response

or the extent of Dsg1/Dsg3 clustering and depletion (55, 82, 83).
Conclusion

The study supports the notion that monoclonal Dsg3-specific

autoantibodies such as 2G4 and AK23 are pathogenic (47, 84) and are

effective tocause lossofkeratinocyteadhesionandinducereorganization

ofkeratinfilamentsand lossofdesmosomes.However, thepathogenicity

is dependent on the target epitope and maybe explained in part by

epitope-specific signalling including Srcwhichmay be involved inDsg3

degradation. Further studies are required to determine how epitope-

specific signalling is elicited upon autoantibody binding.
Materials and methods

Cell culture

The human epidermal keratinocyte cell line HaCaT was used

for all experiments. The cells were cultivated in a humidified, 5%

CO2 atmosphere at 37°C in Dulbecco’s Modified Eagle Medium

(DMEM) (Life Technologies, CA) with 10 % FCS (Biochrom, DE)

and 50 U/ml penicillin and 50 µg/ml streptomycin (both

AppliChem, DE). They were passaged using a trypsin-EDTA

solution (Merck, DE). For experiments, the cells were pre-

incubated with the mediators (Table S2) for 1 h and with the

IgGs for 1 h for signalling or 24 h for other experiments. Both AK23
Frontiers in Immunology 08
and 2G4 were used in a concentration of 75 µg/ml, IgG purified

from healthy volunteers was used 1:50.
Ratiometric intracellular
Ca2+ measurements

Fura-2AM (Thermo Fisher, USA) was used to measure

intracellular Ca2+ in real time. The cells were grown in an 8-well

µ-slide (Ibidi, DE). Mediators (Table S2) were contained in all

incubation steps and during the measurement. A mix of 1 µmol/l

Fura-2AM and 0.02 % pluronic (Thermo Fisher, USA) was applied

for 20 min in measurement buffer (140 mmol/l NaCl, 3.6 mmol/l

KCl, 2.6 mmol/l CaCl2(H2O)2, 0.5 mmol/l MgSO4, 0.5 mmol/l

NaH2PO4(H2O)2, 2 mmol/l NaHCO3, 5 mmol/l HEPES and

5mmol/l D+Glucose, pH 7.35) at 37°C. The cells were washed

twice with measurement buffer. Measurements were performed

using MetaFluor (Moleculardevices, USA) on an Axio Observer

A1 (Zeiss, DE) with a Polychrome V (Till Photonics, DE), a

CoolSNAP-Hq2 digital camera (Photometrics, USA) and a Fura-2

filter set. For each independent experiment, the signals from 8 out of

15 randomly selected cells were evaluated (occasional non-

responding cells were not included, very rare oscillating cells and

weak responders were included, N = 4).
Cell lysis, gel electrophoresis
and Western blotting

Cells were cultured in 24-well-plates. Lysates were fractioned into a

soluble and insoluble fraction using Triton-extraction-buffer

(0.5% Triton X-100, 50 mmol/l MES, 25 mmol/l EGTA, 5 mmol/

l MgCl2, pH 6.8, 0.1% pepstatin+aprotinin+leupeptin, 1%

Phenylmethylsulfonylfluorid) for 10 min on ice under gentle shaking.

The pellet was separated at 14.000 rpm for 10 min at 4°C and the

supernatant was retrieved. The pellet was washed once and lysed with

ultrasound in SDS lysis buffer (25 mmol/l HEPES, 2 mmol/l EDTA, 25

mmol/l NaF, 1% SDS, pH 7.6, complete™ (Merk, USA)). The protein

amount was determined with a commercial Pierce BCA protein assay

kit. Western-blotting was performed, using a standard wet blotting

protocol on nitrocellulose membranes (Life Technologies, USA).

Membranes were blocked with ROTI®Block (Carl Roth, DE) 1:10 in

Tris-buffered saline with 0.05% tween (TBST) for 1 h. The Antibodies

(Table S1) were used overnight at 4°C in 5% BSA in TBST anti-rabbit/

mousehorseradish-peroxidase-coupledsecondaryantibodies (Dianova,

DE) were used 1:10.000 in TBST for 1 h and visualized with self-made

ECL solution on a FluorchemE developer (Protein Simple, USA).
Dispase-based dissociation assay

After incubation as described above, confluent cell monolayers

were washed with Hank´s buffered saline solution (HBSS) and
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subjected to 2.4 U/ml dispase II (Sigma Aldrich, USA) in HBSS for

20 min at 37 °C, 95% humidity and 5% CO2. After detachment of

the monolayer the reaction was stopped by adding 200 µl HBSS.

Defined shear stress was applied with an electrical pipette. Images

for fragment counting were taken using a binocular microscope

(Leica, DE) and an EOS 600D camera (Canon, Japan).
Immunostaining

Samples were washed and fixed with ethanol (-20°C) shaking on

ice for 30 min followed by acetone (-20°C) for 3 min. The samples

were blocked with 3% bovine serum albumin (BSA) and 1% normal

goat serum in PBS for 30 min. Primary antibodies were applied over

3 h at RT STAR-RED- or Alexa 594-coupled goat-anti-rabbit/

mouse secondary antibodies (Abberior GmbH, DE) were

incubated for 1 h and DAPI 1:10.000 for 15 min. The coverslips

were mounted on glass slides using Prolong™ Diamond Antifade

Mountant (Thermo Fisher GmbH, DE).
STED microscopy

The samples were imaged using an Abberior 3D Stimulated

emission depletion (STED) confocal microscope with IMMOIL-

F30CC (Olympus GmbH, DE) Star Red and Alexa 594 were excited

at 638 nm and 594 nm respectively, using pulsed diode lasers (PDL

594, Abberior Instruments; PiL063X, Advanced Laser Diode

Systems). Fluorescent molecules were depleted at 775 nm with a

pulsed fibre laser (PFL-P-30-775B1R, MPB Communications) and

the emission was detected with an avalanche photodiode detector at

605-625 and 650-720 nm range.
Statistical analysis

Data were analysed using two-way-ANOVA followed by Sidak-

post-hoc-test for multiple comparison or one-way-ANOVA

followed by Dunnett-post-hoc-test for multiple comparison, using

Graphpad Prism (Graphpad Software, USA). Error bars represent

SEM. Significance was assumed with p ≤ 0.05. Data are shown as

mean ± SEM. Each N represents one independent experiment, each

n one technical replicate.
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In memoriam of Detlef Zilikens

The authors all knew Detlef Zilikens as an inspiring scientist.

Jens Waschke (JW) listened to his lectures in dermatology when he

was a student at Würzburg medical school where he found

professor Zillikens to be a very student-friendly and relaxed

teacher, which was not applying to all professors he met before.

During these lectures, JW heard for the first time about pemphigus.

He felt that for this disease the pathogenesis seemed rather simple.

It was known that autoantibodies targeting adhesion molecules in

desmosomes, the latter he knew well from his anatomy classes, were

pathogenic. During his internship in internal medicine in 2001, JW

again met Detlef Zillikens to initiate a research project together with

Enno Schmidt on the pathogenic effects of autoantibodies in

pemphigus. Soon, everything turned out not to be that simple

and the pathogenesis of pemphigus not completely clarified. Since

the background in the anatomy group on pemphigus was missing,

the collaboration with Enno Schmidt, which is still continuing

today, under the supervision of Detlef Zillikens was pivotal to

complete our first studies and to get introduced to the pemphigus

research community. JW remembers when Detlef was talking with

him and his doctoral student Volker Spindler at the International

Dermatology Meeting in Los Angeles in 2007, where we were

presenting our first poster on pemphigus and he gave us the

impression to talk among equal experts. At this occasion, he

introduced us to the pioneers of pemphigus research. Afterwards,

many discussions and also private talks followed at pemphigus

meetings over the years, where Detlef Zillikens advised JW about

the strengths and weaknesses of the manuscripts we published with

him. For us, Detlef Zillikens was much more than a collaborator and

without him and Enno Schmidt, we would not have completed a

single study on pemphigus.
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